已知函数fx=sin(ωx+ρ)为偶函数,其图像上相邻的两个最高点之间的距离...

发布网友 发布时间:2024-10-24 04:24

我来回答

1个回答

热心网友 时间:2024-11-09 09:12

f(x)=sin(ωx+ρ)其图像上相邻的两个最高点之间的距离为2π ,即T=2π/ω=2π,ω=1,
f(x)=sin(x+ρ)为偶函数,f(-x)=f(x),即sin(-x+ρ)=sin(x+ρ),
即sin(-x)cosρ+cos(-x)sinρ=sinxcosρ+cosxsinρ,
所以sinxcosρ=0,所以cosρ=0,ρ=±π/2,
ρ=π/2时,f(x)=cosx,
ρ=-π/2时,f(x)=-cosx。

α∈(-π/3,π/2),则α+π/3∈(0,5π/6),
cos(α+π/3)∈(-(√3)/3,1),-cos(α+π/3)∈(-1,(√3)/3)),【这两个区间都包含1/3】
当f(x)=cosx=sin(x+π/2)时,α+π/3+π/2∈(π/2,4π/3),
f(α+π/3)=sin(α+π/3+π/2)=sin(α+5π/6)=1/3<(√3)/3,所以α+π/3+π/2∈(5π/6,π),
所以cos(α+π/3+π/2)=-(2√2)/3,
sin(2α+5π/3)=sin[2(α+5π/6)]=2sin(α+5π/6)cos(α+5π/6)=-(2√2)/9;
当f(x)=-cosx=sin(x-π/2)时,α+π/3-π/2∈(-π/2,π/3),
f(α+π/3)=sin(α+π/3-π/2)=sin(α-π/6)=1/3<(√3)/3,所以α-π/6∈(0,π/6),
所以sin(α+5π/6)=sin(α-π/6+π)=-1/3,α+5π/6∈(π,7π/6),
所以cos(α+5π/6)=-(2√2)/3,
sin(2α+5π/3)=sin[2(α+5π/6)]=2sin(α+5π/6)cos(α+5π/6)=(2√2)/9。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com