◆教学目标◆
◆知识与技能:掌握等边三角形的定义、性质和判定,明确其与等腰三角形的区别和联系能应用等边三角形的知识进行简单的计算和证明.
◆过程与方法:经历讲实际问题转化为数学问题的过程..
◆情感态度:通过具有挑战性的问题,让学生积极参与数学活动,并在成功中获得体验. ◆教学重点与难点◆
◆重点:掌握等边三角形的定义、性质和判定.
◆难点:应用等边三角形的知识进行简单的计算和证明. ◆教学过程◆ 一、温故知新
1.表达等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称“等边对等角〞。把等腰三角形对折,折叠两局部是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一〞。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一〞。 2.假设等腰三角形的两边长为3和4,那么其周长为多少? 二、新课导入
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。 等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜测。 2.你能否用的知识,通过推理得到你的猜测是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。 3.上面的条件和结论如何表达?
等边三角形的各角都相等,并且每一个角都等于60°。 等边三角形是轴对称图形吗?如果是,有几条对称轴? 等边三角形也称为正三角形。
三、典例精析
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。 分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一〞可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:此题假设将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样? 问题2:求∠1是否还有其它方法? 四、课堂检测
1.判断以下命题,对的打“√〞,错的打“×〞。 a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60°的等腰三角形,其它两个内角也为60°( )
2.如图(2),在△ABC中,AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3.P54练习1、2。 五、交流与收获
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一〞性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
六、作业: 1.第7,9题。
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。 ◆板书设计◆
等边三角形的各角都相等,并且每一个角都等于60°。 等边三角形也称为正三角形。
◆课后思考◆
[教学反思]
学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。由于剪的方法不同,展开图的形状也可能是不同的。学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。
24.1 圆 (第3课时)
教学内容
1.圆周角的概念.
2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.
推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.
教学目标
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键
1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入
〔学生活动〕请同学们口答下面两个问题. 1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:〔1〕我们把顶点在圆心的角叫圆心角.
〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.
刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知
问题:如下图的⊙O,我们在射门游戏中,设E、F是球门,•设球员们只能在EF所在的⊙O其它位置射门,如下图的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.
现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?
〔学生分组讨论〕提问二、三位同学代表发言. 老师点评:
1.一个弧上所对的圆周角的个数有无数多个.
2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.
下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且
它的度数恰好等于这条弧所对的圆心角的度数的一半.〞 〔1〕设圆周角∠ABC的一边BC是⊙O的直径,如下图 ∵∠AOC是△ABO的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB
∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=
AOBCADOBC1∠AOC 2〔2〕如图,圆周角∠ABC的两边AB、AC在一条直径OD的两侧,那么∠ABC=
12∠AOC吗?请同学们独立完成这道题的说明过程.
老师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC的外角,•那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC.
〔3〕如图,圆周角∠ABC的两边AB、AC在一条直径OD的同侧,那么∠ABC=
12∠AOC吗?请同学们独立完成证明. 老师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO=
111∠AOD-∠COD=∠AOC 222 现在,我如果在画一个任意的圆周角∠AB′C,•同样可证得它等于同弧上圆心角一半,
因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:
半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.
例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,
•只要连结AD证明AD是高或是∠BAC的平分线即可. 解:BD=CD
理由是:如图24-30,连接AD ∵AB是⊙O的直径
∴∠ADB=90°即AD⊥BC 又∵AC=AB ∴BD=CD
三、稳固练习
1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展
例2.如图,△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半径为
abc===2R. sinAsinBsinCabcabc 分析:要证明===2R,只要证明=2R,=2R,=2R,
sinAsinBsinCsinAsinBsinCabc即sinA=,sinB=,sinC=,因此,十清楚显要在直角三
2R2R2RR,求证:
角形中进行.
证明:连接CO并延长交⊙O于D,连接DB ∵CD是直径 ∴∠DBC=90° 又∵∠A=∠D
BCa,即2R= DCsinAbc 同理可证:=2R,=2R
sinBsinCabc ∴===2R
sinAsinBsinC 在Rt△DBC中,sinD=
五、归纳小结〔学生归纳,老师点评〕 本节课应掌握: 1.圆周角的概念;
2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;
3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业
1.教材P95 综合运用9、10、 [教学反思]
学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪
一剪,并展示所剪图形的形状。由于剪的方法不同,展开图的形状也可能是不同的。学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。
因篇幅问题不能全部显示,请点此查看更多更全内容