您的当前位置:首页正文

土壤微生物菌群多样性研究_2001

2023-11-14 来源:易榕旅网
A0099-2240/01/$04.00PPLIEDANDENVIRONMENTALMICROBIOLOGY,Apr.2001,p.1874–1884Vol.67,No.4

Copyright©2001,Americanϩ0DOI:Society10.1128/AEM.67.4.1874–1884.2001

forMicrobiology.AllRightsReserved.

CombinedStudytheUseBacterialof16SRibosomalDNAand16SBiphenyl-PollutedCommunityofrRNATo

Soil

Polychlorinated

BALBINARAMONROSSELLO-MORA,NOGALES,1,2*EDWARD3†RUDOLFR.B.MOORE,1AMANN,3ENRIQUELLOBET-BROSSA,3ANDKENNETHN.TIMMIS1,2DivisionGroup,Max-Planck-InstitutofMicrobiology,GBF-Nationalfu¨rMarineResearchCentreforBiotechnology,Braunschweig,1andMolecularEcologyUniversityMikrobiologie,ofEssex,Colchester,Bremen,3UnitedGermany,KingdomandDepartment2ofBiologicalSciences,

Received18September2000/Accepted9January2001

DNAThecorrespondence(rDNA)bacterial(onediversityassessedfromclonelibrariespreparedfromrRNA(twolibraries)andribosomaltheofthelibrary)communityfrompolychlorinatedcompositionfoundbiphenylinthetwo(PCB)-pollutedtypesoflibrarysoilwashasobserved.beenanalyzed.NearlyAgoodofsimilaritytheclonedtotalsequenceslibraries.higherclonedthansequenceinthe97%[98%typesrDNAlibrarywereidenticaltosequencesintherRNAlibraries.Morethan29%60%offoranalyzedBurkholderiaweregroupedandPseudomonasinphylogenetic-typeclones])groups(arepresentedclonegroupinwithbothsequencetypesoftype(s),lackwereSomeobservedofthoseinonlyphylogeneticoneofthegroups,typesofmostlyrepresentedbyasingle(orpair)ofclonedsequencebacterialofclonesrepresentativeoftheActinobacterialibrary.intherDNAAnimportantlibrary.differenceThePCB-pollutedbetweenthesoillibrariesexhibitedwasahightheaffiliateddiversitybytothebeta-subclasswhichincludedoftherepresentativesProteobacteria,ofandtwotonovelthegenuslineages.BurkholderiaTheapparentabundanceofbacteriaconcentrationsfluorescencePCR.wasinsituassessedhybridizationbydilutionanalysis.oftheRNAThepossibleinfluenceonapparentinparticular,diversityofwaslowconfirmedtemplateconcentrationsAlthoughlibraries,thisstudy.

andthereforeweredifferencesobserved,inthecompositionofthetemplatetworRNApriorlibrariestoamplificationobtainedbyfromreversehightranscription-andlowRNAtheirdetectionthemainwascomponentsnotcompromisedofthebacterialbythelowercommunityconcentrationswererepresentedoftemplateinusedbothinInvestigationsofmicrobialcompositionanddiversityinnat-reflectpredominantlythediversityofthemetabolicallyactiveuralandanthropogenicallyimpactedorcreatedhabitatsismembersofthecommunity.Severalreportsontheanalysisofimportantinthecharacterizationofsuchhabitats,sincemi-bacterialcommunitiesusing16SrRNAhavebeenpublishedcrobesarekeyplayersinmanyenvironmentalprocesses.Overthelastfewyears,cultivation-independentmethodologies,par-(7,20,22,36,37).However,itisnotcurrentlyknownwhetherticularlythesequenceanalysisofcloned16SribosomalRNArRNAandrDNAlibrarieswillbesignificantlydifferent,sincegenes(16SrDNA),haveproventobepowerfultoolsforin-itisnotknownwhichproportionofmicrobialcommunityisvestigatingthemicrobialdiversityofenvironmentalsamplesquiescent.AcomparisonofresultsobtainedfromrRNAand(10).AtleastasimportantisthespecificidentificationoftherDNAlibrarieshasbeenattemptedbyMiskinetal.(20)inametabolicallyactivemicroorganisms,sincetheseareresponsi-studyofananoxicsedimentsample.Theseauthorsobservedableforthemicrobiallydrivenenvironmentalprocesses.Forfewidenticalsequencesinthetwotypesoflibraryandcon-example,knowledgeoftheactivemicroorganismsinpollutedcludedthatthelibrariesdidnothaveadegreeofcoverageofhabitatsisrelevanttothedevelopmentofoptimalinsitubiore-thediversityinthesamplehighenoughtoenablevalidcom-mediationstrategies,aswellascontributingtotheidentifica-parisons.

tionofyet-undescribed(i.e.,notyet-cultured)bacteriawhichWehaveundertakensuchacomparisonwithadegreeofmayplayimportant,albeitunknown,rolesinpollutantdegra-diversitycoveragethatshouldpermitconclusions.Inthedationorothercommunityprocesses.

presentstudywedescribea16SrRNAgeneclonelibrary,Sincemetabolicallyactivecellsusuallycontainhighernum-obtainedbyPCRamplificationfromtotalDNAextractedfrombersofribosomesthanquiescentcells(23),a16SrRNAlibraryapolychlorinatedbiphenyl(PCB)-pollutedsoil,andcompareitgeneratedfromtotalextractedrRNAmaybeconsideredto

withapreviouslydescribed16SrRNAlibraryobtainedbyreversetranscription-PCR(RT-PCR)(22)andanunreportedrRNAlibrarygeneratedfroma1:500dilutionoftheoriginaltemplateRNA.Ahighspeciesdiversitywasfoundinbothcal*Correspondingtypesoflibrary,thoughitwasclearfromrarefactionplotsthat,3SQ,Sciences,author.Mailingaddress:DepartamentofBiologi-eventhoughsome404cloneswereanalyzed,notalloftheE-mail:UnitedKingdom.UniversityPhone:ofEssex,44-1206-872547.WivenhoePark,Fax:Colchester44-1206872592.CO4bacterialdiversityinthathabitathadbeenrevealed.Aconsid-erablepercentageofrDNAcloneswerealsorepresentedintheUniversitat†Presentbnogales@essex.ac.uk.

deaddress:lesIllesAreaBalears,deMicrobiologia,PalmadeMallorca,DepartmentSpain.

deBiologia,rRNAlibrariesand,ingeneral,therewasaqualitativecorre-

1874

Downloaded from http://aem.asm.org/ on February 22, 2016 by guestVOL.67,200116SrDNAANDrRNAINTHESTUDYOFBACTERIALDIVERSITY1875

spondenceofclonefrequencyinthetwotypesoflibraries,withrepresentativesofthealphaandbetasubdivisionsofPro-teobacteriaandtheAcidobacteriumphylumdominating.

MATERIALSANDMETHODS

TotalDNAandRNAextraction.Thesampleusedfortotalnucleicacid(DNAandRNA)extractionwastakenfromtheupperfewcentimetersofthesurfaceofasoilinanareanearWittenberg,Germany,wherehighconcentrationsofPCBweredetected(22),weighed,andfrozenatϪ70°Cuntilprocessing.Totalnucleicacidswereextractedfromthesoilusingaprotocoldescribedpreviously(22).Theextractednucleicacidswerepelletedandwashedwith70%ethanol,dried,andresuspendedin300␮lofdeionizedwater.Analiquotofthesamplewasdigestedwith30UofRNase-freeDNaseI(RocheDiagnostics,GmbH,Mannheim,Germany)at37°Cfor2hin10mMsodiumacetate–0.5mMMgSORNAandtotalDNAwerepurifiedusingMicroconmicroconcentra-4(pH5.0).Bothtotaltors100(MilliporeGmbH,Eschborn,Germany),accordingtothemanufactur-er’sinstructions.AliquotsofpurifiedandnonpurifiedtotalRNAandtotalDNAwereanalyzedbyelectrophoresisona1%(wt/vol)agarosegelandstainingwithethidiumbromide.

RT-PCRamplificationof16SrRNA,PCRamplificationof16SrRNAgenes,andcloningoftheamplificationproducts.Theregionofthe16SrRNAbetweennucleotidepositions27and518(Escherichiacoli16SrRNAgenesequencenumbering),correspondingtoapproximatelyone-thirdoftheentire16SrRNA,wastargettedforreversetranscription-PCR(RT-PCR)amplificationfromtheextractedtemplateRNA.RT-PCRanalyseswereperformedwithca.230ngand460pg(dilution,1:500)ofthetotalRNA,usingrTthDNApolymerase(AppliedBiosystems,Weiterstadt,Germany)asdescribedpreviously(22).Nearlytheentire16SrRNAgene,betweenpositions27and1492(E.coli16SrRNAgenesequencenumbering),wasamplifiedbyPCR.PCRmixturescontained10mMTris-HCl(pH8.3),50mMKCl,1.5mMMgCl2,200␮Mconcentrationsofdeoxynucleosidetriphosphates,0.5␮Mconcentrationsofprimers,approximately80ngofDNA,and2.5UofAmpliTaqDNApolymerase(AppliedBiosystems).PCRswereperformedinaGeneAmp9600thermocycler(AppliedBiosystems)withthefollowingconditions:aninitialdenaturationstepat94°Cfor2min,followedby30cyclesof1minat94°C,1minat55°C,and2minat72°C,andafinalextensionstepof10minat72°C.

ThePCRandRT-PCRswerecarriedoutintriplicate,andtheresultingproductswerepooledbeforegelpurificationandcloning.Thecloningprocedurehasbeendetailedpreviously(22).Threeclonelibrariesweregenerated:onewiththePCRamplificationproductsfromtotalDNAandtwowiththeRT-PCRamplificationproductsfromundilutedand1:500-dilutedRNA,respectively.SequencingofclonedRT-PCRproducts.ThenucleotidesequencesoftheclonedproductsweredeterminedfromplasmidDNApreparations(obtainedusingQiawell8orQiaSpinplasmidextractionkits[QiagenGmbH,Hilden,Germany])usingtheABIPRISMdRhodamineandBigDyeTerminatorCycleSequencingkitsandABI373andABI377Sequencers(AppliedBiosystems)accordingtothemanufacturer’sinstructions.VectorprimersT3andT7wereusedforthesequencingreactions.

Assignmentofclonedsequencestoestablishedphylogeneticdivisions.Cloned16SrRNAsequenceswerecomparedinitiallywithreferencesequencescon-tainedintheEMBLNucleotideSequenceDatabase(2)usingtheFASTApro-gram(25)andsubsequentlyalignedwith16SrRNAreferencesequencesintheARBpackage(http://www.mikro.biologie.tu-muenchen.de)(32).Ambiguouspo-sitionswereexcludedfromsimilaritycalculations.Evolutionarydistances,de-rivedfromsequence-pairdissimilaritiesusingtheJukesandCantoralgorithm(12),werecalculatedusingtheDNADISTprogramfromthePhylogenyInfer-encePackage(PHYLIP)includedintheARBpackage.ForthecalculationofthedendrogramshowninFig.2,clonedsequenceswerealignedwith16SrRNAsequencesrepresentativeofthemainbacterialdivisions.Dendrogramswerecalculatedusingneighborjoining;theleast-squaresalgorithmofFitch-Margo-liashoftheFITCHprogram;parsimony(DNAPARS),andmaximum-likelihood(DNA_ML)algorithmsofthePHYLIPpackageincludedintheARBsoftware.Hypervariableregionsinthe16SrRNAmoleculewereexcludedfromthecal-culationasdescribedelsewhere(14).Brancheswhosephylogeneticpositioninthedendrogramchangeddependingonthemethodofanalysisusedwerecol-lapsedbacktothepreviousconsistentnodebyintroducingmultifurcations.Rarefactionanalysesanddiversityindexes.RarefactioncalculationsweredoneusingthesoftwareAnalyticRarefaction(version1.2;StratigraphyLabora-tory,UniversityofGeorgia[www.uga.edu/ϳstrata/Software.html]).Shannondi-versityindex(H)andequitability(J)valueswerecalculatedaspreviouslyde-scribed(3).

Insituhybridization.ThesamesoilsamplesfromthePCB-pollutedsoilusedfortheelaborationofthelibrarieswerefixedat4°Cfor16hin4%paraformal-dehyde–phosphate-bufferedsaline(PBS),composedof0.13MNaCl,7mMNa2HPOin4,and3mMNaHPBSthreetimesand2POstored4(pH7.2).Afterfixation,thesampleswerewashedinethanol-PBS(1:1[vol/vol])atϪ20°C.Thesoilslurrywasvortexedfor1minanddilutedinPBS.Hybridizationswerecarriedouton0.22␮m-pore-sizepolycarbonatefilters(Millipore)afterfiltrationofthedilutedsoilslurries.OligonucleotideprobesweresynthesizedwithCy3fluorochromeatthe5Јend(InteractivaBiotechnologieGmbH,Ulm,Germany).TheprobesusedwereEUB338forthedomainBacteria(1),ALF1bforthealphasubclassofProteobacteria,BET42aforthebetasubclassofProteobacteria(usedwithcompetitor),GAM42aforthegammasubclassofProteobacteria(usedwithcompetitor)(19),PLA886forplanctomycetes(usedwithcompetitor)(21),HGC69aforActinobacteria(formerlygram-positivebacteriawithahighGϩCcontent)(28),SUBU1237forBurkholderiaandSuterellaspp.(31),andtheantisenseprobeNON338(1).Hybridizationsandmicroscopycountsofhybrid-izedandDAPI(4Ј,6-diamidino-2-phenylindole)-stainedcellswereperformedaspreviouslydescribed(29),exceptthatanadditionalprehybridizationstepusing1%(forEUB338)or2%(fortheotherprobes)ofblockingreagent(Roche)wasintroducedinordertoreduceunspecificbindingoftheprobestosoilparticles.TheslideswereexaminedwithanAxiophotIImicroscope(Zeiss,Jena,Germa-ny).

Nucleotidesequencedata.Thesequencedataofthecloned16SrRNAob-tainedbyRT-PCRwithundilutedRNAtemplatewasdepositedintheEMBLdatabaseundertheaccessionnumbersAJ233467toAJ233589.Thenewse-quencedatareportedinthisstudyhavebeendepositedunderaccessionnumbersAJ292571toAJ292689forthesequencedatacorrespondingtocloned16SrDNAandAJ292771toAJ292925forcloned16SrRNAobtainedwiththedilutedRNAtemplate.

RESULTS

Comparisonofthecompositionofthe16SrDNAlibraryandthe16SrRNAlibraries.ThebacterialdiversityinanacidicPCB-pollutedsoilnearWittenberg(Germany)wasanalyzedbyamplificationof16SrDNAfromtotalDNAextractedfromthesoilandcomparedwiththediversityobservedintwoclonelibrariesgeneratedfromextractedRNA,whichshouldbemorerepresentativeofthemetabolicallyactivebacteriainthesoil.The16SrDNAclonedsequencesdeterminedweredesig-natedwithanumberprecededbytheletters“W”(forWitten-berg)and“D”(fromDNA)todifferentiatethemfromtheclonedsequencesWR(fromRNA).

Thepredominantbacterialdivisionspresentinthe16SrDNAlibrarywerealsothemostnumerousinbothlibrariesobtainedfrom16SrRNA,i.e.,clonedsequencetypesaffiliatedtothealpha,beta,andgammasubdivisionsoftheProteobac-teria(30)andtotheHolophaga-Acidobacteriumphylum(16).The5Ј-partialsequencesof34clonesfromthe16SrDNAclonelibrary(28.6%ofthetotalnumberof16SrDNAclonesanalyzed)wereidenticaltothoseofclonesfromthe16SrRNAlibrariesandbelongedtothefourpredominantdivisionsmen-tionedabove:21,6,and4clonedsequencesclusteredwithinthebeta,alpha,andgammasubdivisionsoftheProteobacteria,respectively,andthreeclonedsequenceswithintheHol-ophaga-Acidobacteriumphylum.

Inordertosimplifythecomparisonofthesequencesob-tainedintheanalysisofthethreelibrariesfromWittenberg,clonedsequencetypeswithϾ97%similaritywereconsideredtoconstituteaphylogeneticgroup,exceptforthecollectionofclonedsequencetypesrelatedtoPseudomonasandBurkhold-eriaspp.,forwhichahighersimilaritythreshold(ca.98%)wasset.

Thenumberofphylogeneticgroups,clonedsequencesandclonedsequencetypesforthedifferentbacterialdivisionsare

Downloaded from http://aem.asm.org/ on February 22, 2016 by guest1876NOGALESETAL.APPL.ENVIRON.MICROBIOL.

TABLE1.Numberobservedofphylogeneticineitherthe16Sgroups,rDNAclones,library,andtheclonedtwosequence16SrRNAtypeslibraries,fromorPCB-pollutedbothtypesofsoillibraryforeachsimultaneously

ofthebacterialdivisions

No.ofphylogeneticgroupsaobservedinPCB-pollutedsoil16SrDNAand16SrRNAlibraries

Bacterialdivision

Total

DNAlibrary

RNAlibraries

DNAplusRNA

libraries

DNAlibraryonly

RNAlibrariesonly

Proteobacteria

AlphaBetasubdivision4625(128/99)201840181411(88/61)67(6/6)26Holophaga-AcidobacteriumGammasubdivisionsubdivision10(124/81)23(42/26)1(8/8)7(34/32)ActinobacteriaPlanctomycetales

6(68/58)1161995(105/62)4(1/1)124(11/11)(6/6)Candidate5(9/8)067(35/19)0

(5/5)Plastids

divisionOP104(9/8)240

(41/34)16(22/19)Low3(7/7)1410

(1/1)3(9/8)Cytophaga-Flavobacterium-BacteroidesGϩCgrampositives

2(3/3)211(3/3)23(5/4)Notaffiliated(WPS-1andWPS-2)1(2/2)(1/1)020(2/2)0(2/2)1(5/5)2(1/1)6(11/10)031040

1(2/2)0

2(2/2)1(2/2)3(1/1)(7/6)Total

131(404/303)

63

108

40(276/183)

23(25/25)

68(103/95)

athePhylogeneticnumberofclones/clonedgroup:aclonesequencegroupwithtypes.

sequencesimilarityhigherthan97%(98%forBurkholderiaandPseudomonas-typeclones).ValuesinparenthesesindicateshowninTable1.Atotalof29.3%ofthephylogeneticgroups,sequencetypesaffiliatedwiththreebacterialdivisionsnotob-whichincludedmostofthesequencetypesobserved(183servedinthe16SrDNAlibrarywereobservedexclusivelyinclonedsequencetypes,representing60.4%ofthetotalse-therRNAlibraries,namely,clonedsequencetypesclusteringquencetypes;Fig.1),werefoundinbothtypesoflibraries.withintheActinobacteria(constitutingadiversesetrelatedtoTable2showstheaffiliationofrDNAclonedsequencetypesthe16SrRNAsequencesofgenerasuchasGordonia,Curto-representativeofeachofthephylogeneticgroupsobservedinbacterium,Geodermatophilus,andTerrabacterandthesoilrDNAandrRNAlibraries.TheidentificationoftheclonesclonedsequencetypeTM146,amemberofthegroupITMpresentinbothtypesoflibrariesagreedwiththeresultsde-clones[27]),thelow-GϩC-contentgrampositives(Clostridi-rivedfrompreviousanalysesonthemicrobialcommunityfromum-likesequencetypes),andtheCytophaga-Flavobacterium-WittenbergPCB-contaminatedsoil(22),i.e.,(i)adiversesetofBacteroidesphylum,withsequencetypesrelatedto16SrRNAclonedsequencetypesaffiliatedwiththealphasubclassofsequencesofSphingobacterium.

Proteobacteria,withahighproportionofclonedsequencetypesNewbacteriallineages.Atotalof10clonedsequencetypesrelatedto16SrRNAsequencesofSphingomonasandacidi-retrievedfromWittenbergsoilwerenotaffiliatedwithanyphilicgenerawithinthissubdivision,(ii)alargenumberofdescribedbacterialdivisionsandareproposedhereasrepre-clonedsequencetypesrelatedtoBurkholderiaandVariovorax-sentativesoftwonewbacteriallineages,whichwedesignatedrelated16SrRNAsequencesinthebetasubclassofthePro-WPS-1for“Wittenbergpollutedsoil”(nineclonedsequenceteobacteria,(iii)aprevalenceofclonedsequencetypesaffili-types)andWPS-2(onesequencetype).ThedendrograminatedwithNevskiaramosawithinthegammasubclassoftheFig.2showsthephylogeneticpositionsamongtheBacteriaforProteobacteria,(iv)ahighdiversitywithintheclonedsequenceWPS-1andWPS-2.

typesaffiliatedwiththeHolophaga-Acidobacteriumphylum,TheWPS-1sequencetypesformedadiversecollectionofand(v)thepresenceofclonedsequencetypesrelatedto16SrelatedsequenceswithsimilaritiesbetweenthemrangingfromrRNAsequencesofIsosphaeraspp.withinthePlanctomy-82.7to99.8%andincludedclonedsequencetypesfromthecetales.

rDNAlibraryanalyzed(twosequencetypes)andbothrRNAAninterestingsetofclonedsequencetypesrepresentedinlibrariesanalyzed(sevensequencetypes).ComparisonoftherRNAandrDNAlibrariesappearedtobedistantlyrelatedtoalmost-complete16SrDNAsequenceoftheclonesfromtheclonesretrievedfromatrichlorobenzene-transformingconsor-rDNAlibrarywithsequencesavailableindatabasessuggeststiumwhichwerereportedtobemembersofthecandidatethatWPS-1mightbeadeeplybranchinglineage,distantlydivisionOP10(34).NotethatfouroftheseclonedsequencerelatedtothePlanctomycetales(similaritiesofϽ76%tothetypeshad,onthebasisofpartialsequences,beenpreviouslyclosestrelatives).ThephylogeneticrelationshipbetweenassignedasmembersoftheclassActinobacteriasincetheyWPS-1andthePlanctomycetaleswassupportedbyallthetree-appearedtoberelatedtoAcidimicrobiumferrooxidans(22).ingmethodsemployedintheanalysis.

About52and18%ofthephylogeneticgroupswerepresentTheWPS-2lineagewasrepresentedbyasingleclonedse-exclusivelyintherRNAlibrariesorintherDNAlibrary,re-quencetype,WD272,whichwasonlyobservedinthe16Sspectively(Fig.1),althoughthemajorityofthesewererepre-rDNAlibrary.Analysisofthisclonedsequencewiththepro-sentedbyasingleortwoclonedsequencetypes(afewcon-gramCHIMERA_CHECK(version2.7)(18)andcarefultainedmore[uptofive]).Mostofthephylogeneticgroupscheckingofitsbasepairing(withtheaidoftheARBpackage)uniquetotherDNAlibrarywerecloselyrelatedtogroupsruledoutthepossibilitythatthissequencewasachimericfoundinbothrRNAandrDNAlibraries.However,cloneproduct.ThesequencesimilarityofcloneWD272tocloned

Downloaded from http://aem.asm.org/ on February 22, 2016 by guestVOL.67,200116SrDNAANDrRNAINTHESTUDYOFBACTERIALDIVERSITY1877

groups.FIG.Holophaga-Acidobacterium(B)1.ComparisonClonedsequenceofthetypes.representationALPHA,ofBETA,differentandbacterialGAMMA,divisionsthealpha,inthebeta,16SrDNAandgammalibrary,subdivisions16SrRNAlibraries,orboth.(A)Phylogeneticlow-GϩC-contentgrampositives;;ACTINOB,CFB,ActinobacteriaCytophaga-Flavobacterium-Bacteroides;PLAN,Planctomycetales;NA,;OP10,notcandidateaffiliated(lineagesdivisionOP10;oftheWPS-1PLAST,ProteobacteriaandWPS-2).

plastids;;HOL-ACID,LOWGϩC,sequencetypesintheWPS-1lineagerangedbetween63.2andthecyanobacteria,itappearedtobranchoutsidethecyanobac-67.8%.Thephylogeneticpositionofthisclonedsequencetypeteriallineageinthemaximumparsimonytree.InthetreecouldnotbedeterminedconsistentlybythedifferenttreeingcalculatedusingFITCH,WPS-2branchedfromtheradiationmethodsusedinthepresentanalysis.Threetreeingmethodstothedeinococci.ByusingFASTAsearches,theclosest16S(neighborjoining,parsimony,andmaximumlikelihood)indi-rDNAsequencestothatofWD272werethesequencesofcatedtheproximityofWPS-2tothecyanobacteria.WhileforclonesSJA-5,SJA-22,andWCHB1-84retrievedfromchlori-thefirsttwomethodsWPS-2branchedfromtheradiationtonatedhydrocarbon-degradingcommunities(5,34).

Downloaded from http://aem.asm.org/ on February 22, 2016 by guest1878NOGALESETAL.APPL.ENVIRON.MICROBIOL.

TABLE2.Identificationthe16SofrDNArepresentativeandthe16SclonedrRNAsequenceclonelibrariestypespresentfrominPCB-pollutedphylogeneticsoil

groupsfoundinboth

Bacterialdivision

PhylogeneticNo.group

no.ofofsequences/sequence

Representative

types

clone

Closestrelativeindatabase(EMBLaccessionno.)

Length(nt)a%Identity

Alpha-Proteobacteria

A-1A-26/5Sphingomonas95.32A-37/4WD208Phenylobacteriumasaccharolytica1,41097.08A-45/3WD225MagnetospirillumimmobileIFO10564(Y09639)1,40493.75A-74/4WD229WD2103Azospirillumsp.strainMSM-4(Y18216)

(Y17390)1,40990.13A-8Rhodopilasp.strainASP-1(X92464)1,40892.58A-910/62/2WD238Acidosphaeraglobiformis1,42894.70A-1016/9WD248SphingomonasrubrifaciensDSM161(D86513)1,41496.17A-115/4WD249SphingomonassubarticaKF1HS-AP3(X94102)(D86512)1,41198.58A-124/4WD252WD267AfipiapruniIFO15498(Y09637)1,40995.46A-13Gluconacetobactergenosp.13strain1,41192.43A-1511/52/1WD271BradyrhizobiumliquefaciensG8991(U87784)

1,41399.01A-164/4WD2756/6WD295WD297Gluconacetobactersp.1,410CaulobactersaccharistrainPe4LMG1382(X75617)IF2-6(AF159437)(AF127412)1,41394.5597.23Beta-Proteobacteria

A-19B-2GluconacetobactervibriodesATCC11764(AJ227755)1,40896.47B-311/36/4WD2108Xylophilus1,41798.14B-510/4WD291VariovoraxampelinussacchariATCCIF2-6(AF127412)1,45599.18B-138/5WD2115Rubrivivaxsp.strainWFF5233914(AF078758)1,45796.35B-146/6WD2102Burkholderiagelatinosus(AB003627)1,451B-158/8WD221Burkholderiasp.(D16213)

1,45373997.29B-165/4WD202Burkholderiasp.strain1,45698.97B-175/5WD263WD206Burkholderiasp.strainLB400(U86373)strainN3P2NF100(U37344)(AB025790)1,45597.2597.80B-18Burkholderiasp.strainNF100(AB025790)B-1938/175/3WD2373/3WD227Burkholderiasp.Burkholderiasp.strainN2P5(U37342)1,45574898.801,45198.28Gamma-Proteobacteria

B-21G-16/4WD268Burkholderiasp.strain1,45597.80G-22/1WD21163/2WD259WD260PseudomonasglatheistrainDha-54(AJ011508)ATCCN2P529195(U37342)

Ectothiorhodospirasp.strainPsK(AF105389)(AB021374)1,45997.251,46299.3287.41G-3(AF084511)

sp.strainBogoriaRedG-413/4WD280Nevskia1,450G-5

15/102/2WD284WD2124NevskiaramosaEctothiorhodospiraramosa(AJ001343)(AJ001343)

1,45096.141,46396.6986.74Holophaga-AcidobacteriumH-2(AF084511)

sp.strainBogoriaRedH-47/57/7WD207Acidobacterium1,424H-56/4WD247Clonecapsulatum(D26171)1,42295.37Holophaga-Acidobacterium

H-65/3WD217CloneUA1(AF200696)1,42696.06H-75/3WD228CloneUA3(AF200699)1,39892.50H-104/4WD243CloneTRB82(AF047646)1,40297.14H-117/7WD261CloneTRB82(AF047646)1,46196.36Planctomycetales

P-43/3WD277CloneDA052(Y07646)1,40093.29CandidateO-12/2WD2112IsosphaeraTRB821,44495.14Notaffiliateddivision(WS-I)

OP10N-3

2/2

WD294WD2101

Clonesp.(AF047646)

strainSchlesner640PlanctomyceteSJA-22(AJ009456)

(X81959)strain394(AJ231192)

1,43992.451,395

86.1775.41

ant,nucleotides.

Rarefactionanalysisanddiversityindexes.Theclonedse-inthelibraryobtainedwithdilutedRNAwaslowerthaninthequencesrepresentedinthedifferentlibrariesfromWittenbergonegeneratedfromundilutedRNA,asexpected.Shannonweresubjectedtorarefactionanalysis.Twosetsofdatawerediversityindices(calculatedforthethreelibrariesfromclonedrarefied:onecomprisingtheclonedsequencetypesandan-sequencetypes)werehigherandverysimilarforthelibrariesothercomprisingthephylogeneticgroupsestablished.DespitegeneratedfromRNA(Hϭ4.71and4.72forthelibraryob-thefactthatonly362of404clonedsequences(65%)inthetainedfromundilutedanddilutedRNAs,respectively),asop-threelibrarieswereunique,therarefactionanalysissuggestsposedtothelibraryobtainedfromDNA(Hϭ4.41).Equita-thatthenumberofclonesscreenedisinsufficienttocircum-bilitywashigherforthelibraryobtainedfromundilutedRNAscribethebacterialdiversityinthePCB-pollutedsoil(Fig.3A).(Jϭ0.97),slightlylowerforthelibraryobtainedfromdilutedThedatafromtheclonedsequencetypesineachoneoftheRNA(Jϭ0.94)and,finally,lowerforthelibrarygeneratedthreelibrariesgeneratedinthisstudywerealsorarefied.Ac-fromDNA(Jϭ0.92).Theseresultsagreewiththerarefactioncordingtotherarefactionplots,theexpectednumberofse-plotsandshowahigherdiversityofthelibrariesgeneratedquencetypesinthe16SrDNAlibrarywaslowerthanthatforfromRNA.

the16SrRNAlibraries,suggestingalowerdiversitywithintheEffectoftemplatedilutionpriortoRT-PCRonthecompo-16SrDNAlibrary(Fig.3B).Thisresultisconsistentwiththesitionofthe16SrRNAlibraries.OnegeneralconcerninthehigherpercentageofredundantclonedsequencesobservedinanalysisofbacterialdiversitybyPCRamplificationof16Sthe16SrDNAlibrary.TheexpectednumberofsequencetypesrRNAgenes,particularlywithsamplesfromsoilenvironments,

Downloaded from http://aem.asm.org/ on February 22, 2016 by guestVOL.67,200116SrDNAANDrRNAINTHESTUDYOFBACTERIALDIVERSITY1879

tionaryFIG.2.DendrogramofthenovelbacteriallineagesWPS-1andWPS-2andsequencesrepresentativeofcompletedistancesweresequencesandfromthephylogeneticthe16SrDNArelationshipscloneswerewereincludedcalculatedintheusingdistance,parsimony,andmaximum-likelihooddifferentbacterialmethods.divisions.Onlynearly-Evolu-Thearchaealcollapsedsequencesbacktothewereprevioususedconsistentasoutgroup.

node.Thehypervariablecalculation.regionsintheBranches16SrRNAwhosemoleculeposition(14)variedwerewithexcludedthetreeingfromthemethodcalculation.usedisthefrequentnecessitytodilutetheextractedDNAtoover-0.97inthelibraryobtainedwithundilutedRNA).Eighty-onecomeinhibitionofthePCRandtheeffectthatdilutionmightcloneswithidenticalsequenceswereobtainedfrombothli-haveonthecompositionsofderivedclonelibraries.Thiseffectbraries.

hasbeenexploredwithsedimentsamplesinwhichthePCRsTable3showsthenumberofphylogeneticgroups,clones,werecarriedoutwithverylowtemplateDNAconcentrations,andclonedsequencetypeswhichwereobservedintherRNAintheorderofpicograms,andclonelibrarieswerescreenedbylibraries.Nearlytwo-thirdsoftheclonedsequencetypeswererestrictionfragmentlengthpolymorphismanalysis(4).OntheobservedinbothrRNAlibrariesandwerepreciselytheclonedotherhand,althoughtheabundanceofacertain16SrRNA(orsequencetypeswithinthepredominantphylogeneticgroupsrDNA)sequencetypeinaclonelibrarycannotbedirectlyobservedinbothlibraries,includingclonedsequencetypescorrelatedwiththeabundanceintheenvironmentofthebac-similartothe16SrRNAsequenceofspeciesof(i)Sphingomo-teriumrepresentedbythatsequence,thepresenceofclonednas,Caulobacter,Bradyrhizobium,Phenylobacterium,Magneto-sequencetypesinlibrariesobtainedwithhighlydilutedtem-spirillum,Acidosphaera,andGluconoacetobacter,withintheal-platemightbeconsideredtobeindicativeoftheirpredomi-phasubclassoftheProteobacteria,(ii)Burkholderia,Xylophilusnanceinthatparticularsample.Wehavestudiedtheeffectofampelinus,andRubrivivaxgelatinosusinthebetasubclass,(iii)RNAtemplatedilutionconcentrations(innanograms)mostNevskiaramosawithinthegammasubclassoftheProteobacte-frequentlyobtainedwithsoilsamplesbycomparingthecom-ria,and(iv)Acidobacteriumcapsulatumandtheclonedse-positionsoftwolibrariesobtainedbyRT-PCRamplificationofquencesUA1andUA3(26),TRB82(6),andHRS-56(24)in16SrRNAfromtotalRNA(undilutedandata1:500dilution)theHolophaga-Acidobacteriumphylum.

andcloningoftheresultingproducts.Asexpected,ahigherCertainclonedsequencetypes,almostexclusivelyrepre-percentageofsequenceredundancycharacterizedtheclonedsentedbyasinglesequencetype,wereonlyfoundinthelibrarysequencesobtainedfromdilutedRNA(27%sequenceredun-preparedfromdilutedRNA,includingclonesequencetypesdancyandJϭ0.94comparedwith17%redundancyandJϭaffiliatedwiththelow-GϩC-contentgram-positivebacteria,

Downloaded from http://aem.asm.org/ on February 22, 2016 by guest1880NOGALESETAL.APPL.ENVIRON.MICROBIOL.

theFIG.analyzedtotal3.sequenceRarefaction(DNA,s;dataanalysis.undilutedfromWittenberg(A)ExpectedRNA,F;1:500-dilutedPCB-pollutednumberofRNA,soil.phylogeneticE(B)).

Expectedgroupsnumber(clusters)ofcloned(F)andsequenceclonedtypessequenceforeachtypesone(E)ofaftertheclonerarefactionlibrariesofplastids,andtheCytophaga-Flavobacterium-Bacteroides.Dilu-AnalysisofthecommunitycompositionbyFISH.InordertotionofthetemplateRNAalsohadaneffectontheabundanceconfirmthehighabundanceofbacteriarelatedtothebetaofcertainsequencetypesintheresultinglibraries.Forexam-subclassoftheProteobacteria,andBurkholderiaspp.inpartic-ple,sequencetypesrelatedtothe16SrDNAsequenceofular,inthebacterialcommunityoftheWittenbergPCB-pol-Nevskiaramosawererepresentedby5clonesinthelibrarylutedsoil,fluorescenceinsituhybridization(FISH)analysisfromundilutedRNAandby18clonesinthelibraryfromwithspecificoligonucleotideprobeswascarriedout.ThesamedilutedRNA.soilsampleemployedfortheconstructionoftheclonelibraries

Downloaded from http://aem.asm.org/ on February 22, 2016 by guestVOL.67,200116SrDNAANDrRNAINTHESTUDYOFBACTERIALDIVERSITY1881

TABLE3.Numberobservedofphylogeneticineithergroups,thelibraryclones,andclonedsequencetypesfromandgeneratedPCB-pollutedsoilforeachofthebacterialdivisions

inbothfromtypesundilutedoflibrariesRNA,simultaneously

theonegeneratedfromdilutedRNA,

aBacterialdivision

No.ofphylogeneticgroupsobservedin16SrRNAlibrariesobtainedwithundilutedanddilutedRNATotal

BothrRNAlibraries

UndilutedRNAonly

1:500-dilutedRNAonly

Proteobacteria

AlphaBetasubdivision4018(97/78)1310(67/50)178(19/18)100

(11/10)Holophaga-AcidobacteriumGammasubdivisionsubdivisionActinobacteria199(74/57)(33/22)3(59/44)3(15/13)3Planctomycetales

6(48/42)8(25/15)8(4/4)Candidate4(9/8)1(37/31)3(3/3)2(8/8)Plastids

divisionOP104(7/6)2(2/2)3(3/3)1(4/3)Low1(6/6)0(5/4)1(3/3)1(1/1)Cytophagales

GϩCgrampositives2(1/1)03(1/1)1(2/2)Notaffiliated(WPS-1)1(2/2)00(4/4)4(1/1)(8/7)0

01(5/4)02(1/1)01(2/2)3(1/1)(3/3)Total

108(285/230)

38(200/150)

38(48/45)

32(37/35)

athePhylogeneticnumberofclones/clonedgroup:aclonesequencegroupwithtypes.

sequencesimilarityhigherthan97%(98%forBurkholderiaandPseudomonas-typeclones).ValuesinparenthesesindicatewasusedfortheFISHexperiments.Highbackgroundfluores-reflectthemetabolicallyactivebacteria.DespitetheinherentcencewasobservedwithWittenbergsoilsamplesduetonon-methodologicaldifferencesinthegenerationofthePCRandspecificbindingofthefluorescentlylabeledprobes.Theprob-lemwaspartiallysolvedbyintroducingaprehybridizationRT-PCRamplificationproductsusedforcloning,agoodcor-treatmentwithblockingreagent(seeMaterialsandMethodsrespondencewasobserved,withbothtypesoflibrariesexhib-fordetails)priortotheadditionofthefluorescentlylabeleditingsimilarbacterialcommunitycompositions,intermsoftheprobe,whichresultedinlowerbackgroundlevels,thoughthismajorconstituents.AconsiderablenumberofidenticalclonedmadethecountingofDAPI-stainedcellsmoredifficult.Totalsequenceswereobservedinalllibraries.Phylogeneticgroupscellcounts,determinedbyDAPIstainingofthesoilsample,representedinbothtypesoflibrariesalsocontainedthema-were1.3ϫ109cellsgofsoilϪ1,valueswhichwereinaccor-jorityoftheclonedsequencetypesobserved.Theresultscon-dancewithwhathasbeenreportedpreviouslyforWittenbergfirmedtheabundanceofsequencetypesrelatedtothebetasoil(35).About66%oftheDAPI-stainedcellshybridizedwithsubclassoftheProteobacteria,andthepredominanceofse-theEUB338probeforBacteriaandmostexhibitedstrongquencetypesrelatedtoBurkholderia,Variovoraxparadoxus,fluorescentsignals(Fig.4).TheabundanceofmembersoftheXylophilusampelinus,Nevskiaramosa,Sphingomonassp.,alphasubclassoftheProteobacteriawascomparabletothatofmembersoftheRhodopilaglobiformisphylogeneticbranch,thebetasubclass,with4.2and5.3%ofthetotalDAPI-stainedandAcidobacteriumcapsulatum.Theseresultssupportthepo-cellshybridizingwithprobesALF1bandBET42a,respectively.tentialfunctionalimportanceofthesebacterialgroupsinPCB-Some3.4%oftheDAPI-stainedcellshybridizedwiththepollutedWittenbergsoil.TherewerealsosomedifferencesinprobeSUBU1237forBurkholderiaandSuterellaspp.(31),thecompositionoftherDNAandrRNAlibraries.Forexam-whichrepresentedalmost64%ofthebacteriabelongingtotheple,somephylogeneticgroupswerefoundonlyinoneorthebetasubclassoftheProteobacteriadetected(Fig.4).TheseotheroftherDNAorrRNAclonelibraries(althoughtheyproportionsareconsistentwiththoseobtainedfromthecloneweremostlyrepresentedbyoneortwoclonedsequencetypes),libraries,whichindicatedthatbacteriaaffiliatedtothegenusandclonedsequencetypesaffiliatedwiththeActinobacteria,BurkholderiaareabundantandmostprobablymetabolicallyCFB,andlow-GϩC-contentgrampositiveswereobservedonlyactiveinthissoil.ThePLA886probehybridizedwithsphericalintherRNAlibraries.

cells,whosemorphologyisthatofIsosphaerapallida(9),theInastudycarriedoutwithfreshwatersedimentsamples,closestcultivatedrelativeoftheplanctomyceteclonedse-Miskinetal.(20)wereunabletocomparetheresultsofthequencetypesfoundinWittenbergsoillibraries.

rDNAandrRNAlibrariesbecauseofthelownumberofiden-ticalsequencesobservedandthelowdegreeofcoverageoftheDISCUSSION

diversitypresentinthesedimentthatwasreflectedintheclonelibraries.Although,asshownbytherarefactionplots,thedi-Aknowledgeofthediversityofmicrobialcommunitiesin-versityinWittenbergsoilwasconsiderable,thecoveragevalueshabitingpollutedenvironmentsisusefulsinceitprovidescluesforWittenbergPCB-pollutedsoillibrarieswerehigh(33.6%aboutthetypeofbacteriaabletoadapttoandtoexploitsuchforrDNAand29%forrRNA,calculatedasdescribedprevi-habitats.Inthisstudy,thebacterialcommunityinasoilhighlyously[20])incontrasttovaluesof4and6%inthefreshwaterpollutedwithPCBshasbeenanalyzedbycloningandsequenc-sediment(20).Thismightbeduetothehighabundanceofing16SrDNAamplifiedfromtotalDNAextractedfromthecertainsequencetypesinWittenbergclonelibraries(suchassoil,andtheresultsobtainedhavebeencomparedwiththoseBurkholderia)andtothehighernumberofclonesanalyzedinoftwo16SrRNAclonelibraries,whichareassumedtobetterourstudy.

Downloaded from http://aem.asm.org/ on February 22, 2016 by guest1882NOGALESETAL.APPL.ENVIRON.MICROBIOL.

microscopicFIG.4.FISHofaPCB-pollutedsoilsamplefromWittenberg.(A)HybridizationwithprobeBurkholderiafieldandforSuterellaDAPIspp.staining.(C)and(CofandstainingD)IdenticalwithDAPImicroscopic(D).Bar,fields10␮showingm(appliesresultstoallofpanels).

hybridizationEUB338,specificwithprobeforSUBU1237Bacteria.(B)specificIdenticalforItisimportanttopointoutthattheresultspresentedhereonlyonceortwiceinthelibraries.Thisaspectemphasizesoncearemerelyindicativeandnotdefinitive.Determinationofthemorethefrequentlydiscussedissueofhowrepresentativearesignificanceoftheobservedsimilaritiesanddifferencesbe-clonelibrariesofthehighbacterialdiversityinsoilsandhowtweentherDNAandtherRNAlibrariesfromthisPCB-pol-manyclonesshouldbescreenedinordertoobtainarepresen-lutedsoilwillrequiremore-comprehensivestudiesinvolvingtativepictureofthecompositionofthebacterialsoilcommu-statisticalanalysis.SomeofthedifferencesobservedinrDNAnity.Second,therewasaslightdifferenceinthespecificityofandrRNAlibrariesmightbeexplainedwithregardtobiologythereverseprimersusedforthePCRandtheRT-PCR(prim-and/ormethodology,however.Thepresenceofsinglese-er1492Rhasanarrowerspecificitythanprimer518R[14]).quencetypesexclusivelyintherDNAlibrarycould,theoreti-Therationalebehindtheuseofprimer518RfortheRT-PCRscally,beindicativeofquiescentbacteriapresentinthesample.insteadofprimer1492RwastominimizebiascausedbyearlyThecontrarysituation,namely,thepresenceofrareclonedterminationoftheRTatmodifiedbasesinsome16SrRNAsequencetypesexclusivelyinthe16SrRNAlibrary,isunex-molecules(apotentialbiasforRT-PCRamplificationfrompectedsincethecells(activeornot)containbothRNAandrRNA),aswasshownbyWelleretal.(36,37).Finally,athirdDNA.Severalmethodologicalfactorsmighthavecontributedfactormightbedifferentstartingconcentrationsofthediffer-tothesedifferencesbetweentherDNAandrRNAlibraries.enttemplatesintheamplificationreactions(sincethiswillFirst,cloneselectionfromacomplexcollectionisarandomdependontheabundancesintheenvironmentofeachoftheevent,whichmayresultintheselectionofararecloneanddifferentbacterialpopulations,thenumberofrRNAgenes,distortcomparisonsofdifferentclonelibraries.Therefore,andtheribosomalcontentpercell),whichwouldresultinbiascomparisonsshouldnotbebasedonrareclonesthatappearintheproportionofdifferentPCRamplicons(33).

Downloaded from http://aem.asm.org/ on February 22, 2016 by guestVOL.67,200116SrDNAANDrRNAINTHESTUDYOFBACTERIALDIVERSITY1883

Despitetheseuncertainitiesincomparingthelibraries,thecombineduseofrDNAandrRNAtoanalyzethebacterialcommunityinthisPCB-pollutedsoilhasresultedinanex-pandedviewofthebacterialdiversityinthissoil.TheresultsfromtherRNAlibrariesallowedustoidentifybacteriawhichwerepresumablymetabolicallyactiveandthereforeresponsi-bleforthefunctionalityofthecommunityinthispollutedsoil.Ontheotherhand,resultsfromtherDNAlibraryhaveallowedustoidentifyothermembersofthecommunity,aswellasenablingmoreprecisephylogeneticassignmentoftheclonedsequences,whichinthecaseofrRNAclonesislimitedbytheshortlengthoftheamplifiedproduct(17).

DataobtainedfromthePCB-pollutedWittenbergsoilconfirmedthepresenceofsequencetypesaffiliatedwiththeproposedcandidatedivisionOP10(11),whichappeartoberelatedtosequencetypesretrievedfromatrichlorobenzene-transformingconsortium(34).SincethesesequencetypeswereobservedinbothrRNAandrDNAlibraries,thereisstrongevidenceforthemetabolicactivityofthebacteriarepresentedbythesesequencesinthePCB-pollutedsoil.However,becausenoculturedrepresentativesofcandidatedivisionOP10havebeendescribed,themetaboliccapabilitiesofbacteriawithinthisdivisionremainunknown.Ourresultsalsoshowthepres-enceoftwoputativenewbacteriallineagesinWittenbergsoil,oneofwhich,WPS-1,appearedtobephylogeneticallyrelatedtothePlanctomycetalesandwasrepresentedbyseveralclonedsequencetypesinbothrRNAandrDNAlibraries.Thephylo-geneticpositionofthesecondnovelbacteriallineage,WPS-2,remainsunclear(theanalysishadtobebasedinauniqueclonedsequencesincenootherrepresentativesofthisphylo-geneticgroupwerefoundintheclonelibraries).

ThemainfeatureofthebacterialcommunityinthishighlyPCB-pollutedsoil,comparedwithothersoilcommunities,wastheabundanceofalow-diversitysetofsequencetypesaffiliatedtothebetasubclassoftheProteobacteria,mostlyrelatedtothegenusBurkholderia.FISHanalysisindicatedabundancesofapproximately4.3ϫ107cellshybridizingwiththeprobeSUBU1237pergofsoil,andastrongfluorescentsignalwasobservedforthecellshybridizingwiththisprobe(asshowninFig.4).FISHresultsconfirmedtheabundanceandthuspre-sumablythehighactivityofbacteriaofthegenusBurkholderiainthePCB-pollutedsoil.AlsoconsistentwiththisconclusionisthehighnumberofBurkholderiaisolatesobtainedfromthisWittenbergsitesamples(W.R.Abrahametal.,unpublisheddata).Althoughrepresentativesofthisgenusarefrequentlyfoundintherhizosphere,theyarenotusuallyabundantinbulksoil(8,13).TheonlypublicationreportingabundantBurkhold-eria-related(andJanthinobacterium-related)sequencesinsoilisoneofaclonelibraryobtainedfromanacidicthermalsoilinNewZealand(15).Inthatcase,theauthorsspeculatedonthepossibilitythattheseclonedsequencesmightrepresenteitherinactiveornonviablecells,sincethesebacteriaareconsideredtobemesophilicandcharacteristicofneutralpHenviron-ments.Thedetectionhereofabundant,presumablymetabol-icallyactive,Burkholderia-typecellsinalow-pHPCB-pollutedsoilatteststotheirabilitytoflourishinacidicsoils.AhighabundanceofBurkholderiahasalsobeenreportedinabacte-rialcommunitydegradingaromatichydrocarbonsinatrickle-bedbioreactor(31).

Finally,comparisonofthetworRNAlibrariesobtained

fromundilutedtemplateand1:500-dilutedtemplaterevealeddiscrepanciespreviouslyobserved(4)ofclonedsequencetypesappearingonlyinthelibraryobtainedfromdilutedRNA.ThesedifferencesmaybeattributedtoPCRkineticsbias,whichresultsintheearlyinhibitionofamplificationofabun-danttemplates,whileless-abundanttemplatescontinuetobeamplified(33).Theeffectsoftemplatedilutionseemedtobecomplex,affectingboththeoccurrenceandtheabundanceofsequencetypes,andbiasedaccordingtosequencetypes(i.e.,sequencetypesaffiliatedwiththegammasubclassofthePro-teobacteriaandwiththeHolophaga-Acidobacteriumphylumwerecharacteristicallymorenumerousinthelibraryfromdi-lutedRNA).However,ascomparisonoftherDNAandrRNAlibrariesrevealed,bothrRNAlibrariesreflectedthemajorphylogeneticgroupsandsequencetypesrepresentingthebac-terialcommunityinthePCB-pollutedsoil.Therefore,dilutionofthetemplatepriortoamplificationbyPCR,whichisfre-quentlynecessaryafternucleicacidextractionfromsoilenvi-ronments,doesnotseemtocompromiseassessmentofthebacterialdiversityinthesample(atleastfornotverylowtemplateconcentrations).Ontheotherhand,theabundanceinbothrRNAlibrariesofrelated16SrRNAsequencegroupsisconsistentwiththepredominanceofcertainbacterialpop-ulationsinthispollutedsoil,bacteriarelatedtoSphingomonas,Burkholderia,Nevskia,andAcidobacteriumspp.,amongothers.

ACKNOWLEDGMENTS

EducationThisworkwork,andwasResearchsupported(projectbyagrantno.0319433C).fromtheGermanDuringMinistryforSpanishB.N.supportMinistrywastheforrecipientEducationofandapostdoctoralpartoftheCulture.fellowshipfromthesequencingWethankoftheAnnetteFondsderKru¨gerChemischenandCarstenIndustrie.K.N.T.acknowledgestheStro¨fruitfulexpertisediscussionswork.B.N.andacknowledgesFrank-OliverA.GloM.mplfortheirexcellent¨Osbornformanylate-hourHollandAnalyticRarefactionatinthetheUniversityuseoftheARBpackage.cknerWeforalsokindlythanksharingStevehisM.1.2.

ofGeorgiafortherarefactionprogramREFERENCES

1.Amann,R.I.,B.J.Binder,R.J.Olson,S.W.Chisholm,R.Devereux,andD.A.Stahl.1990.Combinationof16SrRNA-targetedoligonucleotideprobeswithflowcytometryforanalyzingmixedmicrobialpopulations.Appl.Environ.Microbiol.56:1919–1925.

2.Baker,W.,A.vandenBroek,E.Camon,P.Hingamp,P.Sterk,G.Stoesser,andM.A.Tuli.2000.TheEMBLnucleotidesequencedatabase.NucleicAcidsRes.28:19–23.

3.Begon,M.,J.L.Harper,andC.R.Townsend.1986.Thenatureofthecommunity,p.591–628.InEcology:individuals,populationandcommunity.BlackwellScientificPublications,Oxford,England.

4.Chandler,D.P.,J.K.Fredrickson,andF.J.Brockman.1997.EffectofthePCRtemplateconcentrationonthecompositionanddistributionoftotalcommunity16SrDNAclonelibraries.Mol.Ecol.6:475–482.

5.Dojka,M.A.,P.Hugenholtz,S.K.Haak,andN.R.Pace.1998.Microbialdiversityinahydrocarbon-andchlorinated-solvent-contaminatedaquiferundergoingintrinsicbioremediation.Appl.Environ.Microbiol.64:3869–3877.6.Edwards,K.J.,B.M.Goebel,T.M.Rodgers,M.O.Schrenk,T.M.Gihring,M.M.Cardona,B.Hu,M.M.McGuire,R.J.Hamers,N.R.Pace,andJ.F.Banfield.Geomicrobiologyofpyrite(FeS2)dissolution:casestudyatIronMountain,California.1999.Geomicrobiol.J.16:155–179.

7.Felske,A.,H.Rheims,A.Wolterink,E.Stackebrandt,andA.D.L.Akker-mans.1997.RibosomeanalysisrevealsprominentactivityofanunculturedmemberoftheclassActinobacteriaingrasslandsoils.Microbiology143:2983–2989.

8.Felske,A.,A.Wolterink,R.vanLis,andA.D.L.Akkermans.1998.Phylog-enyofthemainbacterial16SrRNAsequencesinDrentseAgrasslandsoils(TheNetherlands).Appl.Environ.Microbiol.64:871–879.

9.Giovannoni,pallida,gen.S.andJ.,comb.E.Schabtach,nov.,aandgliding,R.W.buddingCastenholz.eubacterium1987.Isosphaerafromhotsprings.Arch.Microbiol.147:276–284.

Downloaded from http://aem.asm.org/ on February 22, 2016 by guest1884NOGALESETAL.10.Head,diversity,I.,J.R.Saunders,andR.W.Pickup.microorganisms.andecology:Microbiol.adecadeEcol.of35:ribosomal1–21.

RNA1998.analysisMicrobialofuncultivatedevolution,

11.Hugenholtz,P.,C.Pitulle,K.L.Hershberger,andN.R.Pace.1998.Novel

divisionlevelbacterialdiversityinaYellowstonehotspring.J.Bacteriol.180:366–376.

12.Jukes,T.H.,andC.R.Cantor.1969.Evolutionofproteinmolecules,p.

21–132.InH.M.Munro(ed.),Mammalianproteinmetabolism.AcademicPress,NewYork,N.Y.

13.Kuske,C.R.,S.M.Barns,andJ.D.Busch.1997.Diverseuncultivated

bacterialgroupsfromsoilsofthearidSouthwesternUnitedStatesthatarepresent3621.

inmanygeographicregions.Appl.Environ.Microbiol.63:3614–14.Lane,D.J.1991.16S/23SrRNAsequencing,p.115–175.InE.Stackebrandt

andM.Goodfellow(ed.),Nucleicacidtechniquesinbacterialsystematics.JohnWiley&Sons,Ltd.,Chichester,England.

15.Liesack,W.,P.H.Janssen,F.A.Rainey,N.Ward-Rainey,andE.Stack-ebrandt.1997.Microbialdiversityinsoil:theneedforacombinedapproachusingmolecularandcultivationtechniques,p.375–439.InJ.D.vanElsas,J.T.Trevors,andE.M.H.Wellington(ed.),Modernsoilmicrobiology.16.MarcelLudwig,Dekker,W.,S.H.Inc.,Bauer,NewM.York,Bauer,N.Y.

I.Held,G.Kirchof,R.Schulze,I.Huber,

S.Spring,A.Hartmann,andK.-H.Schleifer.1997.Detectionandinsituidentificationofrepresentativesofawidelydistributednewbacterialphylum.FEMSMicrobiol.Lett.153:181–190.

17.Ludwig,W.,O.Strunk,S.Klugbauer,N.Klugbauer,M.Weizenegger,J.

Neumaier,M.Bachleitner,andK.-H.Schleifer.1998.Bacterialphylogenybasedoncomparativesequenceanalysis.Electrophoresis19:554–568.

18.Maidak,B.L.,J.R.Cole,T.G.Lilburn,C.T.Parker,Jr.,P.R.Saxman,

J.M.Stredwick,G.M.Garrity,B.Li,G.J.Olsen,S.Pramanik,T.M.Schmidt,andJ.M.Tiedje.2000.TheRDP(RibosomalDatabaseProject)continues.NucleicAcidsRes.28:173–174.

19.Manz,W.,R.Amann,W.Ludwig,M.Wagner,andK.-H.Schleifer.1992.

Phylogeneticteobacteria:problemsoligodeoxynucleotideandsolutions.probesSyst.Appl.fortheMicrobiol.majorsubclasses15:593–600.ofPro-20.Miskin,I.P.,P.Farrimond,andI.M.Head.1999.Identificationofnovel

lineagesasactivemembersofmicrobialpopulationsinafreshwatersedi-mentusingarapidRNAextractionprocedureandRT-PCR.Microbiology145:1977–1987.

21.Neef,A.,R.Amann,H.Schlesner,andK.-H.Schleifer.1998.Monitoringa

widespreadbacterialgroup:insitudetectionofplanctomyceteswith16SrRNA-targetedprobes.Microbiology144:3257–3266.

22.Nogales,B.,E.R.B.Moore,W.-R.Abraham,andK.N.Timmis.1999.

Identificationofthemetabolically-activemembersofabacterialcommunityinapolychlorinatedbiphenyl-pollutedmoorlandsoil.Environ.Microbiol.1:199–212.

23.Nomura,M.,R.Gourse,andG.Baughman.1984.Regulationofthesynthe-

APPL.ENVIRON.MICROBIOL.

sisofribosomesandribosomalcomponents.Annu.Rev.Biochem.53:75–117.24.Nu¨sslein,K.,andJ.M.Tiedje.1999.Soilbacterialcommunityshiftcorre-latedwithchangefromforesttopasturevegetationinatropicalsoil.Appl.Environ.Microbiol.65:3622–3626.

25.Pearson,W.R.,andD.J.Lipman.1988.Improvedtoolsforbiologicalsequencecomparison.Proc.Natl.Acad.Sci.USA85:2444–2448.

26.Radajewski,S.,P.Ineson,N.R.Parekh,andJ.C.Murrell.2000.Stable-isotopeprobingasatoolinmicrobialecology.Nature403:646–649.27.

Rheims,H.,C.Spro¨er,F.A.Rainey,andE.Stackebrandt.1996.Molecularbiologicalevidencefortheoccurrenceofunculturedmembersoftheacti-nomycetelineofdescentindifferentenvironmentsandgeographicalloca-tions.Microbiology142:2863–2870.

28.Roller,C.,M.Wagner,R.I.Amann,W.Ludwig,andK.-H.Schleifer.1994.InsituprobingofgrampositivebacteriawithhighDNAGϩCcontentusing23SrRNA-targetedoliogonucleotides.Microbiology140:2849–2858.

29.Snaidr,J.,R.Amann,I.Huber,W.Ludwig,andK.-H.Schleifer.1997.Phylogeneticanalysisandinsituidentificationofbacteriainactivatedsludge.Appl.Environ.Microbiol.63:2884–2896.

30.Stackebrandt,E.,R.G.E.Murray,andH.G.Tru¨per.1988.Proteobacteriaclassisnov.,anameforthephylogenetictaxonthatincludethe‘purplebacteriaandtheirrelatives’.Int.J.Syst.Bacteriol.38:321–325.

31.Stoffels,M.,R.Amann,W.Ludwig,D.Hekmat,andK.-H.Schleifer.1998.Bacterialcommunitydynamicsduringstart-upofatrickle-bedbioreactordegradingaromaticcompounds.Appl.Environ.Microbiol.64:930–939.32.

Strunk,O.,O.Gross,B.Reichel,M.May,S.Hermann,N.Stuckmann,B.Nonhoff,M.Lenke,A.Ginhart,A.Vilbig,T.Ludwig,A.Bode,K.-H.Schleifer,andW.Ludwig.1998.ARB:asoftwareenvironmentforsequencedata.DepartmentofMicrobiology,TechnischeUniversita¨tMu¨nchen,Mu-nich,Germany.

33.Suzuki,M.T.,andS.J.Giovannoni.1996.Biascausedbytemplateannealingintheamplificationofmixturesof16SrRNAgenesbyPCR.Appl.Environ.Microbiol.62:625–630.

34.vonWintzingerode,F.,B.Selent,W.Hegeman,andU.B.Go¨bel.1999.Phylogeneticanalysisofananareobic,trichlorobenzene-transformingmicro-bialconsortium.Appl.Environ.Microbiol.65:283–286.35.

Weinbauer,M.G.,C.Beckmann,andM.G.Ho¨fle.1998.Utilityofgreenfluorescentnucleicaciddyesandaluminumoxidemembranefiltersforrapidepifluorescenceenumerationofsoilandsedimentbacteria.Appl.Environ.Microbiol.64:5000–5003.

36.Weller,R.,andD.M.Ward.1989.Selectiverecoveryof16SrRNAsequencesfromnaturalmicrobialcommunitiesintheformofcDNA.Appl.Environ.Microbiol.55:1818–1822.

37.

Weller,R.,J.W.Weller,andD.M.Ward.1991.16SrRNAsequencesofuncultivatedhotspringcyanobacterialmatinhabitantsretrievedasrandomlyprimedcDNA.Appl.Environ.Microbiol.57:1146–1151.

Downloaded from http://aem.asm.org/ on February 22, 2016 by guest

因篇幅问题不能全部显示,请点此查看更多更全内容