在四边形ABCD中,AD=4,BC=1,角A=30°,角ADC等于120°,角B等于90°,求CD...

发布网友 发布时间:2024-10-24 05:40

我来回答

4个回答

热心网友 时间:2024-11-07 14:16

CD的长是2。

对于有这么多已知条件的几何题,作图的精确很重要。

下面证明CD=2,

过D点作AB的垂线交AB于E。

则DE∥CB,△ADE是直角三角形,

且∠A=30°,∠ADE=90°-30°=60°

这样的直角三角形30°所对的边是斜边的一半,Sin30°=1/2

所以DE=2

过C点作DE的垂线交DE于F,

∵BC⊥AB

∴CF∥BE,∴DF=DE-CB=1

∵∠CDF=∠ADC-∠ADE=120°-60°=60°

∴∠DCF=30°

同上,斜边是30°所对边的2倍,

∴CD的长是2。

热心网友 时间:2024-11-07 14:20

所以DE=2
过C点作DE的垂线交DE于F,
∵BC⊥AB
∴CF∥BE,∴DF=DE-CB=1
∵∠CDF=∠ADC-∠ADE=120°-60°=60°
∴∠DCF=30°
同上,斜边是30°所对边的2倍,
∴CD的长是2

热心网友 时间:2024-11-07 14:18

CD=2 延长AD BC 交于E 则角dec=角cde=60° 则CD=CE=DE BE=AE/2 设CD=X 则 2(X+1)=X+4 解得X=2

热心网友 时间:2024-11-07 14:17

CD的长是2
过D点作AB的垂线交AB于E。
则DE∥CB,△ADE是直角三角形,
且∠A=30°,∠ADE=90°-30°=60°
这样的直角三角形30°所对的边是斜边的一半,Sin30°=1/2
所以DE=2
过C点作DE的垂线交DE于F,
∵BC⊥AB
∴CF∥BE,∴DF=DE-CB=1
∵∠CDF=∠ADC-∠ADE=120°-60°=60°
∴∠DCF=30°
同上,斜边是30°所对边的2倍,
∴CD的长是2

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com