DavidAutor14.03Fall2004
Agenda
1.Utilitymaximization2.IndirectUtilityfunction
3.Application:Giftgiving–Waldfogelpaper4.Expenditurefunction
5.RelationshipbetweenExpenditurefunctionandIndirectutilityfunction6.Demandfunctions
7.Application:Foodstamps–Whitmorepaper8.Incomeandsubstitutione¤ects9.Normalandinferiorgoods
10.Compensatedanduncompensateddemand(Hicksian,Marshallian)11.Application:Gi¤engoods–JensenandMillerpaper
Roadmap:
1
Axioms of consumerpreferencePrimalMaxU(x,y)s.t.pxx+pyy< IDualMinpxx+pyys.t.U(x,y) > UIndirect Utility functionU*=V(px,py, I)Expenditure functionE*=E(px,py, U)MarshalliandemandX =dx(px,py, I) =(by Roy’s identity)−∂V/∂px∂V/∂ISlutskyequationHicksiandemandX =hx(px,py, U) =(by Shepard’s lemma)∂E−∂px1
1.1
Theoryofconsumerchoice
Utilitymaximizationsubjecttobudgetconstraint
Ingredients:
Utilityfunction(preferences)BudgetconstraintPricevectorConsumer’sproblem
MaximizeutilitysubjettobudgetconstraintCharacteristicsofsolution:Budgetexhaustion(non-satiation)Formostsolutions:
psychictradeo¤=monetarypayo¤
Psychictradeo¤isMRS
Monetarytradeo¤isthepriceratio
2
Fromavisualpointofviewutilitymaximizationcorrespondstothefollowingpoint:
x
(Notethattheslopeofthebudgetsetisequaltoppy)
GryIC1IC2IC3BACDxWhat’swrongwithsomeofthesepoints?WecanseethatAPB,AID,C
P
A.WhyshouldonechooseA?
Theslopeoftheindi¤erencecurvesisgivenbytheMRS1.1.1
Interiorandcornersolutions[Optional]
Therearetwotypesofsolutiontothisproblem.1.Interiorsolution2.Cornersolution
3
GyTypical casexTheonebelowisanexampleofacornersolution.Inthisspeci…cexampletheshapeoftheindi¤erencecurvesmeansthattheconsumerisindi¤erenttotheconsumptionofgoody.Utilityincreasesonlywithconsumptionofx.
Graph 37yx4
Graph 38yxInthegraphabovepreferenceforyissu¢cientlystrongrelativetoxthatthethepsychictradeo¤isalwayslowerthanthemonetarytradeo¤.
Thismustbethecaseformanyproductsthatwedon’tbuy.Anothertypeof“corner”solutionresultsfromindivisibility.
Graph 39y10I = 500px= 450py= 501xWhycan’twedrawthisbudgetset,i.e.conectdots?
Thisisbecauseonly2pointscanbedrawn.Thisisasortof“integerconstraint”.Wenormallyabstractfromindivisibility.
5
Goingbacktothegeneralcase,howdoweknowasolutionexistsforconsumer,i.e.howdoweknowtheconsumercanchoose?
Weknowbecauseofthecompletenessaxiom.Everybundleisonsomeindi¤erencecurveandcanthereforeberanked:AIB,AB,BA.1.1.2
MathematicalsolutiontotheConsumer’sProblem
Mathematics:
maxU(x;y)
x;y
s:t:pxx+pyy
L
@L@x@L@y@L@
I
=U(x;y)+(Ipxxpyy)=Uxpx=0=Uypy=0=Ipxxpyy=0
1:2:3:
Rearranging1:and2:
pxUx=Uypy
Thismeansthatthepsychictradeo¤isequaltothemonetarytradeo¤betweenthetwogoods.3:statesthatbudgetisexhausted(non-satiation).Alsonoticethat:
UxpxUypy
Whatisthemeaningof?
==
1.1.3Interpretationof,theLagrangemultiplier
AtthesolutionoftheConsumer’sproblem(morespeci…cally,aninteriorsolution),thefollowingconditionswillhold:
@U=@x2@U=@xn@U=@x1
==:::==p1p2pn
6
Thisexpressionsaysthatattheutility-maximizingpoint,thenextdollarspentoneachgoodyieldsthesamemarginalutility.Sowhatis
@U@I?
ReturntoLagrangian:
L@L@x@L@y@L@@L@I
Bysubstituting=Weconcludethat:
Uxpx
=U(x;y)+(Ipxxpyy)=Uxpx=0=Uypy=0
=Ipxxpyy=0
@x@x@y@y
=Uxpx+Uypy+
@I@I@I@I
Uy
py
and=bothexpressionsinparenthesisarezero.
@L
=@I
equalsthe“shadowprice”ofthebudgetconstraint,i.e.itexpressesthequantityofutilsthatcouldbeobtainedwiththenextdollarofconsumption.
Thisshadowpriceisnotuniquelyde…ned.Itisde…nedonlyuptoamonotonictransformation.
Whatdoestheshadowpricemean?It’sessentiallythe‘utilityvalue’ofrelaxingthebudgetconstraintbyoneunit(e.g.,onedollar).[Q:What’sthesignof@2U=@I2,andwhy?]
Wecouldalsohavedeterminedthat@L=@I=withoutcalculationsbyapplyingtheenvelopetheorem.Attheutilitymaximizingsolutiontothisproblem,xandyarealreadyoptimizedandsoanin…nitesimalchangeinIdoesnotalterthesechoices.Hence,thee¤ectofIonUdependsonlyonitsdirecte¤ectonthebudgetconstraintanddoesnotdependonitsindirecte¤ect(duetoreoptimization)onthechoicesofxandy.This‘envelope’resultisonlytrueinasmallneighboroodaroundthesolutiontotheoriginalproblem.CornerSolution:unusualcaseWhenatacornersolution,consumerbuyszeroofsomegoodandspendstheentirebudgetontherest.WhatproblemdoesthiscreatefortheLagrangian?
7
Graph 40yU0U1U2xTheproblemisthatapointoftangencydoens’texistforpositivevaluesofy.Hencewealsoneedtoimpose“non-negativityconstraints”:x0,y0.
Thiswillnotbeimportantforproblemsinthisclass,butit’seasytoaddtheseconstraintstothemaximiza-tionproblem.
1.1.4AnExampleProblem
Considerthefollowingexampleproblem:U(x;y)=
1
4lnx+
34lny
Noticethatthisutilityfunctionsatisifesallaxioms:
1.Completeness,transitivity,continuity[theseareprettyobvious]2.Non-satiation:Ux=
14x>0forallx>0.Uy=
34y>0forally>0.Inotherwords,utilityrises
continuallywithgreaterconsumptionofeithergood,thoughtherateatwhichitrisesdeclines(diminishingmarginalutilityofconsumption).3.Diminishingmarginalrateofsubstitution:
=Alonganindi¤erencecurveofthisutilityfunction:UTotallydi¤erentiate:0=
1
4x0dx
14lnx0+
UxUy
34lny0.
+
3
4y0dy.
Themarginalrateofsubstitutionofyforxisincreasingintheamountofyconsumedanddecreasingintheamountofxconsumed;holdingutilityconstant,themoreytheconsumerhas,themoreyhewouldgiveupforoneadditionalunitofx.
8
dy
WhichprovidesthemarginalrateofsubstitutiondxjU=
=
4y0
12x0.
Examplevalues:px=1py=2I=12
WritetheLagrangianforthisutilityfunctiongivenpricesandincome:
maxU(x;y)
x;y
s:t:pxx+pyy
1:2:3:
Rearranging(1)and(2),wehave:
I
13
L=lnx+lny+(12x2y)
441@L==0@x4x@L3
=2=0@y4y@L
=12x2y=0@
UxUy1=4x3=4y
==
pxpy12
TheinterpretationofthisexpressionisthattheMRS(psychictrade-o¤)isequaltothemarkettrade-o¤(price-ratio).What’s
@L
@I?
Asbefore,thisisequalto,whichfrom(1)and(2)isequalto:
=
13=:4x8y1
211
4xoritcouldbuy2additional3
simportantthat@L=@I4y).It’
Thenextdollarofincomecouldbuyoneadditionalx,whichhasmarginalutilityy0s,whichprovidemarginalutility
3
4y(so,themarginalutilityincrementis
=isde…nedintermsoftheoptimallychosenx;y.Unlessweareattheseoptima,theenvelopetheorem
@x@y
@y@x
doesnotapplySo,@L=@Iwouldalsodependonthecross-partialterms:Ux@Ipx@I+Uy@Ipy@I.
9
1.1.5LagrangianwithNon-negativityConstraints[Optional]
maxU(x;y)
s:t:pxx+pyy
yL@L1:
@x@L2:
@y@L3:
@s
I0
=U(x;y)+(Ipxxpyy)+(ys2)=Uxpx=0=Uypy+=0=2s=0
Point3:impliesthat=0,s=0,orboth.
1.s=0;=0(since0thenitmustbethecasethat>0)
(a)
Uypy+
UypyUxpx
Combiningthelasttwoexpressions:
pxUx>Uypy
Thisconsumerwouldliketoconsumeevenmorexandlessy,butshecannot.2.s=0;=0
Uypy+Uypy
==
0!Uypy=0Ux
=px=<
0!Uypy<0
=
StandardFOC,herethenon-negativityconstraintisnotbinding.3.s=0;=0SameFOCasbefore:
Uxpx=pyUy
Herethenon-negativityconstraintissatis…edwithequalitysoitdoesn’tdistortconsumption.
10
1.2IndirectUtilityFunction
Forany:
BudgetconstraintUtilityfunctionSetofprices
Weobtainasetofoptimallychosenquantities.
x1
=x1(p1;p2;:::;pn;I)
:::
xn
Sowhenwesay
=xn(p1;p2;:::;pn;I)
maxU(x1;:::;xn)s:t:PXI
wegetasaresult:
maxU(x1(p1;:::;pn;I);:::;xn(p1;:::;pn;I))
)U(p1;:::;pn;I)V(p1;:::;pn;I)
whichwecallthe“IndirectUtilityFunction”.Thisisthevalueofmaximizedutilityundergivenpricesandincome.
Sorememberthedistinction:
Directutility:utilityfromconsumptionofx1;:::;xnIndirectutility:utilityobtainedwhenfacingp1;:::;pn;IExample:
maxU(x;y)s:t:pxx+pyy
L
@L@x@L@y@L@
=x:5y:5I
=x:5y:5+(Ipxxpyy)=:5x:5y:5px=0=:5x:5y:5py=0=Ipxxpyy=0
11
Weobtainthefollowing:
:5x:5y:5:5x:5y:5
;==
pxpy
whichsimpliesto:
x=
Substitutingintothebudgetconstraintgivesus:
Ipx
pyy
pyypx
pyy
==
01I;2
pyy=
1I2
pyy
:px
x=
Halfofthebudgetgoestoeachgood.
II;y=2px2py
Let’sderivetheindirectutilityfunctioninthiscase:
UII;2px2py
=I2px
:5
I2py
:5
Whybothercalculatingtheindirectutilityfunction?Itsavesustime.Insteadofrecalculatingtheutilitylevelforeverysetofpricesandbudgetconstraints,wecanpluginpricesandincometogetconsumerutility.Thiscomesinhandywhenworkingwithindividualdemandfunctions.Demandfunctionsgivethequantityofgoodspurchasedbyagivenconsumerasafunctionofpricesandincome(orutility).
1.3TheCarteBlanchePrinciple
Oneimmediateimplicationofconsumertheoryisthatconsumersmakeoptimalchoicesforthemselvesgivenprices,constraints,andincome.[Generally,theonlyconstraintisthattheycan’tspendmoretheirincome,butwe’llseeexampleswherethereareadditionalconstraints.]
ThisobservationgivesrisetotheCarteBlancheprinciple:consumersarealwaysweaklybettero¤receivingacashtransferthananin-kindtransferofidenticalmonetaryvalue.[Weaklybettero¤inthattheymaybeindi¤erentbetweenthetwo.]
Withcash,consumershaveCarteBlanchetopurchasewhateverbundleorgoodsareservicestheycana¤ord–includingthegoodorservicethatalternativelycouldhavebeentransferedtothemin-kind.
Prominentexamplesofin-kindtransfersgiventoU.S.citizensincludeFoodStamps,housingvouchers,healthinsurance(Medicaid),subsidizededucationalloans,childcareservices,jobtraining,etc.[Anexhaustivelistwouldbelongindeed.]
Economictheorysuggeststhat,relativetotheequivalentcashtransfer,thesein-kindtransfersserveasconstraintsonconsumerchoice.
12
Ifconsumersarerational,constraintsonchoicecannotbebene…cial.
Forexample,consideraconsumerwhohasincomeI=100andfacesthechoiceoftwogoods,foodandhousing,atpricespf;ph,eachpricedat1perunit.Theconsumer’sproblemis
maxU(f;h)
f;h
s:t:f+h100
Thegovernmentdecidestoprovideahousingsubsidyof50.Thismeansthattheconsumercannowpurchaseupto150unitsofhousingbutnomorethan100unitsoffood.Theconsumer’sproblemis:
maxU(f;h)
f;h
s:t:f+h
h
15050:
Alternatively,ifthegovernmenthadprovided50dollarsincashinstead,theproblemwouldbe:
maxU(f;h)
f;h
s:t:f+h150:
Thegovernment’stransferthereforehastwocomponents:1.AnexpansionofthebudgetsetfromItoI0=I+50.2.Theimpositionoftheconstraintthath50.
Thecanonicaleconomist’squestionis:whydoboth(1)and(2)whenyoucanjustdo(1)andpotentiallyimproveconsumerwelfareatnoadditionalcosttothegovernment?1.3.1
ASimpleExample:TheDeadweightLossofChristmas
JoelWaldfogel’s1993AmericanEconomicReviewpaperprovidesastylized(andcontroversial)exampleoftheapplicationoftheCarteBlancheprinciple.
Waldfogelobservesthatgift-givingisequivalenttoanin-kindtransferandhenceshouldbelesse¢cientforconsumerwelfarethansimplygivingcash.
InJanuary,1993,hesurveyedapproximately150Yaleundergraduatesabouttheirholidaygiftsreceivedin1992:
1.Whatwerethegiftsworthincashvalue
2.Howmuchthestudentsbewillingtopayforthemiftheydidn’talreadyhavethem
13
Severalinterestingobservationsfromthearticle:
1.Value‘destruction’isgreaterfordistantrelatives,e.g.,grandparents.2.Value‘preservation’isnear-perfectforfriends
3.Groupsthattendto‘destroy’themostvaluearethemostlikelytogivecashinstead
It’susefultobeabletointerpretthebasicregressionresultgivenonthetopofpage1332:ln(valuei)=0:314+0:964ln(pricei)
.
(0:44)(0:08)
Thethingsinparenthesesarestandarderrors.Since0:964ismuchlargerthan20:08,therelationshipbetweenvalueandpriceisstatisticallysigni…cant.
Thederivativeofvaluewithrespecttopriceis(recallthat@=@xoflnxis@x=x):
@valuei@valueipricei
==0:964:
@priceivaluei@pricei
Thatis,a1percentriseinpricetranslatesintoa0:964percentriseinvalue.
But,thereisamajordiscrepancybetweenthelevelofvalueandprice.Rewritingtheequationandexpo-nentiating:
ln(valuei)
=ln(exp(0:314))+0:964ln(pricei)
:964
price0i
=ln
exp(0:314)
Exponentiatingbothsides:
valuei
:964
price0i
=
exp(0:314)
0:964
pricei=
1:37
0:964
=:73pricei
So,fora$100gift,theapproximaterecipientvaluationisabout$62.
Youcanseewhyit’shandytousenaturallogarithmstoexpresstheserelationships.Theyreadilyallowforproportionale¤ects.Theregressionequationabovesaysthatthevalueofagiftisapproximatelyequalto96%ofitspriceminus31percent.
TheWaldfogelarticlegeneratedasuprisingamountofcontroversy,evenamongeconomists,mostofwhomprobablysubscribetotheCarteBlancheprinciple.
Tomanyreaders,thisarticleseemstoexemplifythewell-worngripeabouteconomists,“Theyknowthepriceofeverythingandthevalueofnothing.”WhatisWaldfogelmissing?
15
1.4TheExpenditureFunction
Wearenextgoingtolookatapotentiallyricher(andbetter)applicationofconsumertheory:thevalueofFoodStamps.
Beforethat,weneedsomemoremachinery.
Sofar,we’veanalyzedproblemswhereincomewasheldconstantandpriceschanges.ThisgaveustheIndirectUtilityFunction.
Now,wewanttoanalyzeproblemswhereutilityisheldconstandandexpenditureschange.ThisgivesustheExpenditureFunction.
Thesetwoproblemsarecloselyrelated–infact,theyare‘duals.’
Mosteconomicproblemshaveadualproblem,whichmeansaninverseproblem.
Forexample,thedualofchoosingoutputinordertomaximizepro…tsisminimizingcostsatagivenoutputlevel:costminimizationisthedualofpro…tmaximization.
Similarly,thedualofmaximizingutilitysubjecttoabudgetconstraintisminimizingexpendituressubjecttoautilityconstraint.1.4.1
Expenditurefunction
Consumer’sproblem:maximizeutilitysubjecttoabudgetconstraint.
Dual:minimizingexpendituresubjecttoautilityconstraint(i.e.alevelofutilityyoumustachieve)Thisdualproblemyieldsthe“expenditurefunction”:theminimumexpenditurerequiredtoattainagivenutilitylevel.Setupofthedual1.Startwith:
maxU(x;y)
s:t:pxx+pyy
2.Solveforx,y)v=U(x;y)givenpx;py;I.V=V(px;py;I)
Vistheindirectutilityfunction.3.Nowsolvethefollowingproblem:
I
minpxx+pyy
s:t:U(x;y)v
16
givesE=pxx+pyyforU(x;y)=v.E=E(px;py;V)
1.4.2GraphicalrepresentationofdualproblemGraph 41yU = v*xThedualproblemconsistsinchoosingthelowestbudgetsettangenttoagivenindi¤erencecurve.Example:
minEs:t:x:5y:5
whereUpcomesfromtheprimalproblem.
L=pxx+pyy+Upx:5y:5@L@x@L@y@L@
=px:5x:5y:5=0=py:5x:5y:5=0=Upx:5y:5=0
=pxx+pyyUp
17
The…rsttwooftheseequationssimplifyto:
x=
pyypx
WesubstituteintotheconstraintUp=x:5y:5toget
:5pyy
Up=y:5
px:5:5pypx
x=Up;y=Up
pxpy
:5:5
pxpy
Up+pyUpE=px
pxpy
5:5
=2p:xpyUp
HowdosolutionstoDualandPrimalcompare?1.4.3
RelationbetweenExpenditurefunctionandIndirectUtilityfunction
Let’slookattherelationbetweenexpenditurefunctionandindirectutilityfunction.
V(px;py;I0)E(px;py;U0)
V(px;py;E(px;py;U0))E(px;py;V(px;py;I0))
=U0=I0=U0=I0
ExpenditurefunctionandIndirectUtilityfunctionareinversesoneoftheother.Let’sverifythisintheexamplewesawabove.
Recallthatprimalgaveusfactordemandsxp;ypasafunctionofpricesandincome(notutility).
Dualgaveusexpenditures(budgetrequirement)asafunctionofutilityandprices.II
x=;y=;U=pp
2px2py
Nowplugtheseintoexpediturefunction:
I2px
:5
I2py
:5
:5:5II5:55:5
p:E=2Upp:xpy=Ixpy=2px2py
Finallynoticethatthemultipliersaresuchthatthemultiplierinthedualproblemistheinverseofthemultiplierintheprimalproblem.
UxUy
=pxpypxpy
=UxUy18
PD
==
1.5DemandFunctions
Now,let’susetheIndirectUtilityfunctionandtheExpenditurefunctiontogetDemandfunctions.Tonow,we’vebeensolvingfor:
UtilityasafunctionofpricesandbudgetExpenditureasafunctionofpricesandutilityImplicitlywehavealreadyfounddemandschedules.
Ademandscheduleisimmediatelyimpliedbyanindividualutilityfunction.
Foranyutilityfunction,wecansolveforthequantitydemandedofeachgoodasafunctionofitspricewiththepriceofallothergoodsheldconstantandeitherincomeheldconstantorutilityheldconstant.1.5.1
Marshalliandemand(‘Uncompensated’demand)
Inourpreviousexamplewhere:
U(x;y)=x:5y:5
wederived:
x(px;py;I)y(px;py;I)
=:5
I
pxI=:5
py
Ingeneralwewillwritethesedemandfunctions(forindividuals)as:
x1x2
=d1(p1;p2;:::;pn;I)=d2(p1;p2;:::;pn;I)
:::
xn
=dn(p1;p2;:::;pn;I)
Wecallthis“Marshallian”demandafterAlfredMarshallwho…rstdrewdemandcurves.1.5.2
Hicksiandemand(‘Compensated’demand)
Similarlywederivedthat:
19
x(px;py;U)y(px;py;U)
==
pypxpxpy
:5
UpUp
:5
Ingeneralwewillwritethesedemandfunctions(forindividual)as:
x1;cx2;c
=h1(p1;p2;:::;pn;U)=h2(p1;p2;:::;pn;U)
:::
xn;c
=hn(p1;p2;:::;pn;U)
Thisiscalled“Hicksian”orcompensateddemandafterJohnHicks.
Thisdemandfunctiontakesutilityasanargument,notincome.Thisturnsouttobeanimportantdistinc-tion.1.5.3
Graphicalderivationofdemandcurves
Ademandcurveforxasafunctionofpx
I/pyGraph 42dx(px,py,I)I/px20
Soademandfunctionisasetoftangencypointsbetweenindi¤erencecurvesandbudgetsetholdingIandpy(allotherprices)constant.
Whattypeofdemandcurveisthis?
Marshallian(dx(px;py;I).Utilityisnotheldconstant,butincomeis.Now,wehavethetoolstoanalyzetheFoodStampprogram.
21
因篇幅问题不能全部显示,请点此查看更多更全内容