您的当前位置:首页正文

Effects of User Request Patterns on a Multimedia Delivery System, accepted for Multimedia T

2022-05-24 来源:易榕旅网
EffectsofUserRequestPatternsonaMultimediaDeliverySystem

ChristopherB.MayerK.Selc¸ukCandan

VenkateshSangamComputerScienceandEngineeringDepartment

ArizonaStateUniversity

e-mail:chris.mayer,candan,venkatesh.sangam@asu.edu

Abstract

Werecentlyintroducedanovelmethodforcreatingreplicationsystemswherethereplicatedobjects’sizesand/orper-objectservicetimesarelarge[10].Suchreplicationsystemsarewell-suitedtodeliveringmultimediaobjectsontheInternet.Assumingthatuserrequestpatternstothesystemareknown,themethodcreatesrepli-cationsystemsthatdistributereadloadfairlytoserverssothatthelikelihoodofserversoverloadingisreduced.Thus,thesystemsproducedarehighlyavailableandresponsivetouserrequests.Inthispaper,wereportonresultsthatreveal(i)howserverloadsareaffectedand(ii)theimpactoftwosystemdesignparameters(indicatorsofasystem’sloaddistributionqualities)haveonserverloadwhenuserrequestpatternsdifferfromthatforwhichasystemwasdesigned.

1Introduction

ReplicationisanacceptedmethodforimprovingavailabilityandresponsetimesofInternetcontent.Themainideabehindreplicationisthatstoringcopiesofanobject(file,database,webpage,etc.)onserversthroughoutanetworkprovidessinglepointsoffailure.Sincetheobjectisavailableatmanyservers,highdemandloadscanbemetandthefailureofanindividualserverdoesnotmaketheobjectinaccessible.

MultimediacontentcanbedeliveredovertheInternetandcanbenefitfromreplication.Inthispaper,wefocusspecificallyonsystemsfordelivering(makingavailablefordownload)multimediacontent.Whendesigningamultimediadeliverysystemthefollowingconsiderationsandconstraintsapply.

ReadLoad:Inamultimediadeliverysystem,anobjectiswrittenbyitsauthorandremainsaccessibleforsomeperiodoftimebeforeitisremoved.Sinceanobjectissupposedtobeafinishedproduct,itisrarelyupdatedonceinpublication.Therefore,theloadonasystem’sserversisduemainlytohandlingusers’readrequestsandtheloadforwritingcanbeignored.Sinceweareconcernedwithonlythereadrequestload(readload),wewillusetheterm“load”and“readload”interchangeably.

ContentSize:Multimediaobjectssuchasvideofilestendtobelarge(tensorhundredsofmegabytes)andthereforerequirespecialconsiderationwhenbeingreplicated.

Largeobjectscannotberapidlyreplicatedinresponsetofluctuatingdemand.Therefore,itissensibletopre-positionmultimediaobjects.

Whilepre-positioningisgood,over-provisioningcanbebad.Creatingtoomanycopiesofanobjecthavingrelativelylowdemandiswasteful.Replicationcostsforanobjectshouldberelativetodemandfortheobject.ServiceTimes:Evenifusersconnecttoaserveroverbroadbandconnections,deliveringamultimediaobjecttoauserrequirestheserver’sattentionforalongperiodoftime.Theselongservicetimesoccurbecausethecontentiseitherlargeorstreamed,orboth.

ServerBehavior:Acommonbehaviorofserversisthattheycansupportmultiplesimultaneousrequestswhilemaintainingacceptablequalityofservice.Onceaserver’sloadcapacityisexceeded,theserver’sservicequalityrapidlydeclines,resultinginstalledrequestsanddisappointedusers.Incombinationwiththeservicetimepropertyabove,thisbehaviorsuggeststhatthebestwaytomaintaintheavailabilityofamultimediaobjectandkeepusershappyistoensurethatserversoperatebelowtheirloadcapacities.

ThisresearchfundedbyNSFgrant998404-0010819000.

Techniquesforeasingtheloadon,orimprovetheperformanceof,multimediaservers(mainlyvideoandstreamedmediaservers)include:caching[1,6,11,14,15],protocolsforstreamanddownloadsharing[5,8,11],andcustomizedserverdesigns[4,5,7].Whilealltheseapproachesarebeneficial,theyalldependonaccesstothecontent’ssource.Thus,theyarenotapanaceaforavailabilityandresponsiveness;abundantaccesstothesourcecontent,asreplicationprovides,isrequired.

TheprofusionofspecialtechniquesforvideoandstreamedmediadeliveryareindirectsignsthatmultimediashouldbestoredanddeliveredseparatelyfromothertypesofInternetcontent.Towardsthisend,severalvideo-onlydeliveryschemeshavebeenproposed([3,12,13]forinstance).Commonweaknessesoftheseschemesarethatcontentisassumedtocomefromasinglesource(i.e.,onlyoneentityisusingthesystem)andthedeliverynetworkisatree(whichnetworksarecommonlynot).

Inapreviouswork[10],weintroducedareplicationarchitectureandanaccompanyingdesignmethodwell-suitedfordeliveryofmultimediacontent,oranyotherInternetcontentwhereservicetimesorobjectsizesarelarge.Inourapproach,serversareorganizedintowrite-setsandread-setsandrequestsarefulfilledusingaspecificreadprotocol.Oursystemstructureismoregeneralthanthatofthetree-basedvideodistributionsystemsandfreelyhandlesmultiplecontentproviders.Inoursystem,aserver’sshareofsystemloadisproportionaltotheserver’scontributiontototalsystemreadloadcapacity.Inotherwords,loadisdistributedfairlytotheservers.Fairlydistributingloadminimizestheoddsthataserverwillexceeditsloadcapacity.Sinceserversoperateundertheirloadlimit,thesystemisresponsiveandcontentishighlyavailable.

In[10],werigorouslyexaminedtheimplicationsofourserverorganizationandreadprotocolandshowedthatloadfairnessisacomplexnon-linearconditionthatcannotbesolvedeasily.Therefore,in[10]wederivedtwokeyparameters:(describinggoodrequestdistributionstrategies)and(describinggoodserverorganization)thatreflectasystem’sloadfairness.Usingand,wedevelopedandtestedadesignmethodforquicklydesigningreplicationsystemswithnearlyoptimalloadfairness.

Inthispaper,wefurthertheworkbegunin[10]withastudyof(i)serverloadsand(ii)theimportanceofandtoserverloadswhenthepatternofreadrequestsenteringasystemdiffersfromthatforwhichthesystemwasdesigned.InSection2wereviewourreplicationapproach.WethenweexplainwhydivergentrequestpatternsrequirefurtherinvestigationinSection3.Next,wedescribehowweconductedexperimentstoevaluatetheimpactofand(Section4).Section5containstheresultsofourstudyandSection6summarizes.

2AReplicationSystemSuitableforMultimediaContentDelivery

Inthissectionwedescribethefeaturesandmechanicsofourmethodforcreatingareplicationsystem.Adetailedaccountingofthematerialsummarizedherecanbefoundin[10].

2.1SystemStructure

Areplicationsystemhasasetofservers,,whichitusestoreplicateobjects.Inourapproach,weorganizetheseserversintointersectingsubsetscalledwrite-setsandread-sets.Towriteanobject,awrite-setischosenandtheobjectisreplicatedoneachserverinthewrite-set.Toreadanobject,aread-setischosenandtheobjectisdeliveredtotherequestinguserfromaserverintheselectedread-set.Itisallowableforanobjecttobewrittentomultiplewrite-sets.Weensurethateverywrittenobjectcanbeaccessedfromanyread-setbyrequiringthateachread-setandeachwrite-sethaveatleastoneserverincommon.

Althoughtherearemanywaystoconstructwrite-setsandread-setswhilemaintainingthisrequirement,welimitourselves,forsimplicityreasons,tothespecialcasewherethewrite-setsandread-setsaredeterminedbyarrangingserversinagrid.Inagridfullypopulatedwithoneserverpergridcell,rowscorrespondtowrite-setsandcolumnstoread-sets.AsFig.1aindicates,eachread-setintersectseverywrite-setwithatleastoneserver.Somereadersmaynoticethatthisgrid-basedstructureresemblesgrid-basedquorumsystems([2]and[9]forexample).Thisisintentionalsincequorumsystemsfeaturedecentralizedoperationandhavethepotentialload-balancedserveroperation.

1

DuetotheunpredictablenatureofInternetroutingandtogeneralizeforanyrequestroutingscheme,wedonotspecifyhowrequestsare

ReadProtocol

Server D split into threevirtual serversA1Write setC2B3H1B1A2C3I1C1B2A3J1D1E1F2K1D2F1E2L1D3G1G2M11.Ausergeneratesarequestforanobject(aninitial-request)whichisdirectedtooneofthesystem’sservers(aproxy).Thedistributionofaparticularuser’srequeststotheproxiesiscalledtheuserrequestpattern.1

2.Theproxyselectsaread-setusingapreset,probabilisticproxystrategy.

3.Theproxyidentifiestheserver(s)withthemostup-to-datecopy(incasetheobjecthasbeenupdated)oftheobjectinthisread-set.Ifmorethanoneserverhasthemostup-to-dateobject,oneoftheserversispickedequiprobablytoservethedata.

4.Theproxyredirectstheusertotheserverithasselected.

5.Theuserreceivestheobjectfromtheappropriateserver,thusinducingareadloadontheserver.

Figure1:Agrid-basedreplicationsystemwhererowsarewrite-setsandcolumnsareread-setsisshownin(a).Thereadprotocolforthereplicationsystemisshownin(b).

Read set(a)(b)

2.2ReadProtocol

Animportantpartofourreplicationsystemisthereadprotocolshownin1b.Notethatlocatingtheappropriateserverwithinaread-setaddstothedelayinrespondingtorequests.However,thisdelayisextremelysmallcomparedtothetimerequiredtoserveamultimediaobjectandisunlikelytodetractmuchfromtheuser’sexperience.Further,thisdelaycanbeminimizedbyusingadirectoryservice,especiallysinceobjectlocationsrarelychange.

Basedonthestructureofwrite-setsandread-setsandthereadprotocol,wenowtheissueofloadfairness.

2.3Fairness

Tominimizethelikelihoodofaserveroverloading,aservershouldexperiencealoadproportionaltoitscontributiontothesystem’stotalcapacity.Inotherwords,systemloadshouldbedistributedfairlytoservers.Thiswillensurethatnoserverispushedbeyonditscapacityunlessthewholesystemis.Thiscanbeaccomplishedby

identifyingagoodassignmentofserverstowrite-/read-sets(thusdefiningthesystem’sstructure)andselectingeffectiveproxystrategiesfordirectinginitial-requeststoread-sets.

Asafirststeptowardsfairness,wefurtherrefinethesystem’sstructurebysplittingeachserverintooneor

,isrepresentedbyitsreadloadmorevirtualservers.Eachserverinthesystem,

.Denotingabasecapacityas,wespliteachserverintovirtualservers,capacity,

.Populatingthecellsofagridwithvirtualservers(Fig.1),insteadofregularservers,

resultsinnearlyequalamountsofcapacityateachgridcell.Ifthesystemreadloadcanbedistributedequallytoeachgridcell,thenwehaveachievedthegoaloffairness.Unfortunately,theloadonthevirtualserverineachgridcell,andinturnontheservers,dependson(i)thearrangementofvirtualserversinthegrid(thegridmapping),(ii)thepolicyfordecidingtowhichwrite-setsanitemshouldbewritten(write-policy),(iii)initial-requestloadsattheproxiesdeterminedbytheuserstrategies,and(iv)theproxystrategies.Hence,loadfairnessrequiresmorethanplacingvirtualserversinthegrid.

Givenagridofwrite-sets(rows)andread-sets(columns)populatedwithvirtualservers,atotalsystemread

,is:load,,thereadloadofserver,

(1)

denotestheprobabilitythatwrite-setcontainsaserverwiththerequestedcontent;Intheaboveequation,

denotestheprobabilitythatread-setischosenbyaproxygiventhatwrite-setcontainsthecontent;

directedtoservers.Instead,werelyontheobservationthatrequestroutingissomewhatpredictableandcanbeexpressedprobabilistically.

anddenotestheprobabilitythatserverisselectedforservingtherequestgiventhatwrite-setcontainstherequestedcontentandread-setischosen.

Toobtainloadfairness,weneedtoensurethatthegridmappingandproxystrategiesdistributethetotalsystemreadloadontoindividualserversinproportiontoeachserver’scontributiontototalsystemcapacity:

(2)

Notethatthisfairnessconditionisacomplexnon-linearequation,andsolvingitdirectlyisexpensive.Also,itisnotstraightforwardtofindamappinganddetermineproxystrategiesusing(1)and(2)directly.Therefore,weuse(1)and(2)toidentifyparameters,and,thatcanbeusedtoconstructhighlyfairreplicationsystems.

2.4Deriving

and

Tobeginthederivationofand,weassumethatthewrite-policydistributesobjectstowrite-setssuchthattherequestloadforeachwrite-setisequal.Thatis,ofthesystemloadisdirectedtothevirtualserversineachwrite-set.Withthisassumption(1)becomes

(3)

Usingthisequation,wecanrewritethefairnesscondition,(2),as

(4)

andaproxychoosesread-set,thenoneoftheserversNotethat,ifarequestcanbeservedfromwrite-set

andwillbeselectedtoservethecontent.Ifthereismorethanonehavingavirtualserverintheintersectionof

serverintheintersection,theneachserverhasanequalchanceofbeingchosen.Consequently,ifwelet

bethesetofserversthathavevirtualserversinwrite-set,;i.e.,;bethesetofserversthathavevirtualserversinread-set,;i.e.,;andbethesetofvirtualserversinread-setthathaveacorrespondingserverinwrite-set;i.e.,

,

then,

.Hence,(4)becomes

(5)

and.ThefirsttermisafunctionoftheNoticethat(5)hastwotermsthatcanbemanipulated:

proxystrategiesandthelatterdependsonthegridmapping.Byisolatingthesetwoterms,wegainameasureofinsightintohowtoconstructanoptimallyfairsystem.

2.4.1IsolatingProxyStrategies:Parameter

Inordertoextractthetermrelatedtoproxystrategies,weisolatethetermin(5)relatedtoread-setselectionbyproxiestoget

(6)

shouldbeinverselyproportionaltothenumberofwhichsaysthatthefractionofrequestsdirectedtoread-set

read-sets,.Inotherwords,initialrequestsshouldbedirectedinequalamountstoeachcolumn.Thisimpliesthat

Heuristicgridstructure1Heuristicproxystrategies2Close to optimally fairreplicationFigure2:Replicationusing

and

thecombinedeffectofalltheproxystrategiesshouldensureanequaldistributionofinitialrequesttoeachcolumn.

as,orread-set-value.Theideal-Wedenotethefractionofinitialreadrequestsdirectedtoread-set

isgreater(less)thantheideal-value,then,andthevirtualserversin,willvalueforaread-setis.If

receivemore(less)thantheirfairshareofsystemload.Likewise,sinceaserver’sloadisthesumoftheloadonitsvirtualservers,thehigherthesoftheread-setsinwhichaserverhasavirtualserver(averageserver),themoreloadtheserverwillreceive.

2.4.2IsolatingtheGridMapping:Parameter

Assumingthatallread-setshavetheideal-valueof,wecanreduce(5)to

(7)

Thisequationcanbesatisfiedbyensuringthat

(8)

holds.Theleft-handsideof(7)capturesthedegreeofcontentoverlapofserverread-setsandwrite-setswith.Isolatingthisoverlapweget

withotherserversthatshareboth

(9)

,orserver-value,indicates’svulnerabilitytobeingselectedforservingareadrequest.Theidealvalue

is,thenumberofvirtualservershas.Ifistoohigh()ortoolow(),thenwillbefor

selectedtoooftenornotoftenenoughandwillnotreceiveitsfairshareofload.

Asanexampleofhowtocalculatean-value,considerserverandthesecondwrite-setandsecondread-set

and.ThreevirtualhighlightedinFig.1.Serverhasthreevirtualservers,thus

(i.e.,ifread-set2isserversinthesecondread-sethaveaserverinthesecondwrite-set,so

chosenbyaproxyandtherequestedcontentisonaserverinwrite-set2,thenthreeserverscanbeselectedfor

andonlyhaveincommon..Thus,(i.e.,givendownload).Since

thatarequestisforcontentcontainedinwrite-set2andread-set2waschosen,serverhasa1-in-3chanceofservingtherequest).Repeatingthesecalculationsforserverforallrowsandcolumnsandsummingtheresults

.showsthathasaperfect-value:

2.5ReplicationBasedon

and

Toproducethefairestsystempossible,-and-valuesmustbeasclosetotheiridealvaluesaspossible.While

andindicatehowfairasystemis,theyarederivativesofthecomplex,non-linearfairnessconditionand,therefore,cannotbeuseddirectlytoconstructareplicationsystemeither.However,theydoprovideinsightastohowafairreplicationsystemshouldlook.In[10],weexploitedandtodevelopatwo-stepheuristicapproachforcreatingareplicationsystem(Fig.2).Inthefirststep,wesetthesystem’sstructurebymappingvirtualserverstogridcellssothateachserverhasgood-values.Thisstructureisthenusedtoformulateproxystrategiesthatresultinthebestpossible-valuesforeachgridcolumn.

Givenasetofserversandagrid,

1.Puttheserversintogroupssuchthatserversineachgrouphavethesamenumberofvir-tualservers.

2.Trytofillthegridwiththegivenclusters3.Ifsuchafillingisnotpossible,breaksomeofthemintosmallerclusterstofitthemintothegrid.Theresultisaserver-to-gridmapping.

Givenaserverset,agrid,andserver-to-gridmapping,anduserstrategies,

1.Identifythelinearconstraintsfor

(a)-optimality,

(b)write-policydependence(c)fairness,and

(d)columnselectionrestrictionsontheproxies.2.Solvewhileminimizingerrortermsintheconstraints.3.Extractproxystrategiesfromthesolution.

Theproxystrategiesresultinoptimal-values.

(a)(b)

Figure3:Pseudocodefor(a)thecluster-basedmappingalgorithmand(b)producing-optimizingproxystrategies.PseudocodeformappingagridisshowninFig.3a.Thealgorithmclustersvirtualserversandthenmapstheclusterstothegrid.Clusteringlimitstheinteractionbetweenserversthatgivesimperfect-values.Ifallvirtualserverscanbemapped,whilemaintainingclusterintegrity,thenallserverswillhaveperfect-values.Notethatclustersmustsometimesbesplitintosmallerpiecesinordertofacilitateplacement.Thiscancreateimperfectionsin-values.However,asweshowedin[10],thenegativeeffectsofsplittingareminimal.

Oncethesystem’sstructureisset,weusethestructuretoformulatealinearprogram(LP)andsolvetheLPtofindproxystrategiesforthesystem.Inadditiontothesystem’sstructure,theLPconsidersotherfairness-relatedfactorssuchasthesystem’swrite-policyanduserrequestpatterns.Figure3bshowspseudocodefortheLP’sconstructionandextractionofproxystrategies.ThespecificsoftheLPcanbefoundin[10].TheoutputoftheLParetheproxystrategiesthatproducethebestpossible(closesttoideal)-valuesforeachread-set.Foreachproxy,itsparticularproxystrategygivesthefrequencyatwhichitshouldselectaread-setwhenhandlinginitial-requestsfromusers.

In[10]westudiedtheimpactofandonserverloadfairness.Weshowedthatgrid-basedreplicationsystemsconstructedusingourtwo-stepapproacharehighlyfairwhenoperatingconditionsareexactlythatforwhichthesystemwasdesigned.Inthispaper,weinvestigatewhathappenswhenuserrequestpatternsnolongermatchthepatternsforwhichthesystemwasdesigned.Specifically,weexamine(i)theimportanceofandtoloadfairnessand(ii)howserverloadsareaffecteduserrequestpatternsdeviatefromexpectations.

3DivergentInitial-RequestLoads

Sinceproxiesredirectclientinitial-requeststoservers,theperformanceofthereplicationsystemdependsontheexpecteddistributionoftheusers’initial-requeststoproxies.Asexplainedearlieraspartofthereadprotocol,theprobabilitythatagivenuser’sinitial-requestsarriveatacertainproxy,isgivenasadistributionfunctioncalledtheuserrequestpattern.Userrequestpatterns(oratleasttheircumulativeeffectontheproxies)areaninputtothelinearprogram(LP)thatissolvedtogettheproxystrategiesforselectingread-sets.Thus,areplicationsystemistailoredfortheuserrequestpatternsinputintotheLP.Sinceuserrequestpatternsarewillchangeovertime,usingafixeduserrequestpatterntoconstructareplicationsystemisapotentialweaknessofourapproach.Ifrequestpatternschangetoomuch,serverloadfairnesscouldbelostandthesystemwouldperformpoorly.

Intheremainderofthispaper,wepresenttwokindsofresults,obtainedexperimentally,aboutourproposedreplicationsystem.

Weshowtheimportanceofandtoloaddistributionwhenuserrequestpatternsdeviatefromthoseforwhichthesystemwasdesigned.

Weshowthatsystemsbuiltusingourtwo-stepconstructionapproach(seeprevioussection)areresilienttochangesinuserrequestloads.

4ExperimentalSetup

Inordertotesttheperformanceofreplicationsystemsthatuseourwrite-/read-setstructureandreadprotocol,wehaveconstructedatestbedsystemthatusesrealwebservers.Theuseofrealserversaddsadegreeofrealismthat

ordinarysimulationdoesnotprovide.Becauseofspaceconstraintswecannotgointothedetailsofthetestbedsysteminthispaper.However,wedodescribetheconditionsforconductingexperiments.

Toprepareforanexperiment,serversarearrangedintotheirwrite-setsandread-setsusingthegridstructureandgiventheirproxystrategies(calculatedinadvancebasedonexpectedloads).Adifferentobjectiswrittentoeachwrite-set(arowofthegrid).Alldataitemshavethesamesizeandhencethesamedownloadtimes.Havingeachobjectbethesamesizeandhavingeachwrite-setcontainasingleobjectcapturestheeffectsofaperfectlytunedwrite-policy.Thedownloadtimeofanobjectissimulatedbyhavingserversexecuteasleepoperationof5seconds.Therunningtimeforanexperimentis40timesthesleeptime,or200seconds.Thisistheminimumtimeneededforanexperimenttoshowlong-termloadingbehavior.Oncethesetupstageiscomplete,theexperimentcanbegin.

Performinganexperimentconsistsofgeneratinguserrequestsforobjectsandthehandlingofthoserequestsbythesystem.Userrequestsareregularly-spacedoverasecondtomeetaspecifiedrequestrate.Forexample,iftherequestrateis10requests/sec,thenanewrequestisgeneratedeverytenthofasecond.Uniformrequestgeneration,whilesimple,isadequatesinceobjectsizes,andhencedownloadtimes,arerelativelylargecomparedtorequestinter-arrivaltimes.Foreachrequest,anobjectisselecteduniformlyatrandom.Theproxyserverthatwillreceiveanewlygeneratedinitial-requestisselectedatrandomusingaprobabilitydistributionthatmodelstheeffectsoftheuserrequestpatterns.

Experimentswereperformedusing20setsofservers.Aserversetistheserversavailableforusebyareplicationsystem.Serversetsweregeneratedsothatthenumberofvirtualserversineachsetequalled64andwouldfillan8x8grid.Thenumberofvirtualserversperserverwasrandomlygeneratedaccordingtothefollowingdistribution:

oftheservershave1,have2,have3,have4,andhave5virtualservers.

Inordertoobservetheeffectofasrequestpatternschange,wemapaserversettoagridusingtwodifferentmappingstrategies:

Random.Thisstrategyrandomlymapsvirtualserverstoagrid.Thisresultsinserver-valuesthatdiffergreatly,bothupanddown,fromtheirideals.

Cluster.GridsaremappedusinganalgorithmbasedontheclusteringpseudocodeofFig.3a.Clusteringresultsinidealornearlyideal-valuesforallserversinagrid.

Toobservetheeffectof,weusedtwomethodsforformulatingproxy-strategiesthatresultinfavorableandunfavorable-values.

Not-optimized.Eachproxyredirectsinitial-requestsequiprobablytotheread-sets(gridcolumns)inwhichithasvirtualservers.Assuch,read-setscanvarygreatly,beinghighlyinfluencedbythesystem’sstructure.-optimized.Herealinearprogramisformulatedandsolvedtoobtainproxy-strategiesthatproduceoptimals.Aswiththeabovenon--optimizedstrategy,proxiescanonlyredirectinitial-requeststoread-setsinwhichtheproxyhasvirtualservers.Evenwiththisrestriction,resultingsareclosetoidealregardlessofmappingstrategy.

Mixingmappingandproxystrategiesresultsinfourreplicationsystems(mapping/proxysystemsorMP-systems)foreachserverset.Themixofgoodandbad-and-valuesinthefoursystemsallowsustoobservetheinfluenceofandonserverloadasinitial-requestloadsattheproxiesvaryinresponsetochanginguserrequestpatterns.WerefertoanMP-systembythemappingmethodusedandthepresenceof-optimizationasshowninFig.4andlistedbelow.

RANDOM:not-or-optimized

CLUSTER:-optimized,butnot-optimized

RANDOM-:not-optimized,but-optimizedCLUSTER-:-and-optimized.

Forthetests,abaselineloadof6.4requestspersecondisthearrivalrateofinitial-requeststoeachproxy(256requestsperproxydividedbythe40secondexperimentlength).Thus,the-optimizedsystemswereconstructedforuserrequestpatternswhosecumulativeeffectisthateachproxyisequallyloadedwithinitial-requests.

Inordertosystematicallyexploretheeffectsofvaryinguserrequestpatterns,werandomlyselectedsubsetsofproxiesineachserversetandsubjectedthemtoincreasedinitial-requestloads.2Werefertothecombination

Notethatweonlyincreaseinitial-requestloadsatproxies.SinceInternetdemandonlygrowsovertimeandunevenly,thisisareasonablethingtodo.

2

cluster mappingfor optimized NClustered Gridsno σ optimizationCLUSTERCLUSTER-σσ optimizationServer Setsno σ optimizationRandom Gridsrandom mappingfor non-optimized Nσ optimizationRANDOMRANDOM-σFigure4:Namingconceptforthefourtypesofreplicationsystemscreatedfromaserverset.

ofproxiesselectedtoreceiveextraloadandtheextraloadtheyaregivenasaninitial-request-combination(IR-combo).Foragivenserverset,therearesevenIR-comboswhichformaninitial-request-set(IR-set).AnIR-setisbuiltasfollows.ThefirstIR-combointhesetiseachproxyreceivingthebaselineloadInthiscombination,0%oftheproxiesreceive0%extraload.Wecallthisthe0%-0%IR-comboorthebaselinesystem.Next,three

,,andofthenumberofproxiesintheserversetareformed,withtheproxysubsetsofsizes

largersubsetsreusingserversfromthesmallerones.Theproxiesinthesesubsetswillreceive25%andthen50%extrainitial-requestloadabovethebaselineload.CombiningtheproxysubsetsizesandextrarequestpercentagesproducestheremainingsixIR-combosinanIR-set:10%-25%,10%-50%,20%-25%,20%-50%,40%-25%,and40%-50%.

Example4.1Wenowillustratehowtocreateaninitial-request-set.Consideraserversetwiththirtyserversnum-bered1through30andabaselineinitial-requestloadof10requestspersecond(req/sec).

1.The0%-0%combinationisallproxiesreceiving10req/sec.

2.Forthe10%proxysubsetwepickthreeproxies,say5,9,and21.Forthe10%-25%combination,weincreasethenumberofrequeststothesethreeproxiesby25%;theywilleachreceive12.5req/sec.Proxiesnotinthesubsetstillgetonly10req/sec.Tocreatethe10%-50%combination,initial-requestsareincreasedby50%to15req/secatthethreeproxies.

3.Tobuildthe20%subset,2,5,9,11,21,29,the10%subsetisaugmentedbythreemoreservers:2,11,and29.Combinations20%-25%and20%-50%arecreatedbyincreasingtheinitialloadsattheseproxiesby25%and50%,respectively.

4.The40%subsetisthe20%subsetplusservers1,15,17,23,24,and28.Increasingtheinitial-requestsby25%and50%attheselectedproxiesgivescombinations40%-25%and40%-50%.

ByrunningaserversetthrougheachofitsfourMP-systemsandeachofitssevenIP-combos(eachserversetisrun28times),wecandetecttrendsinserverreadloadsandcomparetheinfluenceofandonserverloadasuserrequestpatternsvary.

5ResultsandObservations

Inthissection,weanswersixquestionsabouttheeffectsofandwheninitial-requestloadstoproxiesdivergefromtheirexpectedvalues.Todothis,weobservetheextraloadexperiencedbyaserverwhenoperatingaspartofthefourMP-systemscreatedfromtheserversetofwhichtheserverisamember.Extraloadisthedifferenceinaserver’sreadloadinanexperimentwhereuserrequestpatternshavechangedandinanexperimentwhereuserrequestpatternsareexactlywhatthesystemwasdesignedfor(the0%-0%IR-comboorbaselinesystem).Serverreadloadistheaveragenumberofreads(downloads)experiencedbyaserverineachsecondofanexperiment.Forexample,ifserverhadaloadof5readrequestspersecondinabaselinesystemexperimentandthenhadaloadof7requestspersecondina20%-50%combinationthen’sextraloadis2,anincreaseof40%.

TheevidencesupportinganswerstoQuestionsOnethroughFourinvolvetwentydifferentserversets.QuestionsFiveandSixareansweredusingresultsfromfourroundsofrepeatedexperimentsonthesecondofthetwentyserversets.Inthefourrounds,theinitial-request-setswerenotchanged.Sincespaceislimited,wepresentevidencerepresentingbehavioraltrendsseenthroughoutalltheexperiments.

Figure5:Differencesinpercentageofextraserverload,RANDOMstrategies.

,as

-valueschangebetweentheCLUSTERand

(a)

(b)

,asaverageserverFigure6:Differencesinthepercentageofextraserverload,

RANDOMandCLUSTERsystemsand(b)theCLUSTERandCLUSTER-systems.

changesbetween(a)the

5.1QuestionsandAnswers

QuestionOne:Ifaserver’s-valueincreasesordecreasesbetweendifferentmappingstrategies,doestheextrareadloadexperiencedbytheserveralsoincreaseordecrease?

,experiencedbyserversastheir-Figure5displaysthedifferenceinthepercentageofextrareadload,

,valuesimproveunderdifferentmappingstrategies.Thex-axisshowsthedifferenceinaserver’s-value,

whencluster-mapped(CLUSTERsystems)versusrandomly-mapped(RANDOMsystems).Eachdatapointrepresentsaserver.Weseethatapositive(negative)moveinaserver’s-valuecausesalikewisechangeinextraloadattheserver.Inallexperiments,thecorrelationinmovementinandextraloadisbetween83%and86%.Thisbehaviorindicatesthat,afunctionofthegridstructure,hasastronginfluenceonwhereextraloadisdistributed.

QuestionTwo:Ifthesofaserver’sreadsetsincreaseordecreaseunderdifferentproxystrategies,doestheextrareadloadexperiencedbytheserveralsoincreaseordecrease?

,asafunctionofYes,however,thetrendisnotaspronouncedasitwasfor.Figures6aand6bshow

,intheaverage-valuesofaserver’sread-sets(averageserver),underdifferentlyformulatedthedifference,

proxystrategies.Figure6acomparesRANDOMandCLUSTERsystemswhereasFig.6bcomparesCLUSTERandCLUSTER-systems.Notethatthetiltoftheregressiontrend-linesinbothofthesefiguresislessthanthetiltcausedbychangesin(Fig.5),suggestingthatthetrendisnotasstrongasitwasfor.Indeed,thecorrelationbetweenchangesinaverageserverandextraloadrangedfromonly61%to65%inallexperiments.Furthermore,inFigs.6aand6bthedatapointsarespreadtoallfourquadrantsofthegraph,whereasinFig.5datapointsaremostlyintheall-positiveorall-negativequadrants.Thissuggeststhathasamorepronouncedeffectthan.Note

(a)(b)

(c)

,between(a)theCLUSTERandFigure7:Histogramsshowingdifferencesinpercentageofextraserverload,

RANDOMsystems(b)theRANDOM-andRANDOMsystems,and(c)theCLUSTER-andCLUSTERsystems.

thatthedatapointsaremorewidelyspreadinFig.6athanin6bindicatingthat’seffectonextraloaddistributionismorevisibleonlyafterthegridisalreadyoptimizedfor.

QuestionThree:Howisextrareadloaddistributedinsystemswithgood-valuesversussystemswithbad-values?

TheanswertothisquestioncanalreadybeenseeninFigs.5and6awhichcompareextraloadsinrandomly-mappedgrids(largeerrors)withthoseofclusteredgrids(smallerrors).InFig.6a,itappearsthatthedatapoints

region.Ahistogramshowingthedistributionofvaluesconfirmsthisobservationaremostlyinthe

(Fig.7a).Whenclustermappingisused,alargeportion(anaverageof63%acrossallexperiments)oftheserversgethigheramountsofextraloadthanwhenrandomlymapped.Thisindicatesthatsystemswithgood-valuesmoreevenlydistributeextraloadtoservers.

QuestionFour:Howisextrareadloaddistributedinsystemsthatare-optimizedversusnon--optimized?

Loaddistributionisminimallyaffectedbyoptimizingfor.Whencomparingrandomly-mappedgridsbefore

to(Fig.7b).Similarlyforclusteredandafteroptimization,extraloadchangesforaserverrangefrom

to(Fig.7c).Comparatively,loadshiftsintherangeofgrids,theextraloadchangesrangefrom

towereobservedforrandomlymappedgridsversusclusteredgridswithoutoptimizingfor(Fig.7a).Thus,theshiftinloadisduemainlytochangesinserver-values.CombinedwiththebehaviorseenintheanswerstoQuestionsOnethroughThree,weconcludethatgridstructure,ascapturedby-values,andnotproxystrategies,whichdetermines,isthemainfactorinwhereextrareadloadisdistributed.

Also,notethatunlikeinFig.7a,thehistogramsinFigs.7band7carecenteredonzeroloaddifference.Thismeansthattheoveralleffectofoptimizationonextraloaddistributionisminimal.

QuestionFive:Whatdoesaserver’s-valueindicateaboutitsextrareadload?

WehavealreadypartiallyansweredthisinQuestionsOneandThree,butprovideadditionalanalysishere.

,experiencedbyserversforthe20%-25%and20%-50%Figure8showsthepercentageofextrareadload,

initial-request-combinations(IR-combos).Figure8ashowsresultsfortheRANDOMstrategyandFig.8bshowstheCLUSTER-strategy.TrendlineshelpdistinguishbetweenthetwoIR-combos.Inbothgraphsweseethatsmaller-valueshavehighlyvariableextrareadloads.Thisimpliesthatsystemscouldbemaderobusttovariancesininitial-requestloadsbymaking-valueslarge.However,increasing-valueswouldnegativelyaffectloadfairness.

Notealsothatextrareadloadhardlychangesfromthatofabaselinesystemforthe20%-25%proxy/loadcombi-line).However,readloadsjumpnoticeablynationinFig.8(i.e.,thelinearregressionlineliesrightonthezero

forthe20%-50%combination.Sincethisbehaviorappearsregardlessofmappingstrategy,thissuggeststhatthegridstructureandreadprotocolhasagooddealofresiliencetovariationsininitial-requestloadsandthatbeyondacertainthresholdperformancesignificantlydegrades.

QuestionSix:Whatdothesofaserver’sread-setsindicateabouttheserver’sextrareadload?

(a)

Figure8:Percentdifferencesinserverloadsplottedbyserversystemand(b)CLUSTER-system.

(b)

-valuesforthesecondserverset’s(a)RANDOM

(a)

Figure9:Percentdifferencesinserverloadsplottedbyaverageserversystemand(b)theCLUSTER-system.

(b)

forthesecondserverset’s(a)RANDOM

Results,arrangedbytheaverage-valuesofaserver’sread-sets(averageserver)forthesecondserverset’sRANDOMsystemareinFig.9aandresultsforthesecondserverset’sCLUSTER-systemareinFig.9b.Inboth

,occurwhenaverageserverequalstheidealforfigures,weseethatthelargestswingsinextrareadload,

thegrid(whichis0.125)andisthesolefactorinserverloading.TheRANDOMsystemalsohaslargedifferences

errorsarelargeintheinextraloadforotheraverages(mostnotablyat0.136).Thisisduetothefactthat

randomly-mappedsystems,makingnearlyirrelevanttoserverloading.

NoticethatintheRANDOMsystemextraloaddecreasesasaverageserverincreases,whichiscountertoourexpectations.Theexplanationforthisbehavioristhat,forthisparticularserverset.theproxiesreceivingextrainitial-requestsallhaveaverageserversthatarelessthantheidealof0.125.Therefore,theextrareadrequestsaredirectedmostlytoread-setswithlessthanidealcausingtheserversinthoseread-setstoreceivethebulkoftheextraload.

5.2SummaryofResults

Overall,theexperimentsrevealthefollowingnotableobservationsabouttheproposedreplicationsystemwhenuserrequestpatternsdeviatefromthatforwhichasystemwasoriginallydesigned.

,whichisafactorofthegridstructure,hasthegreatestinfluenceonwhereextraserverloadisdistributed.canalsohaveaneffect.However,’simpactisoftenmaskedby.

Systemswithgood-valuesmoreevenlydistributeextraloadtoserversthandosystemswithbad-values.

Serversinsystemsbuiltaccordingtoourconstructionmethodandoperatingprotocolscanbeinsulatedfromreadloadincreaseswheninitial-requestloadsincreaseatasubsetoftheproxies.

6Conclusion

In[10]weproposedandvalidatedanapproachfordevelopingreplicationsystemswhichspecializeinhostinglargeobjects,orwhereuserrequestshavelongservicetimes,orboth.Thereplicationstrategyattemptstopreventserversfromoverloadingbyfairlydistributingreadloadstoserversbasedontheirrelativecapacities.Ourapproachtodevelopingafairreplicationstrategydependsonoptimizingtwokeyparameters,and.In[10]weshowedthatsystemsdesignedaccordingtoourapproacharehighlyload-fairwhenuserrequestpatterns(thearrivalrateofusers’initial-requests)toserversinthesystemmatchthatforwhichthesystemwasdesigned.

Inthispaperwefurtherstudiedtheperformanceofsystemsconstructedwithourapproach.Weshowedtheinfluenceandhaveonserverloadwhenuserrequestpatternsvaryfromthatforwhichasystemwasdesigned.Experimentalresultsindicatethatsystemstructure,capturedby,hasthemostinfluenceonloaddistribution.alsoaffectsloaddistribution,butnotasmuchas.Wealsosawthatserverloadingisrelativelyunaffectedbymildtomoderateshiftsinuserrequestpatterns.

References

[1]J.M.Almeida,D.L.Eager,andM.K.Vernon.Ahybridcachingstrategyforstreamingmediafiles.InMMCN,

pages200–212,2001.

[2]S.Y.Cheung,M.H.Ammar,andM.Ahamad.Thegridprotocol:Ahighperformanceschemeformaintaining

replicateddata.IEEETransonKnowledgeandDataEng,4(6):582–592,1992.

[3]I.Cidon,S.Kutten,andR.Soffer.Optimalallocationofelectroniccontent.InINFOCOM,pages1773–1780,

2001.

[4]J.Gemmell,H.M.Vin,D.D.Kandlur,P.V.Rangan,andL.A.Rowe.Multimediastorageservers:Atutorial.

IEEEComputer,28(5):40–49,1995.

[5]S.GhandeharizadehandR.R.Muntz.Designandimplementationofscalablecontinuousmediaservers.

ParallelComputing,24(1):91–122,1998.

[6]K.Guo,M.M.Buddhikot,Y.Chae,andS.Suri.Rcache:Designandanalysisofscalable,faulttolerant

multimediastreamcachingschemes.InScalabilityandTrafficControlinIPNetworks,2001.

[7]S.Harizopoulos,C.Harizakis,andP.Triantafillou.Hierarchicalcachingandprefetchingforhighperformance

continuousmediaserverswithsmartdisks.IEEEConcurrency,8(3):16–22,2000.

[8]K.A.HuaandS.Sheu.Skyscraperbroadcasting:Anewbroadcastingschemeformetropolitanvideo-on-demandsystems.InSIGCOMM,pages89–100,1997.

[9]A.Kumar,M.Rabinovich,andR.K.Sinha.Aperformancestudyofgeneralgridstructuresforreplicateddata.

InICDCS,pages178–185,1993.

[10]C.Mayer,K.S.Candan,andV.Sangam.Constraints,parameters,andstrategiesforreplicatinglargecontent

forwebdelivery.TechnicalReportTR-02-007,ComputerScienceandEngineeringDepartment,ArizonaStateUniversity,2002.

[11]S.Sen,J.Rexford,andD.F.Towsley.Proxyprefixcachingformultimediastreams.InINFOCOM,pages

1310–1319,1999.

[12]C.Shahabi,M.Alshayeji,andS.Wang.Aredundanthierarchicalstructureforadistributedcontinuousmedia

server.InIDMS,pages51–664,1997.

[13]C.Vassilakis,M.Paterakis,andP.Triantafillou.Videoplacementandconfigurationofdistributedvideosys-temsbasedoncableTVnetworks.MultimediaSystems,8(2):92–104,2000.

[14]B.Wang,S.Sen,M.Adler,andD.Towsley.Optimalproxycacheallocationforefficientstreamingmedia

distribution.InINFOCOM,2002.

[15]K.-L.Wu,P.S.Yu,andJ.L.Wolf.Segment-basedproxycachingofmultimediastreams.InWWW,pages

36–44,2001.

因篇幅问题不能全部显示,请点此查看更多更全内容