您的当前位置:首页正文

程序题quan

2023-08-01 来源:易榕旅网
sth12stnr stda 1.素数3 [100,999]范围内同时满足以下两个条件的十进制数. ⑴其个位数字与十位数字之和除15以10所得的余数是百位数字;⑵该数是素数; 求有多少个这样的数? [300,800]范围内同时满足以下两个条件的十进制数. ⑴其个位数字与十位数字之和除761以10所得的余数是百位数字 ;⑵该数是素数;求满足上述条件的最大的三位十进制数。 除1和它本身外,不能被其它整数整除的正整数称为素数(注:1不是素数,2是素数)22。若两素数之差为2 ,则称两素数为双胞胎数,问[31,601]之间有多少对双胞胎数。 国数学家哥德巴赫曾猜测:任何大于6的偶数都可以分解成两个素数(素数对)的和。但有些偶数可以分解成多种素数对的和,如: 10=3+7,10=5+5,即10可以分解成两种不同的素数对。试求6744可以分解成多少种不同的素数对(注: A+B与B+A认为是相同素数对) 两个素数之差为2,则称这两个素数为双胞胎数。求出[200,1000]之间的最大一对双胞胎数的和。 一个素数(设为p)依次从最高位去掉一位,二位,三位,……,若得到的各数仍都是素数(注:除1和它本身外,不能被其它整数整除的正整数称为素数,1不是素数,2是素数),且数p的各位数字均不为零,则称该数p为逆向超级素数。例如,617,17,7都是素数,因此617是逆向超级素数,尽管503,03,3都是素数,但它不是逆向超级素数,因为它包含有零。试求[100,999]之内的所有逆向超级素数的个数。德国数学家哥德巴赫曾猜测:任何大于6的偶数都可以分解成两个素数(素数对)的和。但有些偶数可以分解成多种素数对的和,如: 10=3+7,10=5+5,即10可以分解成两种不同的素数对。试求1234可以分解成多少种不同的素数对(注: A+B与B+A认为是相同素数对)求[100,900]之间相差为12的素数对(注:要求素数对的两个素数均在该范围内)的个数。一个素数(设为p)依次从最高位去掉一位,二位,三位,……,若得到的各数仍都是素数(注:1不是素数),且数p的各位数字均不为零,则称该数p为逆向超级素数。例如,617,17,7都是素数,因此617是逆向超级素数,但尽管503,03,3都是素数,但它不是逆向超级素数,因为它包含有零。试求[100,999]之内的所有逆向超级素数的和。一个素数(设为p)依次从最高位去掉一位,二位,三位,……,若得到的各数仍都是素数(注:1不是素数,2是素数),且数p的各位数字均不为零,则称该数p为逆向超级素数。例如,617,17,7都是素数,因此617是逆向超级素数,但尽管503,03,3都是素数,但它不是逆向超级素数,因为它包含有零。试求[100,999]之内的所有逆向超级素数从大到小数的第10个素数是多少?一个自然数是素数,且它的数字位置经过任意对换后仍为素数,则称为绝对素数。如13,试求所有两位绝对素数的和。在[200,900]范围 内同时满足以下两个条件的十进制数:⑴其个位数字与十位数字之和除以10所得的余数是百位数字; ⑵该数是素数;问有多少个这样的数?一个素数,依次从个位开始去掉一位,二位.....,所得的各数仍然是素数,称为超级素数。求[100,999]之内超级素数的个数。 若两个连续的自然数的乘积减1后是素数,则称此两个连续自然数为友数对,该素数称为友素数。例如,由于 8*9-1=71, 因此,8与9是友数对,71是友素数。求[100,200]之间的第10个友素数对所对应的友素数的值(按由小到大排列)。求[2,400]中相差为10的相邻素数对的对数。若两个连续的自然数的乘积减1后是素数,则称此两个连续自然数为友数对,该素数称为友素数。例如,由于 8*9-1=71, 因此,8与9是友数对,71是友素数。求[50,150]之间的友数对的数目。 若两个自然连续数乘积减1后是素数,则称此两个自然连续数为友数对,该素数称为友素数,例:2*3-1=5,因此2与3是友数对,5是友素数,求[40,119]之间友素数对的数目。梅森尼数是指能使2^n-1为素数的数n,求[1,21]范围内有多少个梅森尼数? 2. 取数字 [300,800]范围内同时满足以下两个条件的十进制数. ⑴其个位数字与十位数字之和除以10所得的余数是百位数字 ;⑵该数是素数;求满足上述条件的最大的三位十进制数。144456176439725895021645107971112131442914141729115165381718193077612021222324252627282930 求符合下列条件的四位完全平方数(某个正整数A是另一个正整数B的平方,则称A为完全平方数),它的千位数字与十位数字之和等于百位数字与个位数字之积,例如,3136=562, 且3+3=1*6 故3136是所求的四位完全平方数. 求其中最大的一个数。 设某四位数的千位数字平方与十位数字的平方之和等于百位数字的立方与个位数字的立方之和,例如,对于四位数:3201, 3^2+0^2=2^3+1^3,试问所有这样的四位数之和是多少? 设某四位数的千位数字与十位数字的和等于百位数字与个位数字的积,例如,对于四位数:9512,9+1=5*2,试问所有这样的四位数之和是多少?有一个三位数满足下列条件: (1)此三位数的三位数字各不相同; (2)此三位数等于它的各位数字的立方和。试求所有这样的三位数之和。 求[1,999]之间能被3整除,且至少有一位数字是5的所有正整数的个数。 有一个三位数满足下列条件: (1)此三位数的三位数字各不相同; (2)此三位数等于它的各位数字的立方和。试求所有这样的三位数中最大的一个是多少? 有一个三位数满足下列条件: (1)此三位数的三位数字各不相同; (2)此三位数等于它的各位数字的立方和。试求这种三位数共有多少个?求五位数各位数字的平方和为100的最大的五位数。所谓“水仙花数”是指一个三位数,其各位数字的三次方之和等于该数本身,例如:153=1^3+3^3+5^3,故153是水仙花数,求[100,999]之间所有水仙花数之和。 设某四位数的各位数字的平方和等于100,问共有多少个这种四位数? 回文数是指正读和反读都一样的正整数。例如3773是回文数。求出[1000,9999]以内的所有回文数的个数。792197993107828913019140749411113014990 3. 分硬币31323334 把一张一元钞票,换成一分、二分和五分硬币,每种至少8枚,问有多少种方案?50元的整币兑换成5元、2元和1元币值(三种币值均有、缺少一种或两种都计算在内)的方法有多少种。50元的整币兑换成5元、2元和1元币值(要求三种币值均有)的方法有多少种。 马克思曾经做过这样一道趣味数学题:有30个人在一家小饭店里用餐,其中有男人、女人和小孩,每个男人花了3先令,每个女人花了2先令,每个小孩花了1先令,共花去50先令。如果要求男人、女人和小孩都有人参与,试求有多少种方案分配男人、女人和小孩的人数。801461069 4. 勾股3536 A,B,C是三个小于或等于100正整数,当满足1/A^2+1/B^2=1/C^2关系时,称为倒勾股数。求130B>C的倒勾股数有多少组。 倒勾股数是满足公式: 1/A^2+1/B^2=1/C^2 的一组正整数(A,B,C),例如,(156,65,60)是倒勾股数,因为:1/156^2+1/65^2=1/60^2。假定A>B>C,求A,B,C之和小于100的倒勾股数有多少组? 勾股弦数是满足公式: A^2+B^2=C^2 (假定AB>C,求A,B,C均小于或等于100的倒勾股数有多少组?勾股弦数是满足公式: A^2+B^2=C^2 (假定A=B,求所有小于或等于100(即:A<=100,B<=100,A<>B,A和B均不为0)的自然数对中B之和。若一个四位正整数是另一个正整数的平方,且各位数字的和是一个平方数,则称该四位29690正整数是“四位双平方数”。例如: 由于7396=86^2,且7+3+9+6=25=5^2,则称7396是“四位双平方数”。若把所有“四位双平方数”按升序排列,求前10个“四位双平方数”的和。707172所谓“同构数”是指这样一个数,它出现在它的平方数的右侧,例如5的平方是25,25的1113平方是625,故5和25都是同构数,求[2,1000]之间所有同构数之和。自然数对是指两个自然数的和与差都是平方数,如8和17的和8+17=25与其差 17-8=9都509是平方数,则称8和17是自然数对(8,17)。假定(A,B)与(B,A)是同一个自然数对且假定A>=B,求所有小于或等于100(即:A<=100,B<=100,A<>B,A和B均不为0) 的自然数对中A-B之差的和。 9.Fibonaci(累加数列)7374 已知 f(n)=f(n-1)+2f(n-2)-5f(n-3),f(0)=1,f(1)=2,f(2)=3,求f(0)+f(1)+…f(30)。 已知󰀀f(0)=f(1)=1󰀀󰀀f(2)=0󰀀󰀀f(n)=f(n-1)-2*f(n-2)+f(n-3) (n>2)󰀀󰀀求f(0)到f(50)中的最大值󰀀 已知Fibonacci数列:1,1,2,3,5,8,……,它可由下面公式表述:󰀀 F(1)=1 if n=1󰀀󰀀 F(2)=1 if n=2󰀀󰀀 F(n)=F(n-1)+F(n-2) if n>2󰀀󰀀 试求F(2)+F(4)+F(6)+……+F(50)值。 󰀀󰀀 提示: 最好使用递推法求解,因为使用递归调用很可能超出某些语言的递归深度。󰀀 已知Fibonacci数列:1,1,2,3,5,8,……,它可由下面公式表述:󰀀 F(1)=1 if n=1󰀀󰀀 F(2)=1 if n=2󰀀󰀀 F(n)=F(n-1)+F(n-2) if n>2󰀀󰀀 试求F(50)值。 󰀀󰀀 提示: 最好使用递推法求解,因为使用递归调用很可能超出某些语言的递归深度。󰀀斐波那契数列的前二项是1,1,其后每一项都是前面两项之和,求:10000000以内最大的斐波那契数?数列󰀀E(1)=E(2)=1E(n)=(n-1)*E(n-1)+(n-2)*E(n-2) (n>2)󰀀称为E数列,每一个E(n),(n=1,2,…)称为E数。求[1,30000]之内E数的个数。已知󰀀f(0)=f(1)=1f(2)=0f(n)=f(n-1)-2f(n-2)+f(n-3) ( n>2 )󰀀求f(0)到f(50)的所有51个值中的最大值(或最小值)已知Fibonacci数列:1,1,2,3,5,8,……,它可由下面公式表述:󰀀 F(1)=1 if n=1 F(2)=1 if n=2 F(n)=F(n-1)+F(n-2) if n>2󰀀 试求F(1)+F(3)+F(5)+……+F(49)值。 󰀀󰀀 提示: 最好使用递推法求解,因为使用递归调用很可能超出某些语言的递归深度。已知Fibonacci数列:1,1,2,3,5,8,……,它可由下面公式表述:󰀀 F(1)=1 if n=1 F(2)=1 if n=2 F(n)=F(n-1)+F(n-2) if n>2󰀀 试求F(45)值。 󰀀󰀀 提示: 最好使用递推法求解,因为使用递归调用很可能超出某些语言的递归深度。已知一个数列的前三项为0,0,1,以后各项都是其相邻的前三项之和,求该数列前30项之和。 设S=1+1/2+1/3+…1/n,n为正整数,求使S不超过10(S≤10)的最大的n。已知S1=2, S2=2+4, S3=2+4+6, S4=2+4+6+8,S5=2+4+6+8+10,…,求S=S1+S2+S3+S4+S5+…+S20的值。-7508745983257520365011073761258626902577789227465879 '598325('-288959)801258626902581113490317082838418947744123673080 10.a,b,c,d,e类8586 设有十进制数字a,b,c,d和e,它们满足下列式子:abcd*e=bcde (a不等于0, e不等于03665或1),求满足上述条件的所有四位数abcd的和。 设有十进制数字a,b,c,d和e,它们满足下列式子:abcd*e=bcde (a不等于0, e不等于01999或1),求满足上述条件的最大四位数abcd的值。878889设有十进制数字a,b,c,d和e,它们满足下列式子:abcd*e=bcde (a不等于0, e不等于02或1),求满足上述条件的四位数abcd的个数。有十进制数字a,b,c,d和e,它们满足下列式子:abcd*e=bcde (a不等于0, e不等于0或166591),求满足上述条件的所有四位数bcde的和。设有6个十进制数字a,b,c,d, e,f ,求满足abcdf×e=fdcba条件的五位数abcdf(a≠0,e≠0,e2≠1)的个数。 11.方程90919293949596 求方程8x-5y=3,在|x|<=150, |y|<=200内的整数解。试问这样的整数解有多少组? 求方程8x-5y=3,在|x|<=150, |y|<=200内的整数解。试问这样的整数解中|x|*|y|的最大值是多少? 若(x,y,z)满足方程:x^2+y^2+z^2=55^2(注:要求 x > y > z),则(x,y,z)称为方程的一个解。试求方程的所有整数解中,|x|+|y|+|z|的最大值。(或最小值) 已知X,Y,Z为三个正整数,且X^2+Y^2+Z^2=25^2,求X+Y+Z的最大值。(x,y,z)满足方程:x^2+y^2+z^2=55^2(注:要求 x > y > z),则(x,y,z)称为方程的一个解。试求方程的整数解(包括负整数解)的个数。求方程9X-19Y=1,在|X|≤100,|Y|≤50内共有多少组整数解?502467695  ;'67436211 12.其它 某些分数的分子和分母都是二位正整数的真分数具有下列特点:如果将该分数的分子的10134两位数字相加作分子,而将该分数的分母的两位数字相加作分母,得到的新分子跟原分子相等。例如,63/84=(6+3)/(8+4)。试求所有具有这种特点的真分子(非约简真分数)的分子与分母之和的和。 求[1,50]之间的所有整数能构成直角三角形的三边的组数。例如:3*3+4*4=5*5,它们20构成直角三角形,所以{3,4,5}作为一组,但{4,3,5}视为跟{3,4,5}相同的一组。271 已知:非等腰三角形最长边是60,其它两边的长度都是正整数,且三边之和能被3整除,试编程求取这类三角形的个数(注意:两边的长度交换构成的三角形算作同一个三角形,如:其它两边的长度为30和40的三角形与长度为40和30的三角形视为同一个三角形)。爱因斯坦走台阶:有一台阶,如果每次走两阶,最后剩一阶;如果每次走三阶,最后剩两阶;119如果每次走四阶,最后剩三阶;如果每次走五阶,最后剩四阶;如果每次走六阶,最后剩五阶;如果每次走七阶,刚好走完.求满足上述条件的最小台阶数是多少?󰀀编写程序,求共有几组i,j,k符合算式ijk+kji=1534,其中i,j,k是[0,9]之间的一个整数且iOK

ok

OK

ok

OK

ok

OKOK

ok

把b=6744-a#####

OK

OKOK

OK

OKOKOKOK

ok

OK

OK==ok

########

OKOKOK

long m=2ok

OKok

OKok

OKOKokOK不等于!=OKok

OKOKokOKOK和23题相同OKok

OKOKokOKOK

OKok

OK设两个变量ok

OK

OKok

OK

OKok

OKok

OK

min=a ;a=201

有些难度

OK记得每次sum=0OKOK

(a==5||b==5||c==5)要加括号

ok

ok

ok

OKOKOKOK

m=2;t=1OKOKOKOKOK

OKOKOKOK

OKOK

OKok

ok

ok#######

ok

ok

ok

ok

ok

ok

ok

ok

ok

要将所求出来的减去后一个啊

ok

ok

OK

OKOKOK

okok

ok用double

okdouble f[51]###############

okdoublef[50]###################

有多少项就定义多少项,后面自增时则少了f[0]项

okokb

ok

5

OKOKOKOKOKOKz=-55

OKOKOK

OK float分开用

OK

OKOKlong难

OK

OK不知道终值的方法OK难啊OK难啊OK难啊

OK

可以没有终值

x=2*(x+1)************

a

因篇幅问题不能全部显示,请点此查看更多更全内容