发布网友 发布时间:2024-10-23 22:23
共1个回答
热心网友 时间:2024-10-25 03:29
见解析
试题分析:根据平行线的性质可得出∠APB=∠CQD,∠ABP=∠CDQ,继而根据平行四边形的对边相等的性质可得出AB=CD,进而可证明△ABP≌△CDQ,也即可得出结论.
证明:∵AP∥CQ,
∴∠APD=∠CQB,
∴∠APB=∠CQD,
∵四边形ABCD是平行四边形,
∴AB=CD,
∴AB∥CD,
∴∠ABP=∠CDQ,
在△ABP和△CDQ中, ,
∴△ABP≌△CDQ,
∴BP=DQ.
点评:此题考查了平行四边形的性质、全等三角形的性质及判定,解答本题的关键是掌握平行四边形对边相等的性质,难度一般.