您的当前位置:首页正文

浙江省宁波市鄞州区2018学年九年级第一学期科学期末试卷(含答案)

2020-03-02 来源:易榕旅网
郭州区2018学年第一学期九年级期末考试数学试题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题, 26个小题●满分为150分,考试时间为120分钟.2.请将姓名、准考证号分别填写在答题卷的规定位置上.3.答题时,把试题卷1的答案在答题卷1上对应的选项住置,用2B铅笔涂黑、涂满.将试题卷Ⅱ的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效●4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示●试题卷1一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.在平面直角坐标系中,抛物线y=缸2的开口方向是( ▲ )A.向上B.向下C.向左D.向右2.已知佛是半径为5的圆的一条弦,则佛的长不可能是( ▲ )A. 4B. 8C. 10D. 123.圆O的半径为5,若直线与该圆相离,则圆心O到该直线的距离可能是( ▲ )A.2.5B.wi c. 5D.64.由抛物线y=x2平移得到抛物线少=α+2)2,下列平移方法可行的是( ▲ )一A.向上平移2个单位长度B.向下平移2个单位长度C.向左平移2个单位长度D.向右平移2个单位长度5.一个公园有∠, B, C三个入口和D,五二个出口.小明进入公园游玩,从“∠口进D口出″的概率为( ▲ )A.D●圭B三c. ÷6.在舵△∠BC中,∠C=900,∠B=6. △4BC的内切圆半径为1.则△∠BC的周长为( ▲ )A. 13B. 14C. 15D. 167.点∠ (-3,市, B (0,班) , C(3,班)是二次函数y=一扛+2)2+加图象上的两点,则讣,班,乃的大小关系是( ▲ )A.计<班一、选择题:(每小题4分,共48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D D C D B C B C A D A 二、填空题:(每小题4分,共24分) 题号 13 14 15 16 17 18 答案 120° 1tan46° 25 152 2 4 三、解答题(共78分)

19.解:3tan30cos6032sin245

233123232··································3分 2·32 ·

····················································6分 20.解:(1)摸到白球的概率是12 .······································· 3分 (2)图略.···················································· 6分

两次摸到红球的概率为

16. ································ 8分 21.解:(1) 过点B作BDAC交AC于点D.

BDACBDA90

tanBAC3BD3

4AD4AB3mBDABsinBAD3351.8m 答:点B离开地面的距离为1.8m.·································3分

(2)过E作EFAC交AC、AB于点F、G.

EFAEBG90,AGFEGB,GAFGEB,tanGEBGB3EB4.EB2,BGBEtanGEB2341.5.EG2.5.

EF3.1,FGEFEG0.6.AGFGsinBAC0.60.61,AB11.52.5m. 答:AB的长为2.5m. ·····································8分

22.解:(1)连结BC、OC.

AB为直径,∴∠ACB=90°. ∵AB=2BP, ∴AO=OB=BP.

∵AC=3BP=3OA,∴∠A=30°.······························2分

∴∠COB=2∠A=60°.∵OB=OC,∴△OCB为正三角形. ∴OB=OC=BC=BP,∴∠BCP=∠P=

1OBC=30°. 2∴∠OCP=∠OCB+∠PCB=90°,∴OCCP.·····················4分 ∵OC为半径,∴PC与⊙O相切.································5分 (2)∵SAOC19················7分 AOOCsin603, ·

24nr212032扇形OAC的面积为·················9分 3 ·

360360∴阴影部分弓形面积为39··························10分 3.· ·

423.解:(1)2,2 ···················································2分 (2)图略(扣分讨论) ······················ 6分

(3)B ···············································10分

24.解:(1)由题得:BC=x,AB=10-则sABBC1x. 212·······························2分 x10x·

2x的取值范围为0x4.····································3分 (2)s121·················4分 x10x(x10)250 ·

22 又 0x4

∴当0x4时,s随着x的增大而增大.

∴当x4时,s的值最大,且最大s=32.····················6分 答:当BC为4时,矩形花园ABCD的面积最大,最大值为32. (3) 由题得:BC=x,DE=x-4, AB=[20x(x4)]2112x. 2则sABBCx12x(4x12) ················8分 当x6时,s的值最大,且最大s=36. ···············10分 答:矩形花园ABCD的面积最大,面积为36.

25.解(1)画出点D的2个位置。

·················2分

(2)∵四边形ABCD为被BD分割的友谊四边形

∴△ABD与△DBC相似.

若△ABD∽△CBD则AB=BC=8. ···························4分 若△ABD∽△DBC则

ABBD∴AB=6 ·····················6分 BDBC综上所述:AB=6或8.

(3)①∵E是AC的中点,∴ABECBE∴CBFC150.

∵四边形ABCD内接于圆O,∴BADC180. ∵DAF30,BAFC150.∴BFCBAF. ∴△ABF∽△FBC.

∴四边形ABCF为友谊四边形. ···········9分 ②过点A作AG⊥BC交BC与G. ∵△ABF∽△FBC,∴

⌒1ABC30 2SABC∴

ABBF2∴FBABBC· BFBC11BCAGBCABsin6063 223ABBC63即ABBC24FB2··················11分 4∵FB0,∴FB26 ··································12分

26.(1)∵四边形ABCD是圆O的内接四边形,∴∠ABC=180°-∠ADC=∠CDE. ∵AB=AC, ∴∠ABC=∠ACB.

∴∠ADB=∠ACB=∠ABC=∠CDE. · ························4分 (2)①∵四边形ABCD内接于圆,∴∠BAD=180°-∠BCD=∠DCE. 又∠ADB=∠CDE,∴△ADB∽△CDE. ∴

ADDB, ∴ADDE=BDCD=7×3=21. ·······················7分 CDDE②方法一:如图,过点A画AH┴CD于点H, ∵∠AFB=∠H=90°,∠ABD=∠ACH,AB=AC, ∴△ABF≌△ACH.∴BF=CH,AF=AH.

∵∠ADB=∠CDE=∠ADH,DF┴AC,DH┴AH, ∴DF=DH.(也可以根据全等证明得到或勾股定理计算)

∴DF=BD-BF=BD-CH=BD-(CD+DH),即2DF=BD-CD=7-3=4,DF=2,BF=5. ---9分 在Rt△CDF中,CF=CDDF325, ∴tan∠ACB=

22225······················11分 5. ·

5方法二:如图,连结AO并延长交圆于点G,连结BG,CG, ∵AG是直径,∴∠ACG=90°, 又BD┴AC,∴CG//BD,∴BGCD. ∵直径AG平分BAC,∴BGCG ∴CDBGCG,∴CG=BG=CD=3

在四边形BGCD中,CG//BD,BG=CG=CD=3,BD=7,∴DF=2. ······9分 同上可得tan∠ACB=5. ······11分 方法三:连结AO并延长交BD于点M,连结CM,

∵AM平分BAC,∴AM┴BC, ∴∠CAD=∠CBD=90°-∠ACB=∠MAF. ∴△MAF≌△DAF(ASA).

∴MF=DF,即AC是线段MD的中垂线.

∴BM=CM=CD=3,∴MF=DF=2,同上可得同上可得tan∠ACB=5. ······11分 方法四:如图,在BD上截取BM=CD,

∵∠ABM=∠ACD,AB=AC,BM=CD,∴△ABM≌△ACD(SAS) ∴AM=AD,又AC┴BD, ∴MF=DF=

A111DM=(BD-BM)=(BD-CD)=2, ······9分 D222O同上可得tan∠ACB=5. M ······11分

FBCE方法五:延长BD至点H,使得 DH=CD,则BH=10.

∵∠ADC=∠ADB+∠BDC=∠CDE+∠BDC=∠ADH,AD=AD,CD=HD, ∴△ADC≌△ADH(SAS),∴AH=AC=AB, 又AC⊥BH,∴BF=

1BH=5,FD=2. A ······9分 2同理可得tan∠ACB=5. ······11分

DHF21方法六:设AD=m,由错误!未找到引用源。则DE=, mB∴AB2=ADAE=m2+21. ∴BF2-DF2=AB2-AD2=21.

设BF=n,则DF=7-n,即n2-(7-n)2=21

OCE∵∠BAD=∠EAB,∠ADB=∠ACB=∠ABC,∴△ABD∽△AEB.

解得BF=n=5,所以DF=2,所以CF=5, ······9分 同理可得tan∠ACB=5. ·····11分 (3)S102·····14分 x(下面提供详细解答过程,考试时不要求学生书写) ·

29

如图,过点A画AH┴CD于点H,AK┴BD于点K,

同上可证△ABK≌△ACH得BK=CH,AK=AH,再得DK=DH.故2DK=BD-CD.

SSABCSDBCSABFSDFCSABDSADC1111BDAKCDAHAK(BDCD)AK2DK2222102AKDKxsinADBxcosADBx29

(3)易证△ABD∽△AEB,∴AB2=ADAE.

易证△ABD∽△DEC,∴BDCD=ADDE.

11

S△ABC- S△BCD=ABACsin∠BAC-BDCDsin∠BDC 221

= sin∠BAC(ADAE- ADDE) 21

=x2sin∠BAC 2

5

又tan∠ABC=tan∠CDE=,

2

如图,设BM=2a,则AM=5a,AB=29a,

2020

由面积法可得BN=a,即sin∠BAC=

2929

AODFCABE∴S△ABC- S△BCD=2x2×29=29x2

12010

NBMC

因篇幅问题不能全部显示,请点此查看更多更全内容