发布网友 发布时间:2022-04-23 02:00
共2个回答
热心网友 时间:2023-09-02 16:26
1.观察法
用于简单的解析式。
y=1-√x≤1,值域(-∞, 1]
y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数。
y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1, +∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3. 换元法
多用于复合型函数。
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。
特别注意中间变量(新量)的变化范围。
4. 不等式法
用不等式的基本性质,也是求值域的常用方法。
y=(e^x+1)/(e^x-1), (0<x<1).
0<x<1,
1<e^x<e, 0<e^x-1<e-1,
1/(e^x-1)>1/(e-1),
y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).
5. 最值法
如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].
因此,求值域的方法与求最值的方法是相通的.
6. 反函数法
有的又叫反解法.
函数和它的反函数的定义域与值域互换.
如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.
7. 单调性法
若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b),f(a)]
http://wenku.baidu.com/link?url=TWMuA9_OAC7_N3-m-l8n9sn92ycRR4MILEDh-ymjRyOwBgKlrzkJrqhaSmDO-ESD5ttjON6lZ2iwt12PJ0UfhYGw3VvaDUKAuh0sgzxndUK
热心网友 时间:2023-09-02 16:26
求函数值域方法•常数分离法•不等式法•配方法•逆求法•换元法•判别式法一、 配方法通过配方结合函数图像求函数的值域,一般地,对于二次函数 求值域问题可运用配方法.二、 反函数法 一般地,形如 ,可利用原函数与反函数的定义域和值域之间的互逆关系.三、 分离常数法一般地,对于分式函数来说,可以分离一个常数去求函数的值四、 判别式法一般地.形如 ,转化为关于y的一元二次方程,利用方程有实数解, 来求y.五、 换元法 一般地,形如 ,通过换元 (注意此时t的范围)六、 分类讨论法 通过分类讨论函数定义域x的符号去求值域.