发布网友 发布时间:2022-04-23 12:38
共4个回答
好二三四 时间:2022-09-26 14:58
1、平面内与两定点F1、F2的距离的和等于常数2a的动点P的轨迹叫做椭圆。
2、平面内到定点F的距离与到定直线的距离之比为常数离心率的点的集合,其中定点F为椭圆的焦点,定直线称为椭圆的准线。
3、平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k值应满足一定的条件,即为排除斜率不存在的情况。
好二三四 时间:2022-09-26 14:58
1、平面内与两定点F1、F2的距离的和等于常数2a的动点P的轨迹叫做椭圆。
2、平面内到定点F的距离与到定直线的距离之比为常数离心率的点的集合,其中定点F为椭圆的焦点,定直线称为椭圆的准线。
3、平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k值应满足一定的条件,即为排除斜率不存在的情况。
热心网友 时间:2023-11-11 00:44
你好,很高兴为你解答:
其他定义
根据椭圆的一条重要性质:椭圆上的点与椭圆长轴(事实上只要是直径都可以)两端点连线的斜率之积是定值,定值为e²-1〈前提是长轴平行于x轴。若长轴平行于y轴,比如焦点在y轴上的椭圆,可以得到斜率之积为 -a2/b2=1/(e2-1)〉,可以得出:
在坐标轴内,动点(x,y )到两定点( a,0 )(-a,0)的斜率乘积等于常数m(-1<m<0)。
注意:考虑到斜率不存在时不满足乘积为常数,所以x=+-a无法取到,即该定义仅为去掉四个点的椭圆。
椭圆也可看做圆按一定方向作压缩或拉伸一定比例所得图形。
热心网友 时间:2023-11-11 00:45
第一定义:平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距)
第二定义:当点M与一个定点的距离和它到一条定直线的距离的比是常数e=c/a(0<e<1)时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率.
第三定义:平面内的动点到两定点A1(a,0)、A2(-a,0)的斜率乘积,等于常数 e²-1的点的轨迹,叫做椭圆或双曲线,其中两定点分别为椭圆或双曲线的顶点;当常数大于-1小于0时为椭圆;当常数大于0时为双曲线。
热心网友 时间:2023-11-11 00:45
一个是长轴不等于短轴,不然就是圆了。另一个,是左右焦点。
热心网友 时间:2023-11-11 00:46
平面内的动点到两定点A1(a,0)、A2(-a,0)的斜率乘积,等于常数 e²-1的点的轨迹,叫做椭圆或双曲线,其中两定点分别为椭圆或双曲线的顶点;当常数大于-1小于0时为椭圆;当常数大于0时为双曲线。