发布网友 发布时间:2024-10-24 05:29
共2个回答
热心网友 时间:2024-11-01 20:26
这个好办,由于A是实对称阵,那么有A=T^JT,T是正交阵。可知J=2E。(由于A是是对称阵,因此它的特征值一定是2)
并且detA=detJ
容易证明
A^2+3A-2E=T^(J^2+3J-2E)T
因此det(A^2+3A-2E)=det(T^(J^2+3J-2E)T)=det(T^)det(J^2+3J-2E)detT
=det(J^2+3J-2E)=det(8E)=512
热心网友 时间:2024-11-01 20:27
A的特征值是a,则a^3=8,a=2(2是三重特征值),A^2+3A-2E的特征值是2^2+3*2-2=8,行列式是8^3