您的当前位置:首页正文

AFs

2021-06-15 来源:易榕旅网


论文(设计)题目 车辆AFS系统研究

意义:车辆AFS系统是现代车辆比较先进的电子辅助转向系统,通过研究可以了解其基本结构、工作原理以及控制控制过程,对车辆的横摆角速度的控制方法有个基本掌握,研究具有一定的实用意义和参考价值。

目的:研究车辆的AFS系统及其控制效能。

论文(设计)主要工作内容 1. 调研现在AFS的结构及应用现状; 2. 研究AFS的工作原理;

3. 研究AFS的控制方法及效果,做车辆操稳性仿真。

论文(设计)前期工作及具备的条件 需要提前学习simulink软件及部分控制知识

ALS作用示意图

AFS、ALS等先进的汽车照明装备,从前只有在宝马545i等豪华车型上装备。而新近上市的以“创造中高级轿车全球新标准”为目标开发的凯美瑞,也装备了这两种旨在提升夜间行车安全的高科技装备。

不少人会为凯美瑞氙气前大灯稳重、大气而又不失时尚的设计而惊叹。实际上在漂亮的“外衣”之下,凯美瑞前大灯所包含的实用高科技更加值得称道,堪称美学与科技的完美结合。凯美瑞各型号的前大灯均装备有AFS智能随动系统(Adaptive Front-Lighting System)、ALS自动光轴调节系统(Auto Leveling System),并且200E之外的4个型号均配有大灯清洗装置。

通常,汽车上安装的普通大灯具有固定的照射范围,当汽车夜间在弯道上转弯时,由于无法调节照明角度,常常会在弯道内侧出现“盲区”,极大地威胁了夜间的行车安全。AFS智能随动系统有效的解决了这个问题。以凯美瑞为例,在夜间转弯时,AFS能根据车速以及方向盘转向角度,自动调整两侧大灯的照射范围,消除“盲区”,确保弯道中的高能见度。

如果说AFS控制的是灯光的“左右”调整,那么ALS控制的则是灯光的“上下”调整。通常,汽车大灯的光轴与车身水平线保持一致。如果后排负载较大,车身水平线难免会出现上扬,因此大灯的光轴也随之上扬,会对对面车辆的驾者产生干扰。一般驾者都会对此深恶痛绝,实际上,这也正是导致许多车祸发生的原因。ALS在后排负载较重导致车身角度上扬时,可自动调整光轴倾角,保持光轴水平,避免光轴上扬对对面来车驾驶人员的干扰。

累积的尘埃将会大大降低大灯的照明度,大灯清洗装置能够很好的解决这个问题。凯美瑞大灯清洗装置的独特之处在于,它采用的是隐藏式设计,保证了大灯的美观。清洗器喷头的伸缩并非电控,而是液压控制,这是一种巧妙的设计。一旦按下大灯清洗键,高压清洗液所产生的压力会将喷头推出,并在极短时间内喷射,完成清洗去污,喷射完成后,喷头自动回缩。

大灯只是车辆的一个部件,但往往在这种细节之处的改进可以让消费者得到更贴心的关

爱。见微知著,前大灯体现出的人性化科技内涵,是其整车开发思路的一个缩影。这种在技术运用上以顾客为中心的开发思路,成就了凯美瑞今天的成功。

相信开车族的朋友们对夜间弯道照明的重要性都有深刻的体验,当夜间驾车行驶在大弧度的弯道或是在没有路灯照明的山路上时,弯道内侧的照明和视野盲点区对驾驶人和车内乘客来说都存在着极大的安全隐忧,威胁着夜间行车的安全性。

为了解决这个问题,AFS-(Adaptive Front Lighting System)主动头灯转向照明系统就此誔生。主动头灯转向照明系统(Adaptive Front Lighting System、Adaptive Headlights),主要是在车头大灯组内后方或底座安装了转向马达,当驾驶转动方向盘时计算机会收集方向盘的转向角度和车速的讯号,然后发送控制指令给头灯组内的转向马逹,令其随着车辆的实际过弯动态进行左右转动与实时的调整,让照明光束集中在行车的路线上,让驾驶可清楚的看清车辆前方即将经过的弯道上的路况。

在AFS的技术和转向机制上各家车厂都不近相同,以Ford(褔特)Focus为例,其AFS在时速3km以下时,为了避免灯光造成对向车道驾驶的困扰,仅能向右启动。在3km/h以上时,会自动启动最多14度的左右转向。BMW(宝马)的主动式转向头灯,会随着车速自动调节灯光的照明长度范围,在低于时速50km的市区模式当中,更散射的灯光将会让驾驶能看清楚左右两侧的路况;在高速公路模式下,光线照射的长度将会增加,以协助驾驶看清前方更远的距离。当驾驶开启雾灯的同时(高于时速70km),光线则会增加强度并且增加照明范围的宽度,以提供更佳的视线范围。未来AFS还有可能结合雷逹系统、夜视系统等先进电子配备,为车辆提供更多信息或是结合GPS的讯号提供前方道路弯曲上的变化,以帮助计算机更精确的控制照明设配。

另外,还有一种转向辅助照明系统其主大灯是固定式的,这种转向辅助照明系统一样是为照亮夜间弯道的盲点区所设计的。其与主动头灯转向照明系统最大的不同在于提供夜间行车照明的主大灯不会转动,而是在主大灯附近再设置一个辅助照明灯,当方向盘角度转至原厂设置的角度值时,此辅助照明灯就会开启以提供传统固定式大灯在弯道上盲点区的照明。

不管是哪一种转向辅助照明系统,其目的都是为了增加行车时的安全性,但这些系统也只是辅助,并不是万能也无法絶对的确保乘员的安全,因此,唯有养成良好的驾驶习惯与德道,确实的遵守交通规则,随时注意车辆状况以及定期为车辆做保养与检查才是真正安全的不二法门。

最佳答案:

使用单芯片步进电机控制器集成电路能够使自适应转向大灯系统的设计极大地简化,并且在通常难以操作的条件下提供优质的技术性能。集成设计更大地提高了前大灯总体的可靠性,并且意味着外部电路元件仅需几个电容器。同样地,打入市场的时间、设计及整个系统的成本都将受到积极的影响。

机电一体化和模块化的方法都得到了单芯片步进电机控制器集成电路的支持,在快速增长的车辆电子系统使得电子系统结构过于复杂和昂贵的情况下,这两个方法为广大车辆制造商们所推崇。

高强度放电灯(氙气灯)车辆前大灯越来越成为全球车辆制造商所选用的技术。为了最大限度地使用氙气灯所提供的优质照明,同时降低由于不当定向所造成的氙气灯光强过高所导致的危险,自适应转向大灯系统(AFS)的重要性与日俱增。

自动校平—减弱强光

前大灯自动校平系统的工作原理是在车辆倾斜的情况下仍保证灯光与路面呈水平状态(见下图)。车辆处于停止状态时可能会由于某些原因而倾斜,例如有乘客上车,或装行李,甚至是给油箱加油。同样的,当车辆处于行进状态时,也会由于刹车或加速而导致车辆倾斜。在这两种情况下,车前大灯都必须保持与公路水平的状态。前大灯自动校平系统根据传感器的一系列数据,尤其是从前后车轴传来的悬架压缩数据调节各车灯的角度。

通过前大灯旋转来提高安全性能

车辆的数据网络包括有关转向角及轮速的实时传感器数据。根据该信息,配备前大灯的自适应转向大灯系统能够使光线的分布与车辆的转向角相适应,以便于迎面而来的转弯和岔路口—尤其是司机的凝视点—能够得到最佳的照明(见下图)。光线的这一显著增强能够降低司机的紧张度和疲劳感,并且提高障碍物的可见度;而这些障碍物是固定光束前大灯甚至无法照到的。许多研究表明,当车辆转弯时,旋转光束前大灯使司机凝视点的照明度提高了300%。

步进电机控制

每台车辆前大灯的转动都是通过使用步进电机而实现的,其中,一台步进电机控制垂直方向上的转动,另一台用于控制水平方向上的转动(见下图)。电机根据车辆四周的许多传感器反馈的数据作出反应。信息的传达是通过车辆的数据网络系统实现的。LIN总线是前大灯控制的一个实用的选择,而CAN 总线则能够将传感器数据收集起来并且分配到整个车辆。步进电机是前大灯调节应用的一个最佳选择,因为这些电机成本低,坚固耐用,体型虽小却能够

提供一个很大的扭矩。

至于控制步进电机的驱动器集成电路芯片的安放位置,有两种选择方案可供采用。第一种被称为直接驱动。在这种方法中,驱动器芯片安装于主微控制器印制电路板之中(见下图顶端图像)。该电路板离前大灯部件及相关的步进电机很远,可能位于一个车辆隔板(隔热墙)所附有的中央电子控制单元(ECU) 内,也可能位于车辆的乘员室这一“舒适的”环境中。该方法的主要不足之处在于所需的线路过多及高强度的电磁兼容性辐射。

第二种方法是机电一体化。在这一方法中,驱动器芯片与电机安装在一起(见上图底端)。由于采用了高度集成的单芯片产品,如AMI Semiconductor公司制造的AMIS-30621及AIMS-30623步进电机控制器集成电路,把芯片能够直接安装于电机内的自适应转向大灯系统机电一体化方法变得更为可行。这一方法是非常有益的,因为中央微控制器和机电一体化模块的接口连接只需要低电磁兼容性的总线。机电一体化方法采用模块化设计,前大灯组件的维修保养方便,所以好处显著。

分割硬件和软件

步进电机驱动器的应用需要同时设计硬件及软件。这会变得非常复杂,尤其是像在自适应转向大灯系统中,多个轴需要同时受到控制的情况下。在步进电机控制器集成电路出现以前,过去的方法是投资于微控制器并且开发专用软件,或使用转换芯片(见下图、左及中部图片)。基于软件的解决方案的主要问题在于开发成本很高,且在任何条件下检验多个轴的正确操作存在固有的困难。

所谓的转换集成电路,在微控制器与驱动器芯片之间提供接口,总体解决方案添加了一些额外的硬件,但同时也导致了更难以管理的复杂性及更多的软件需求(见下图,右方图片)。使用转换芯片的不利之处在于使得印制电路板的设计变得更复杂,同时失去一些模块化的优势。

单芯片方法

集成的步进电机控制器与其它方法相比,降低了需要多个轴自适应转向大灯系统的复杂性,并且提供了一个车辆制造商们所需的直接的解决方案,来支持模块化及车辆一体化设计。

AMI Semiconductor公司提供了四种混合信号器件,这些器件集总线连接、定位、电子控制及电机驱动器于一个占位面积为7mm*7mm的单一封装之中。这些器件体型小、性能高,它们在直接安装于步进电机内部的情况下,仍能保证运动控制软件的模块化设计及鲁棒的电机操作。

上述两种型号(AMIS-30621和AMIS-30623)器件的特色在于以LIN总线为接口。相较于将驱动器置于远端的系统,这一方法节省了布

使用单芯片步进电机控制器集成电路能够使自适应转向大灯系统的设计极大地简化,并且在通常难以操作的条件下提供优质的技术性能。集成设计更大地提高了前大灯总体的可靠性,并且意味着外部电路元件仅需几个电容器。同样地,打入市场的时间、设计及整个系统的成本都将受到积极的影响。机电一体化和模块化的方法都得到了单芯片步进电机控制器集成电路的支持,在快速增长的车辆电子系统使得电子系统结构过于复杂和昂贵的情况下,这两个方法为广大车辆制造商们所推崇。 高强度放电灯(氙气灯)车辆前大灯越来越成为全球车辆制造商所选用的技术。为了最大限度地使用氙气灯所提供的优质照明,同时降低由于不当定向所造成的氙气灯光强过高所导致的危险,自适应转向大灯系统(AFS)的重要性与日俱增。自动校平—减弱强光前大灯自动校平系统的工作原理是在车辆倾斜的情况下仍保证灯光与路面呈水平状态(见下图)。车辆处于停止状态时可能会由于某些原因而倾斜,例如有乘客上车,或装行李,甚至是给油箱加油。同样的,当车辆处于行进状态时,也会由于刹车或加速而导致车辆倾斜。在这两种情况下,车前大灯都必须保持与公路水平的状态。前大灯自动校平系统根据传感器的一系列数据,尤其是从前后车轴传来的悬架压缩数据调节各车灯的角度。通过前大灯旋转来提高安全性能车辆的数据网络包括有关转向角及轮速的实时传感器数据。根据该信息,配备前大灯的自适应转向大灯系统能够使光线的分布与车辆的转向角相适应,以便于迎面而来的转弯和岔路口—尤其是司机的凝视点—能够得到最佳的照明(见下图)。光线的这一显著增强能够降低司机的紧张度和疲劳感,并且提高障碍物的可见度;而这些障碍物是固定光束前大灯甚至无法照到的。许多研究表明,当车辆转弯时,旋转光束前大灯使司机凝视点的照明度提高了300%。步进电机控制每台车辆前大灯的转动都是通过使用步进电机而实现的,其中,一台步进电机控制垂直方向上的转动,另一台用于控制水平方向上的转动(见下图)。电机根据车辆四周的许多传感器反馈的数据作出反应。信息的传达是通过车辆的数据网络系统实现的。LIN总线是前大灯控制的一个实用的选择,而CAN 总线则能够将传感器数据收集起来并且分配到整个车辆。步进电机是前大灯调节应用的一个最佳选择,因为这些电机成本低,坚固耐用,体型虽小却能够提供一个很大的扭矩。至于控制步进电机的驱动器集成电路芯片的安放位置,有两种选择方案可供采用。第一种被称为直接驱动。在这种方法中,驱动器芯片安装于主微控制器印制电路板之中(见下图顶端图像)。该电路板离前大灯部件及相关的步进电机很远,可能位于一个车辆隔板(隔热墙)所附有的中央电子控制单元(ECU) 内,也可能位于车辆的乘员室这一“舒适的”环境中。该方法的主要不足之处在于所需的线路过多及高强度的电磁兼容性辐射。第二种方法是机电一体化。在这一方法中,驱动器芯片与电机安装在一起(见上图底端)。由于采用了高度集成的单芯片产品,

如AMI Semiconductor公司制造的AMIS-30621及AIMS-30623步进电机控制器集成电路,把芯片能够直接安装于电机内的自适应转向大灯系统机电一体化方法变得更为可行。这一方法是非常有益的,因为中央微控制器和机电一体化模块的接口连接只需要低电磁兼容性的总线。机电一体化方法采用模块化设计,前大灯组件的维修保养方便,所以好处显著。分割硬件和软件步进电机驱动器的应用需要同时设计硬件及软件。这会变得非常复杂,尤其是像在自适应转向大灯系统中,多个轴需要同时受到控制的情况下。在步进电机控制器集成电路出现以前,过去的方法是投资于微控制器并且开发专用软件,或使用转换芯片(见下图、左及中部图片)。基于软件的解决方案的主要问题在于开发成本很高,且在任何条件下检验多个轴的正确操作存在固有的困难。所谓的转换集成电路,在微控制器与驱动器芯片之间提供接口,总体解决方案添加了一些额外的硬件,但同时也导致了更难以管理的复杂性及更多的软件需求(见下图,右方图片)。使用转换芯片的不利之处在于使得印制电路板的设计变得更复杂,同时失去一些模块化的优势。单芯片方法集成的步进电机控制器与其它方法相比,降低了需要多个轴自适应转向大灯系统的复杂性,并且提供了一个车辆制造商们所需的直接的解决方案,来支持模块化及车辆一体化设计。AMI Semiconductor公司提供了四种混合信号器件,这些器件集总线连接、定位、电子控制及电机驱动器于一个占位面积为7mm*7mm的单一封装之中。这些器件体型小、性能高,它们在直接安装于步进电机内部的情况下,仍能保证运动控制软件的模块化设计及鲁棒的电机操作。上述两种型号(AMIS-30621和AMIS-30623)器件的特色在于以LIN总线为接口。相较于将驱动器置于远端的系统,这一方法节省了布

通过步进电机对氙气车前大灯实施电子控制的目的在于指引车灯光束,最大程度地降低迎面而来的车辆的灯光强度,同时照亮曲道的路面。但是,车辆电机驱动器芯片的位置却对该系统的效率有极大的影响。

高强度放电灯(氙气灯)车辆前大灯越来越成为全球车辆制造商所选用的技术。为了最大限度地使用氙气灯所提供的优质照明,同时降低由于不当定向所造成的氙气灯光强过高所导致的危险,自适应转向大灯系统(AFS)的重要性与日俱增。 这些系统能够在垂直方向上轻微地调节车前大灯的光束,以此来补偿车辆相对于路面的倾斜度的变化。同时,它们也能够根据车辆转向的变化,相应地让车前大灯旋转。这样的光束能够提供最佳及最安全的前方道路照明,

显著改善司机转弯时道路的可视度。 自动校平—减弱强光

前大灯自动校平系统的工作原理是在车辆倾斜的情况下仍保证灯光与路面呈水平状态(见下图)。车辆处于停止状态时可能会由于某些原因而倾斜,例如有乘客上车,或装行李,甚至是给油箱加油。同样的,当车辆处于行进状态时,也会由于刹车或加速而导致车辆倾斜。在这两种情况下,车前大灯都必须保持与公路水平的状态。前大灯自动校平系统根据传感器的一系列数据,尤其是从前后车轴传来的悬架压缩数据调节各车灯的角度。

通过前大灯旋转来提高安全性能

车辆的数据网络包括有关转向角及轮速的实时传感器数据。根据该信息,配备前大灯的自适应转向大灯系统能够使光线的分布与车辆的转向角相适应,以便于迎面而来的转弯和岔路口—尤其是司机的凝视点—能够得到最佳的照明(见下图)。光线的这一显著增强能够降低司机的紧张度和疲劳感,并且提高障碍物的可见度;而这些障碍物是固定光束前大灯甚至无法照

到的。许多研究表明,当车辆转弯时,旋转光束前大灯使司机凝视点的照明度提高了300%。

步进电机控制

每台车辆前大灯的转动都是通过使用步进电机而实现的,其中,一台步进电机控制垂直方向上的转动,另一台用于控制水平方向上的转动(见下图)。电机根据车辆四周的许多传感器反馈的数据作出反应。信息的传达是通过车辆的数据网络系统实现的。LIN总线是前大灯控制的一个实用的选择,而CAN 总线则能够将传感器数据收集起来并且分配到整个车辆。步进电机是前大灯调节应用的一个最佳选择,因为这些电机成本低,坚固耐用,体型虽小却能够提供一个很大的扭矩。

至于控制步进电机的驱动器集成电路芯片的安放位置,有两种选择方案可供采用。第一种被称为直接驱动。在这种方法中,驱动器芯片安装于主微控制器印制电路板之中(见下图顶端图像)。该电路板离前大灯部件及相关的步进电机很远,可能位于一个车辆隔板(隔热墙)所附有的中央电子控制单元(ECU) 内,也可能位于车辆的乘员室这一“舒适的”环境中。该方法的主要不足之处在于所需的线路过多及高强度的电磁兼容性辐射。

第二种方法是机电一体化。在这一方法中,驱动器芯片与电机安装在一起(见上图底端)。由于采用了高度集成的单芯片产品,如AMI Semiconductor公司制造的AMIS-30621及AIMS-30623步进电机控制器集成电路,把芯片能够直接安装于电机内的自适应转向大灯系统机电一体化方法变得更为可行。这一方法是非常有益的,因为中央微控制器和机电一体化模块的接口连接只需要低电磁兼容性的总线。机电一体化方法采用模块化设计,前大灯组件的维修保养方便,所以好处显著。 分割硬件和软件

步进电机驱动器的应用需要同时设计硬件及软件。这会变得非常复杂,尤其是像在自适应转向大灯系统中,多个轴需要同时受到控制的情况下。在步进电机控制器集成电路出现以前,过去的方法是投资于微控制器并且开发专用软件,或使用转换芯片(见下图、左及中部图片)。基于软件的解决方案的主要问题在于开发成本很高,且在任何条件下检验多个轴的正确操作存在固有的困难。 所谓的转换集成电路,在微控制器与驱动器芯片之间提供接口,总体解决方案添加了一些额外的硬件,但同时也导致了更难以管理的复杂性及更多的软件需求(见下图,右方图片)。使用转换芯片的不利之处在于使得印制电路板的设计变得更复杂,同时失去一些模块化的优势

因篇幅问题不能全部显示,请点此查看更多更全内容