什么叫复数,怎么用,通俗简单点

发布网友 发布时间:2022-04-23 14:50

我来回答

2个回答

热心网友 时间:2022-04-18 03:28

以前,老师教开根号的时候,负数是不能开根号的。后来,人们定义虚数i,i*i=-1(用j也是一样的,只是一个符号)
因此,可以推导出:2i*2i=-4

---------------引用一段标准定义和历史--------------
复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)。在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

复数(complexnumber)为,形如a+bi的数。式中a,b为实数,i是一个满足i2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。

德国数学家阿甘得(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“阿甘得平面”。高斯在1831年,用实数组代表复数,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一一对应,扩展为平面上的点与复数一一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。

-------------引用结束-----------------

因此,负数可以看做XY坐标系上的一个点可以解决很多实际的几何问题。

简单介绍一下他的运算法则

(a+bi)+(c+di)=(a+c)+(b+d)i,
(a+bi)-(c+di)=(a-c)+(b-d)i,
(a+bi)·(c+di)=(ac-bd)+(bc+ad)i,
(c与d不同时为零)。

数系的每一次扩充,都是在旧的数系中添加新的元素。如分数添加于整数,负数添加于正数,无理数添加于有理数,复数添加于实数。

热心网友 时间:2022-04-18 04:46

后面的j是虚数单位追问就这么没了?

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com