发布网友 发布时间:2022-04-23 02:27
共4个回答
热心网友 时间:2023-08-13 21:49
分子相似相容原理
“相似”是指溶质与溶剂在结构上相似;“相溶”是指溶质与溶剂彼此互溶。例如,水分子间有较强的氢键,水分子既可以为生成氢键提供氢原子,又因其中氧原子上有孤对电子能接受其它分子提供的氢原子,氢键是水分子间的主要结合力。所以,凡能为生成氢键提供氢或接受氢的溶质分子,均和水“结构相似”。如ROH(醇)、RCOOH(羧酸)、R2C=O(酮)、RCONH2(酰胺)等,均可通过氢键与水结合,在水中有相当的溶解度。当然上述物质中R基团的结构与大小对在水中溶解度也有影响。如醇:R—OH,随R基团的增大,分子中非极性的部分增大,这样与水(极性分子)结构差异增大,所以在水中的溶解度也逐渐下降。
对于气体和固体溶质来说,“相似相溶”也适用。对于结构相似的一类气体,沸点愈高,它的分子间力愈大,就愈接近于液体,因此在液体中的溶解度也愈大。如O2的沸点(90K)高于H2的沸点(20 K),所以O2在水中的溶解度大于H2的溶解度。
对于结构相似的一类固体溶质,其熔点愈低,则其分子间作用力愈小,也就愈接近于液体,因此在液体中的溶解度也愈大。
热心网友 时间:2023-08-13 21:49
纯净的水有如下反应:2H2O ——> H30(+) + OH(-)
即水中分别存在H30和OH这正负两种极性的离子。所以,把诸如NaCl之类的极性分子投入水中,由于H30和OH这正负两种极性离子的作用,NaCl会被电解成Na(+)和Cl(-)从而被溶解。
热心网友 时间:2023-08-13 21:50
溶解的本质是溶质在溶剂里以分子(离子)级别的扩散,
溶解也分两种,一种是溶剂分子的扩散,一种是溶剂被电离,以离子形式扩散
糖溶于水是第一种情况,
氢氧化钠
溶于水属于第二种。
第一种情况是由于水的
亲合力
,
分子极性
与水相似的在水中扩散的就容易些,宏观上表现出来就是可溶解了,这就是
相似相溶原理
。
第二种情况是由于水分子的结构,水的构成原子H、O都是极活跃的原子,因为
核外电子
少,
电子层数
少,于是各种作用力很强。在水中由于水分子的强极化性,O原子的电子被H原子夺去导致O的原子核暴露,这对其他
离子化合物
中的亲核性强的离子有很大的攻击性。促进了溶解的进行。
热心网友 时间:2023-08-13 21:50
物质由固相转变为液相的过程,叫做“熔解”。它是凝固的相反过程。晶体物质在一定压强和一定的温度下,就开始熔解。在熔解过程中,要吸收热量,这部分热量是熔解热。尽管晶体物质吸收熔解热而熔解,但其温度不变,直至全部晶体都变成液体时为止。晶体熔解时对应的温度,称为熔点。
在熔解过程中,吸收热量的多少,只能影响熔解的快慢,而不能影响熔解温度的高低。这说明晶体在熔解和凝固的过程中具有共同的特征温度保持不变。晶体的液态和固态之间有着明显的界限。这是由于晶体的分子是按一定的规则排列成为空间点阵的。分子只能在平衡位置附近不停地振动,因此,它具有动能;同时,在空间点阵中,由于分子之间相互作用,它又同时具有势能。晶体在开始熔解之前,从热源获得的能量,主要是转变为分子的动能,因而使物质的温度升高。但在熔解开始时,热源传递给它的能量,是使分子的有规则的排列发生变化,分子之间的距离增大以及分子离开原来的平衡位置移动。这样加热的能量就用来克服分子之间的引力做功,使分子结构涣散而呈现液态。也就是说,在破坏晶体空间点阵的过程中,热源传入的能量主要转变为分子之间的势能,分子动能的变化很小,因此,物质的温度也就没有显著的改变。所以熔解过程是在一定温度下进行的。
非晶体在熔解过程中,随温度的升高而逐渐软化,最后全部变为液体,所以熔解过程不是与某一确定温度相对应,而是与某个温度范围相对应。因为非晶体物质的分子结构跟液体相似,它的分子排列是混乱而没有规则的,即使由于它的粘滞性很大,能够保持一定的形状,但是实际上它并不具有空间点阵的结构。热源传递给它的能量,主要是转变为分子的动能。所以在任何情况下,只要有能量输入,它的温度就要升高。因此它没有一定的熔解温度,并且在熔解过程中温度是不断上升的。
固态在熔解时,物质的物理性质要发生显著变化,其中最主要的是饱和蒸汽压、电阻率以及熔解气体能力的变化,特别是体积的变化。例如,冰总是浮在水面上,严冬季节,盛满水的瓶子因冻结而将杯胀裂。固体石蜡放入熔解的液体石蜡里,会下沉到底部。从而得出固态熔解成液态,或液态凝固成固态时,体积和密度通常是要发生变化的。大多数物质如石蜡、铜、锌、锡等,在溶解时体积变大,在凝固时体积要缩小。这是因为在晶体内分子有规则排列时所占的体积要比在液体内分子杂乱无章排列时所占的体积小些。但也有少数物质例外,例如,冰、铋和锑等,它们在凝固时体积反而变大,熔解时体积反而缩小。利用这一特点,在铸铅字时,常常要在铅中加入一些铋、锑等金属,使其在凝固时膨胀,字迹清晰。