发布网友 发布时间:2022-04-23 02:00
共1个回答
懂视网 时间:2022-08-21 15:30
1、值域的求法有9种,过程是不同的。
2、配方法。过程:将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。画一个简易的图能更便捷直观的求出值域。
3、常数分离。过程:这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
4、逆求法。过程:对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的范围,就是原式的值域了。
5、换元法。过程:对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。
6、单调性。过程:可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
7、基本不等式。过程:根据学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
8、数形结合。过程:可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域
9、求导法。过程:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可的到值域了。
10、判别式法。过程:将函数转变成 ****=0 的形式,再用解方程的方法求出要满足的条件,求解即可。
热心网友 时间:2023-08-30 03:15
求函数的值域首先必须明确两点:一点是值域的概念,即对于定义域A上的函数y=f(x)其值域就是指集合C={y|y=f(x),x∈A},另一点是函数的定义域、对应法则是确定函数的依据。
求值域常用方法:
1、配方法,将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。
2、常数分离法,这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
3、逆求法,对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的*范围,就是原式的值域了。
4、换元法,对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。
5、单调性法,可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
6、基本不等式法,根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
7、数形结合法,可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。
8、求导法,求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可的到值域了。
9、判别式法,将原函数变形成关于x的一元二次方程,该方程一定有解,利用方程有解的条件求得y的取值范围,即为原函数的值域。
f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R