(12)发明专利申请
(10)申请公布号 CN 108640701 A(43)申请公布日 2018.10.12
(21)申请号 201810936404.X(22)申请日 2018.08.16
(71)申请人 南通通州湾新材料科技有限公司
地址 226333 江苏省南通市通州湾江海联
动开发示范区临港产业园通海大道、如港路交叉口东南侧
申请人 周涛(72)发明人 周涛
(74)专利代理机构 北京志霖恒远知识产权代理
事务所(普通合伙) 11435
代理人 郭栋梁(51)Int.Cl.
C04B 37/02(2006.01)C04B 35/587(2006.01)C04B 35/622(2006.01)
权利要求书1页 说明书3页 附图1页
H01L 23/367(2006.01)H01L 23/373(2006.01)
(54)发明名称
一种氮化硅陶瓷散热翅覆铜板及其制备方法
(57)摘要
本发明公开了一种氮化硅陶瓷散热翅覆铜板及其制备方法。该氮化硅陶瓷散热翅覆铜板包括氮化硅陶瓷板和金属导电层,在氮化硅陶瓷层和金属导电层之间磁控溅射一层氧化铝层或者金属硅层的过渡层用来焊接氮化硅陶瓷层和金属导电层。解决了氮化硅陶瓷与金属铜板或铝板难以焊接的问题,同时在远离金属层的一侧设置散热翅,增大散热面积,提升散热效率,能满足大功率IGBT封装的需求。
CN 108640701 ACN 108640701 A
权 利 要 求 书
1/1页
1.一种氮化硅陶瓷散热翅覆铜板,包括氮化硅陶瓷板,金属导电层,其特征在于:在氮化硅陶瓷层和金属导电层之间磁控溅射一层过渡层。
2.根据权利要求1所述的氮化硅陶瓷散热翅覆铜板,其特征在于:过渡层为氧化铝层或者金属硅层。
3.根据权利要求2所述的氮化硅陶瓷散热翅覆铜板,其特征在于:过渡层为厚度为50nm~100nm。
4.根据权利要求3所述的氮化硅陶瓷散热翅覆铜板,其特征在于:氮化硅陶瓷层远离金属导电层的一侧有散热翅。
5.根据权利要求4所述的氮化硅陶瓷散热翅覆铜板,其特征在于:散热翅为瓦楞形散热翅或者柱形散热翅。
6.根据权利要求5所述的氮化硅陶瓷散热翅覆铜板,其特征在于:氮化硅陶瓷层厚度为0.5mm~2mm,散热翅为0.5mm~5mm。
7.根据权利要求6所述的氮化硅陶瓷散热翅覆铜板,其特征在于:金属导电层为铜箔或者铝箔,厚度为0.1mm~2.5mm。
8.一种氮化硅陶瓷散热翅覆铜板的制备方法,其特征在于,包括以下步骤:a)制备带有散热翅的氮化硅陶瓷板;
b)在散热翅相反的氮化硅陶瓷板平面上磁控溅射过渡层;c)在氮化硅陶瓷板的过渡层上覆金属导电层。
9.根据权利要求8所述的氮化硅陶瓷散热翅覆铜板的制备方法,其特征在于:氮化硅陶瓷层厚度为0.5mm~2mm,散热翅为0.5mm~5mm,散热翅为瓦楞形散热翅或者柱形散热翅。
10.根据权利要求9所述的氮化硅陶瓷散热翅覆铜板的制备方法,其特征在于:过渡层为氧化铝层或者金属硅层,金属导电层为铜箔或者铝箔,厚度为0.1mm~2.5mm。
2
CN 108640701 A
说 明 书
一种氮化硅陶瓷散热翅覆铜板及其制备方法
1/3页
技术领域
[0001]本发明涉及先进结构陶瓷电路领域,具体涉及一种氮化硅陶瓷散热翅覆铜板及其制备方法。
背景技术
[0002]陶瓷覆铜板作为IGBT散热封装关键部件,目前有三种陶瓷覆铜板基板陶瓷使用,分别是氧化铝陶瓷基板、氮化铝陶瓷基板和氮化硅陶瓷基板,氧化铝基陶瓷基板是最常用的陶瓷基板,由于它具有好的绝缘性、好的化学稳定性、好的力学性能和低的价格,但由于氧化铝陶瓷基片相对低的热导率、与硅的热膨胀系数匹配不好。作为高功率模块封装材料,氧化铝材料的应用前景不容乐观。氮化铝陶瓷基板散热性能优,但其抗热振性能差导致其高可靠应用方面受限。
[0003]为实现大功率电力电子器件高密度三维模块化封装,需要开发可靠性更高、耐温性能更好、载流能力更强的陶瓷覆铜基板。氮化硅陶瓷具有低的2.4倍于氧化铝和氮化铝的抗弯强度,因此具有比氮化铝和氧化铝高的多的可靠性,尤其是高强度可以实现其与厚铜基板的覆接,大幅提高基板的热性能。相对于氮化铝和氧化铝,氮化硅陶瓷覆铜板在电流承载能力、散热能力、力学性能、可靠性等方面均具有明显优势。同时,β-Si3N4陶瓷具有潜在的较高热导率(200~320W/m·K),更能满足大功率需求。但是氮化硅陶瓷金属化尤其是与厚铜板和厚铝板焊接是关键难点。
发明内容
[0004]有鉴于此,本发明针对现有技术存在之缺失,其主要目的一方面是提供一种氮化硅陶瓷散热翅覆铜板,包括氮化硅陶瓷板和金属导电层,在氮化硅陶瓷层和金属导电层之间磁控溅射一层过渡层。[0005]优选的,过渡层为氧化铝层或者金属硅层。[0006]优选的,过渡层为厚度为50~100nm。[0007]优选的,氮化硅陶瓷层远离金属导电层的一侧有散热翅。[0008]优选的,散热翅为瓦楞形散热翅或者柱形散热翅。[0009]优选的,氮化硅陶瓷层厚度为0.5mm~2mm,散热翅为0.5mm~5mm。[0010]优选的,金属导电层为铜箔或者铝箔,厚度为0.1mm~2.5mm。[0011]另一方面,本发明提供了一种氮化硅陶瓷散热翅覆铜板的制备方法,包括以下步骤:
[0012]a)制备带有散热翅的氮化硅陶瓷板;[0013]b)在散热翅相反的氮化硅陶瓷板平面上磁控溅射过渡层;[0014]c)在氮化硅陶瓷板的过渡层上覆金属导电层。[0015]优选的,氮化硅陶瓷层厚度为0.5mm~2mm,散热翅为0.5mm~5mm,散热翅为瓦楞形散热翅或者柱形散热翅。
3
CN 108640701 A[0016]
说 明 书
2/3页
优选的,过渡层为氧化铝层或者金属硅层,金属导电层为铜箔或者铝箔,厚度为
0.1mm~2.5mm。
[0017]本发明的有益效果是:本发明公开了一种氮化硅陶瓷散热翅覆铜板及其制备方法。该覆铜板包括氮化硅陶瓷板和金属导电层,在氮化硅陶瓷层和金属导电层之间磁控溅射一层氧化铝层或者金属硅层的过渡层用来焊接氮化硅陶瓷层和金属导电层。解决了氮化硅陶瓷与金属铜板或铝板难以焊接的问题,同时在远离金属层的一侧设置散热翅,增大散热面积,提升散热效率,能满足大功率IGBT封装的需求。附图说明
[0018]图1为氮化硅陶瓷散热翅覆铜板结构示意图。
具体实施方式
[0019]下面对本发明作进一步详细描述,其中所用到原料和设备均为市售,没有特别要求。可以理解的是,此处所描述的具体实施例仅用于解释相关发明,而非对该发明的限定。[0020]如图1所示,本发明一方面是提供一种氮化硅陶瓷散热翅覆铜板,包括氮化硅陶瓷板10和金属导电层30,在氮化硅陶瓷层和金属导电层之间磁控溅射一层过渡层20。用来解决氮化硅陶瓷层和金属导电层之间难以焊接的问题。在本实例中过渡层为氧化铝层或者金属硅层。在本实例中优选的过渡层为厚度为50nm~100nm。在本实施例中为了进一步提升氮化硅陶瓷基板的散热效果,在氮化硅陶瓷层远离金属导电层的一侧有散热翅11,用来增加散热面积提升散热效果。在本实施例中优选的散热翅为瓦楞形散热翅或者柱形散热翅。氮化硅陶瓷层厚度为0.5mm~2mm,散热翅为0.5mm~5mm。金属导电层为铜箔或者铝箔,厚度为0.1mm~2.5mm。[0021]另一方面,本发明提供了一种氮化硅陶瓷覆铜板的制备方法,包括以下步骤:[0022]a)制备带有散热翅的氮化硅陶瓷板;制备氮化硅陶瓷板方法为陶瓷制备技术领域常用干压、流延、注塑等方法,并无特别限制,在本实施例中优选的将氮化硅陶瓷与有机粘结剂密炼成喂料后将其注塑成型经过脱脂烧结得到该带散热翅的氮化硅陶瓷板,优选的通过模具设计氮化硅陶瓷层厚度为0.5mm~2mm,散热翅为0.5mm~5mm,散热翅为瓦楞形散热翅或者柱形散热翅。[0023]b)将烧结后的氮化硅陶瓷板放入磁控溅射炉内,在散热翅相反的氮化硅陶瓷板平面上磁控溅射过渡层;在本实例中通过选用市售的溅射层氧化铝层或者金属硅靶材在其表面磁控溅射50nm~100nm的过渡层。
[0024]c)在氮化硅陶瓷板的过渡层上覆金属导电层。在本实施例中优选的使用直接覆铜法或者活性金属钎焊法在过渡层上覆金属导电层,金属导电层为铜箔或者铝箔,厚度为0.1mm~2.5mm,从而得到该氮化硅陶瓷覆铜板。[0025]以下为本发明的具体实施例:[0026]实施例1
[0027]称取硬脂酸10g、D50为1um的氮化硅陶瓷粉体1.85kg、58号石蜡210g(4%)和280g的聚丙烯,将称取的有机物加入3L的密炼机中升温至120℃使其融化,然后分3次将陶瓷粉体加入密炼,待陶瓷粉体加入完成后,在150℃密炼3h得到喂料。将喂料装入注塑机的料斗
4
CN 108640701 A
说 明 书
3/3页
内,设定注塑机料桶温度为155℃,注塑压力为150MPa注塑,模具温度为120℃,使熔融的喂料高速注入模腔中保压1s,再次将模具锁模力提升至200MPa下整形保压1min,得到瓦楞形散热翅的氮化硅陶瓷毛坯。将该注塑件放置脱脂炉中在空气气氛以1℃升温至160℃保温5h,再升温至220℃保温5h,然后升温至380℃保温5h后降温完成脱脂。[0028]将脱脂后的毛坯放入烧结炉中,从室温以1℃/min升温至250℃保温10h,再次以1℃/min升温至450℃保温2h,充入氮气气氛,保持压力2MPa,以2℃/min升温速率升至1350℃,保温时间4h,得到厚度为0.5mm,瓦楞形散热翅为0.5mm的氮化硅陶瓷板。厚将其放入磁控溅射炉内,装上纯度大于99.9%的氧化铝靶材,控制射频功率为200w在其表面溅射30min得到一层50nm的氧化铝层,后将镀膜后的氮化硅陶瓷板放入真空烧结炉内,并在其表面放置0.1mm的铜箔,以3℃/min升温至1075℃焊接2~5min得到该氮化硅陶瓷覆铜板。使用剥离法测试铜箔与氮化硅覆铜板的结合强度大于10N/cm。[0029]实施例2
[0030]称取硬脂酸10g、D50为1um的氮化硅陶瓷粉体1.85kg、58号石蜡250g(4%)和250g的聚丙烯,将称取的有机物加入3L的密炼机中升温至120℃使其融化,然后分3次将陶瓷粉体加入密炼,待陶瓷粉体加入完成后,在145℃密炼3h得到喂料。将喂料装入注塑机的料斗内,设定注塑机料桶温度为150℃,注塑压力为150MPa注塑,模具温度为120℃,使熔融的喂料高速注入模腔中保压1s,再次将模具锁模力提升至200MPa下整形保压1min,得到柱形散热翅的氮化硅陶瓷毛坯。将该注塑件放置脱脂炉中在空气气氛以1℃升温至160℃保温5h,再升温至220℃保温5h,然后升温至380℃保温5h后降温完成脱脂。[0031]将脱脂后的毛坯放入烧结炉中,从室温以1℃/min升温至250℃保温10h,再次以1℃/min升温至450℃保温2h,充入氮气气氛,保持压力2MPa,以2℃/min升温速率升至1350℃,保温时间4h,得到厚度为2mm,柱形散热翅为5mm的氮化硅陶瓷板。厚将其放入磁控溅射炉内,装上纯度大于99.9%的金属硅靶材,控制射频功率为200w在其表面溅射15min得到一层50nm的金属硅层,在其表面采用丝网印刷技术印刷10um的Ti基金属活性钎料,后将镀膜后的氮化硅陶瓷板放入真空烧结炉内,并在其表面放置2.5mm的铝箔,以3℃/min升温至875℃焊接2min~5min得到该氮化硅陶瓷覆铝板。使用剥离法测试铝箔与氮化硅覆铜板的结合强度大于13N/cm。
[0032]以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
5
CN 108640701 A
说 明 书 附 图
1/1页
图1
6
因篇幅问题不能全部显示,请点此查看更多更全内容