您的当前位置:首页正文

A review of diffusion tensor imaging studies

2020-08-10 来源:易榕旅网
NeuroRehabilitation28(2011)345–352DOI10.3233/NRE-2011-0662IOSPress

345

ReviewArticle

Areviewofdiffusiontensorimagingstudiesonmotorrecoverymechanismsinstrokepatients

S.H.Jang

DepartmentofPhysicalMedicineandRehabilitation,CollegeofMedicine,YeungnamUniversity,317-1,Daemyungdong,Namku,Taegu,705-717,RepublicofKorea

Tel.:+82536203269;Fax:+82536203269;E-mail:strokerehab@hanmail.net,belado@med.yu.ac.kr

Abstract.Forthepastdecade,diffusiontensorimaging(DTI)hasbeenusedinelucidationofthemotorrecoverymechanismsinstrokepatients.Inthecurrentstudy,IreviewedtheDTIstudieswithregardtothemotorrecoverymechanismsinstrokepatients,accordingtothefollowingclassificationofmotorrecoverymechanisms;recoveryofadamagedlateralcorticospinaltract(CST),subcorticalperi-lesionalreorganization,ipsilateralmotorpathwayfromtheunaffectedmotorcortextotheaffectedextremities,andothermotorrecoverymechanisms.Inaddition,IdiscussedthecharacteristicsofDTIasanevaluationtoolformotorrecoverymechanismsandfuturedirection.DTIhasauniqueadvantageinidentificationandestimationofneuraltractsatthesubcorticallevel.Therefore,itcouldcontributemuchtoresearchonthemotorrecoverymechanismsofstrokepatients,especially,intermsofrecoveryofadamagedCSTandsubcorticalperi-lesionalreorganization.InspiteoftheadvantagesofDTI,fewerDTIstudiesonthistopichavebeenconductedcomparedtostudiesusingtranscranialmagneticstimulationorfunctionalMRI.Therefore,thetotalnumberofDTIstudiesonthistopicshouldbeincreased.Moreover,furtherstudiesonvarioustopicsrelatedtobrainplasticityofmotorfunction,aswellasthemotorrecoverymechanismitself,shouldbeencouraged;forexample,DTIchangeswithpassageoftime,withrehabilitativeintervention,orwithmotorrecovery.

Keywords:Stroke,diffusiontensorimaging,diffusiontensortractography,hemiparesis,motorrecovery,brainplasticity

1.Introduction

Becausemotorweaknessisoneofthemostseri-ousdisablingsequelaeofstroke,manystudieshaveat-temptedtoelucidatethemotorrecoverymechanismsofstroke[5,7,10,11,13,18,22,26–28,60,61,71].Beforethedevelopmentofdiffusiontensorimaging(DTI),transcranialmagneticstimulation(TMS)andfunction-alneuroimagingweremainlyusedforresearchonthemotorrecoverymechanismsofstroke.Consequently,severalmotorrecoverymechanismshavebeensuggest-ed:theipsilateralmotorpathwayfromtheunaffectedmotorcortextotheaffectedextremities,peri-lesionalreorganization,recoveryofadamagedlateralcorti-cospinaltract(CST),andcontributionofthesecondarymotorarea[5,7,10,11,13,22,26–28,60,61,71].DTIhasauniqueadvantageinidentificationandes-timationofneuraltractsatthesubcorticallevel[2,3,47,49].Forthepastdecade,sincethedevelopmentofDTI,DTIhasmadeagreatcontributiontoresearchinneuroscience.Ithasalsocontributedmoretoresearchonthemotorrecoverymechanismsofstrokeinthefol-lowingaspectsthanpreviousTMSandfunctionalMRI(fMRI)studies;1)recoveryofadamagedlateralCST(accuratelocalizationofaCSTlesionandrecoveryoftheCSTlesion),2)peri-lesionalreorganizationatthesubcorticallevel(pathwaychangeofaneuraltract),and3)contributionofotherneuraltractsorstructuresascompensationforneuraltractdamage.

Inthecurrentstudy,IreviewedDTIstudieswithre-gardtothemotorrecoverymechanismsinstrokepa-tients,accordingtothefollowingclassificationofmo-

ISSN1053-8135/11/$27.502011–IOSPressandtheauthors.Allrightsreserved

346S.H.Jang/AreviewofdiffusiontensorimagingstudiesonmotorrecoverymechanismsTable1

Previousdiffusiontensorimagingstudiesonmotorrecoverymechanismsinstrokepatients

Authors

Publicationyear

RecoveryofadamagedCSTJangetal.2006Jangetal.Yangetal.Panneketal.Schaechteretal.

2007200820092009

Noofpatients1111010123114053

Etiology

LocationoflesionCR,ICCR,BGCRCorticalSubcortical

TimingofDTIafteronset3weeks,5months1,4,16months2weeks,10months10∼382days6months<6months6months11∼19weeks6months7years10months6∼92days7∼28days20∼30months6months3∼94months

DTIParameters

Othercombinedevaluation

HemorrhageHemorrhageHemorrhageInfarctInfarctInfarctInfarctInfarctInfarctHemorrhageInfarctHemorrhageInfarctInfarctHemorrhage

FAADC

IntegrityonDTTChangesofDTTIntegrityonDTTConnectivityonDTT

TMS,fMRITMS

Peri-lesionalreorganizationJangetal.2006Ahnetal.2006Kwonetal.2007Jangetal.

2009

CR

PonsCRCRCortexCRCRCR,BGCR,ICPonsCR,BG

PathwayonDTTPathwayonDTTPathwayonDTTPathwayonDTTPathwayonDTT

TranscallosalfiberonDTT

FA.ADC.fibernumber

CorticofugalfibersonDTT

PathwayonDTT

TranspontinefiberonDTT

fMRIfMRITMS,fMRIfMRI

IpsilateralmotorpathwayJangetal.2005Jangetal.2009Kwaketal.

2010

OthermotorrecoverymechanismsNewtonetal.20063JangYeoetal.

20092010

142

fMRIfMRI

DTI:diffusiontensorimaging,CST:corticospinaltract,CR:coronaradiata,IC:internalcapsule,FA:fractionalanisotropy,ADC:apparentdiffusioncoefficient,DTT:diffusiontensortracotgraphy,BG:basalganglia,TMS:transcranialmagneticstimulation,fMRI:functionalmagneticresonanceimaging.

torrecoverymechanisms;recoveryofadamagedlat-eralCST,subcorticalperi-lesionalreorganization,ipsi-lateralmotorpathway,andothermotorrecoverymech-anisms.Relevantstudieswereidentifiedusingthefol-lowingelectronicdatabases(PubmedandMEDLINE)from1966to2010.Thefollowingkeywordswereused:stroke,brainplasticity,rehabilitation,motorre-covery,functionalrecovery,hemiparesis,brainmap-ping,fMRI,TMS,DTI,anddiffusiontensortractog-raphy(DTT).Ilimitedthisreviewtoinjurydependentrecoverymechanismsofhumanadultstroke,and,fi-nally,13studieswereselectedforthisreview[1,24,25,29,31,34–36,40,41,51,54,58,77,78].

2.CharacteristicsofDTIasanevaluationtoolformotorrecoverymechanismsinstrokepatientsDTIallowsevaluationofwhitemattertractsbyvirtueoftheirabilitytovisualizewaterdiffusioncharacteris-tics[3,47].Innormalwhitematter,watermoleculesmoverelativelyfreelyinadirectionparalleltonervefibertracts;theirmovements,however,arerestrictedacrossthetracts,causingdiffusionanisotropyofthewhitematter[3,47].Diffusionanisotropyhasbeenusedinevaluationoftheextentoffiberdamageorre-coveryindiseasesthataffectwhitematter[2,31,49,59,63].Fractionalanisotropy(FA)isthemostwidelyusedparameterofDTI[2,49].TheFAvaluerepresentsthedegreeofdirectionalityofmicrostructures,suchasaxons,myelin,andmicrotubules,andhasarangeofzero(completelyisotropicdiffusion)toone(complete-lyanisotropicdiffusion).TheFAvaluewillincreasewithincreasedorganizationofwhitemattertracts;incontrast,adecreaseintheconditionisrelatedtodisin-tegrationofaneuraltract[2,49].Theapparentdiffu-sioncoefficient(ADC)valueindicatesthemagnitudeofwaterdiffusion[2,49].Itcanbeincreasedwithsomeformsofpathology,particularlyvasogenicedemaoraccumulationofcellulardebrisfromaxonaldamage[2,49].Besides,thefibernumberofaneuraltractandtheintegritychangeofDTThavebeenusedasDTIpa-rameters[59,63,64,66].Thevalidityoftheseparame-tershasbeenestablished[2,31,40,49,59,63,64,66,77].

S.H.Jang/Areviewofdiffusiontensorimagingstudiesonmotorrecoverymechanisms347

Consequently,DTIenablesustonumericallyestimatethestateorchangeofaneuraltractandcanprovidethefollowinguniqueadvantagesforresearchonmotorrecoverymechanismsinstrokepatients.First,evalua-tionofthegeneralstate,lesionsite,injuryseverityofalesion,orchangesinlesions(regenerationordegenera-tion)ofneuraltracts;second,estimationofchangesinotherneuralstructuresorneuraltractsfollowingstroke.Moreover,ithasrecentlybeenusedinevaluationofchangesofthenucleusinthehumanbrain[17,44].Onthecontrary,DTIhasseverallimitationsthatmustbeovercomeinordertoachieveamoreaccurateesti-mationofaneuraltract.Thefibertrackingtechniqueisoperator-dependent,andcannotbeusedindiscernmentofthesomatotopyatthecortexlevel.Besides,theprob-lemassociatedwithkissingfiber,limitationindepictionofacrossingfiber,andlowsensitivitycomparedwithTMSshouldberesolved[30,43,55,72].Manystudieshaverecentlyattemptedtosolvetheseproblemsusingprobabilistictractographyorcombinedstudywithoth-erbrainmappingtechniques(fMRIorTMS)[1,25,26,55,72].

2.1.RecoveryofadamagedlateralCST

TheCSTisthemostimportantneuraltractformotorfunctioninthehumanbrain.Therefore,preservationorrecoveryoftheCSTismandatoryforgoodrecoveryofimpairedmotorfunctioninstrokepatients[4,65,70].ManyTMSandfMRIstudieshavedemonstratedthisrecoverymechanismindirectlybythefindingoftheincrementofactivationintheaffectedprimarysenso-rimotorcortex(SM1)orincreaseoftheamplitudeofmotorevokedpotential(MEP)obtainedintheaffectedsideaccordingtoconcurrentmotorrecovery[6,11,21,33,46,68].

SeveralDTIstudieshavereportedonthisrecov-erymechanisminstrokepatients[31,34,54,58,77].In2006,apatientwithanintracerebralhemorrhage(ICH)wasreportedtoshowrecoveryofapartiallydamagedCSTintermsofchangesinDTIparametersandDTTonthelesion[31].Thepatientshowedcompleteparal-ysisoftheleftextremitiesfollowingICHintherightcoronaradiata(CR)andinternalcapsule.Weaknessoftheaffectedextremitiesslowlyrecoveredtothenor-malrangefor5monthsfromonset.DecreasedFAandincreasedADCvaluesinICHlesionsonthe3-weekDTIwerenormalizedasmuchasthoseofnor-malcontrolsonthe5-monthDTI.Inaddition,thein-tegrityoftheCSTonDTTshowedimprovementonthe5-monthDTTcomparedwiththatofthe3-week

DTT.Subsequently,in2007,therecoveryprocessforadamagedCSTinapatientwithICHintheleftCRandbasalgangliawasdemonstratedusingacombinedstudyofDTT,TMS,andfMRI[34].Thepatientpre-sentedwithcompleteparalysisoftherightextremitiesattheICHonset.Overthe16monthperiodfollowingonset,motorfunctionoftheaffectedextremitiesslowlyrecoveredtoanearlynormalstate.DTTshowedthattheoriginoftheCSThadchangedfromtheposteriorparietalcortex(1month),primarysomatosensorycor-tex(4months),andprimarymotorcortex(16months).TMSandfMRIprovidedadditionalevidencebyrecov-eryofthedamagedlateralCST.RecoveryoftheoriginofthedamagedCSTbytheprocessofnormalizationfromtheparietalcortextotheprimarymotorcortexwassuggestedasoneofthevariousmotorrecoverymechanismsofICH.In2008,Yangetal.reportedonapatientwithICHintheleftCRwhoshowedrecov-eryofaseverelydamagedCSTusingfollowupDTTandTMS[77].TheCSToftheaffectedhemispherewasdisruptedattheCRlevelbytheICHon2-weekDTT;however,thedisruptionoftheaffectedCSTwasrecoveredon10-monthDTT.AnMEPwhichhadthecharacteristicsoftheCSTwasevokedattheaffectedhandonthe10-month,althoughnoMEPwasevokedonthe2-weekTMSstudy.In2009,Panneketal.demon-stratedthatdynamiccorticospinalwhitematterconnec-tivitychangesduringstrokerecoveryusingfollowupprobabilistictractographyin10patientswithcerebralinfarct[54].TheyfoundthattheconnectivityoftheCSTwithintheaffectedhemispherewasenhancedovertimeandthattheenhancedconnectivitywascorrelatedwithstrokerecovery.Recently,Schaechteretal.re-portedthatmotorskillsignificantlyandpositivelycor-relatedwithFAoftheaffectedandunaffectedCSTin10patientswithcerebralinfarct[58].TheysuggestedthatthelevelofmotorskillrecoverywasrelatedtothemicrostructuralstatusoftheCSTinbothhemispheres.2.2.Subcorticalperi-lesionalreorganizationBeforetheintroductionofDTI,onlyafewstudieswereconductedonpatientsshowingsubcorticallesionsbecausefMRIorTMScouldnotvisualizethemotortractatthesubcorticallevel[56].SeveralDTIstudieshavereportedonsubcorticalperi-lesionalreorganiza-tioninstrokepatients[1,25,29,41].

Threestudieshavereportedonperi-lesionalreorga-nizationattheCRlevel[25,29,41].In2006,apatientwasreportedtohavemotorfunctionoftheaffectedhandthatappearedtobereorganizedintheposterior

348S.H.Jang/Areviewofdiffusiontensorimagingstudiesonmotorrecoverymechanisms

portionoftheinfarctedCR[29].Thepatientshowedcompleteweaknessoftheaffectedupperextremityandtheweaknessrecoveredslowlyfor6monthstoapointofnearlynormalfunction[29].ThecontralateralSM1wasactivatedduringeitheraffectedorunaffectedhandmovementson6-monthfMRI.The6-monthDTTfortheaffectedCSTdescendedalongtheposteriorportionoftheinfarctedCR.Subsequently,Kwonetal.(2007)reportedonthreepatientswhosemotorfunctionoftheaffectedupperextremityseemedtobereorganizedintheposteriorportionoftheinfarctedCRusingfollowupDTT[41].Motorfunctionoftheaffectedupperex-tremityinallpatientsshowedsevereweaknessatonsetandrecoveredtofunctionalstateat6monthsfromon-set.TheaffectedCSTpassedalongtheposteriorpor-tionoftheCRinfarctonboththefirst(11–19weeks)andsecondDTT(6months).Recently,apatientwasreportedtohavelegmotorfunctionthatseemedtobereorganizedintheregionofthewallofthelateralven-tricle[25].Thepatientpresentedwithcompleteparal-ysisoftherightextremitiesattheonsetoftheinfarctintheleftmiddlecerebralarteryterritory,andrecov-eredslowly,tothepointofbeingabletoextendtheaffectedkneeagainstresistanceby9monthswithoutrecoveryoftheaffectedhand.TheaffectedCSTde-scendedthroughthemedialCRatoraroundthewallofthelateralventricleon7-yearDTT.The7-yearTMSandfMRIformotorfunctionoftheaffectedlegshowedresultscompatiblewiththoseforthelateralCST.Find-ingsfromthisstudyindicatedtheimportanceofthesubventricularzone,whichisknowntohavepotentialforneurogenesis,eveninthematurebrain[53].

Asforperi-lesionalreorganizationatlevelsotherthanCR,twopatientswithpontineinfarcthavebeenre-ported[1].In2006,usingDTTandfMRI,Ahnetal.re-portedontwopatientswhoshowedcompleteweaknessatstrokeonsetanddemonstratedperi-lesionalreorga-nization[1].Six-monthfMRIdatarevealedactivationonlyinthecontralateralSM1duringeitheraffectedorunaffectedhandmovements.Six-monthDTIrevealedthattheaffectedCSTpassedalongperi-infarctareas(1patient:lateral,1patient:posterior)inthepons.2.3.Theipsilateralmotorpathway

Theipsilateralmotorpathwayisanormalmotorcontrolpathwayandhasbeenacceptedasoneoftherecoverymechanismsofstroke[8,12,27,38].Amongthemotorrecoverymechanismsofstroke,theipsilat-eralmotorpathwayfromtheunaffectedmotorcortextotheaffectedextremitieshasbeenthemostactively

researched[27].Itisimportantbecauseitisrelatedtopoormotoroutcomeandcanbechangedwithtimeormanipulatedbyvariousrehabilitativeinterventions[8,9,11,14,20,32,33,39,42,46,50,62,67,68].

SeveralDTIstudieshavereportedonthismecha-nism[35,36,40].In2005,astudyusingfMRIandDTTdemonstratedthatapatientwithICHwasabletowalkusingonlytheipsilateralmotorpathwayfromtheun-affectedmotorcortextotheaffectedleg[36].Motorfunctionoftheaffectedlegrecoveredslowlytotheex-tentthatthepatientwasabletoovercomegravityfor10monthsafterICHonset,althoughtheaffectedhandshowednosignificantmotorrecovery.fMRIresultsshowedonlyunaffectedSM1activationduringeitheraffectedorunaffectedkneemovements,andDTTre-vealedthattheCSTwasfoundonlyintheunaffectedhemisphere,butnotintheaffectedhemisphere.

Themechanismthatactivatestheunaffectedmotorpathwayafterstrokeonsethasnotbeenclearlyeluci-dated.However,themostplausibleproposedmecha-nismisbasedonthedisinhibitionhypothesis[19,45,50].Normalmotorcorticesofbothhemispheresmain-tainbalancethroughtranscallosalinhibition.However,whenastrokeoccurs,interhemispherictranscallosalin-hibitionisdecreasedfromtheaffectedside,andmovestowardtheunaffectedside.Asaresult,theunaffectedmotorcortexisrecruitedasthepopulationofpotential-lyavailableneuronsincreases.UsingDTT,Jangetal.demonstratedtheclinicalsignificanceoftranscallosalfibersoriginatingfromtheCSTinpatientswithCRin-farctlocatedbelowthecorpuscallosum[35].Transcal-losalfibersoriginatingfromtheCSToftheunaffect-edhemisphereanddescendingtowardthelesionafterpassingthroughthecorpuscallosumweremorepreva-lentinpatientswithCRinfarctcomparedwithnormalcontrols,andthesepatientsshowedpoorermotorfunc-tion.Therefore,thetranscallosalfibersappearedtocompensateformotorweaknessandweresuggestedasevidenceinsupportofthemechanismoftheipsilateralmotorpathway.Recently,Kwaketal.reportedonCSTchangesintheunaffectedhemisphereattheearlystage(7–28daysafteronset)ofICHusingDTT[69].ThefibernumberoftheCSTintheunaffectedhemisphereofthepatientgroupwasincreasedonDTT;therefore,theysuggestedthatthisphenomenonseemedtobeas-sociatedwithcompensationforCSTdamageintheaf-fectedhemisphere.

3.Othermotorrecoverymechanisms

Exceptfortheabovethreemotorrecoverymecha-nisms,threeDTIstudieshavereportedonotherrecov-

S.H.Jang/Areviewofdiffusiontensorimagingstudiesonmotorrecoverymechanisms349

erymechanisms[24,51,78].Contributionofthesec-ondarymotorarea(premotorcortex[PMC]andsup-plementarymotorarea[SMA])isawell-knownmo-torrecoverymechanismofstroke[13,22,26].In2006,Newtonetal.demonstrateddamagetocorticofugalfibersfromtheSMA,ventralPMC,anddorsalPMCus-ingprobabilisitictractographyinthreechronicpatientswithcerebralinfarct[51].OnfMRIactivationfindingsbyhandmovements,theyfoundactivationchangesbe-tweenthesesecondarymotorareasaccordingtothedamagetocorticofugalfibers;therefore,theysuggest-edthatfunctionalreorganizationcouldoccurbetweensecondarymotorareasaccordingtodamagetocorti-cofugalfibers.

Thepyramidaltractisknowntohaveseveralcollat-eralpathwaysinthehumanbrain[48,52].Theaber-rantpyramidaltractreferstothecollateralpathwayofthepyramidaltractthroughthemediallemniscusinthebrainstem,whichseparatesfromtheoriginalpyrami-daltractatthelevelofthemidbrainandthepons,anddescendsthroughthemediallemniscus[15,73,76].Ithasbeendemonstratedbypathologic,electrophysio-logic,andradiologicstudies[23,57,69,74–76].Are-centDTTstudyreportedononepatientwithapontineinfarctwhoappearedtorecoverthroughtheaberrantpyramidaltractinthebrainstemviaabypassthroughthemediallemniscusfrommidbraintomedullainsteadofinfractedCST[24].Thepatientpresentedwithse-vereparalysisoftheaffectedextremities;however,mo-torfunctionoftheaffectedextremitiesrecoveredslow-lytotheextentthatshewasabletoperformallfinemotoractivities,aswellastowalkwithanormalgaitat6monthsfromonset.ThecontralateralSM1wasac-tivatedduringeitheraffectedorunaffectedhandmove-mentson6-monthfMRI.Six-monthDTTshowedthattheaffectedCSTdescendedalongthemediallemnis-cusfromthemidbraintothepons,andthenrejoinedthepyramidaltractattheuppermedulla.

In2010,Yeoetal.reportedthattranspontineconnec-tionfibers,whichareaconnectionoffibersbetweenCSTsatthepons,originatingfromtheaffectedCSToftheaffectedhemisphere,weremoreprevalentinpa-tientswithICHthaninnormalcontrols[78].Inaddi-tion,theseverityoftranspontineconnectionfiberswascloselyrelatedtomotorweaknessinaffectedextremi-tiesandtotheextentofCSTinjuryintheaffectedhemi-sphere.Therefore,theysuggestedthatthetranspontineconnectionfibersappearedtorepresentacompensato-rymechanismassociatedwithmotorweaknessorCSTinjuryinpatientswithICH.

4.Futuredirection

Forthepastdecade,DTIhasbeenusedinelucidationofthemotorrecoverymechanismsinstrokepatients[1,24,25,29,31,34–36,40,41,51,54,58,77,78].However,toincreasetheusefulnessofDTIforthisresearch,sev-eralproblemsassociatedwithDTIshouldberesolved.InspiteoftheuniqueadvantagesofDTIforresearchonmotorrecoverymechanismsinstrokepatients,fewerDTIstudiesonthistopichavebeenconducted,com-paredwithstudiesusingTMSorfMRI.Tothebestofourknowledge,only13DTIstudiesonthemotorrecoverymechanismsofstrokehavebeenreported[1,24,25,29,31,34–36,40,41,51,54,58,77,78].Therefore,thetotalnumberofDTIstudiesonthistopicshouldbeincreased.Moreover,furtherstudiesonvarioustopicsassociatedwithbrainplasticityofmotorfunction,aswellasthemotorrecoverymechanismitself,shouldbeencouraged;forexample,DTIchangeswithpassageoftime,withrehabilitativeintervention,orwithmotorrecovery.

Formotorfunctioninthehumanbrain,variousneuraltractsareinvolvedandtheseneuraltractscanbegrosslyclassifiedintotheCSTandnon-CST.TheCSTismandatoryformotorfunctioninthehumanbrain.However,othernon-CSTs,suchasthereticulo-,vestibule-,andrubrospinaltracts,cancontributetomotorrecoveryafterdamagetotheCSTfollowingstroke[16,37,79].However,analysisofthenon-CSThasbeenimpossible;therefore,DTImethodsforiden-tificationandestimationofthenon-CSTshouldbede-veloped.Moreover,studiesontheaberrantmotorpath-wayalsoshouldbeinvited.

SomelimitationsofDTIneedtobeconsidered.First,thefibertrackingtechniqueisoperator-dependent.Sec-ond,DTImayunderestimatethefibertractsthanelec-trophysiologicaltest.DTIisapowerfulanatomicimag-ingtoolthatcandemonstratethegrossfiberarchitec-ture,butnotthefunctionalorsynapticconnections.Therefore,majorfiberbundlessuchastheCSTcanbetherealfiberpathwaysonDTI,relayingfiberscannotbedepictedwithDTI.Third,regionsoffibercomplex-ityandcrossingpreventfullreflectionoftheunder-lyingfiberarchitecturebyDTI[30,43,55,72].There-fore,combinedstudiesusingotherbrainmappingtech-niques,suchasTMSorfMRI,wouldbenecessarytocompensateforthelimitationsofDTI.Theadvantagesofeachofthemethodsforevaluationofaneuraltractal-lowmoreaccurateestimationwhentheyareemployedconcomitantly,becausecombinationcancompensateforthelimitationsofacertainevaluationmethodand

350S.H.Jang/Areviewofdiffusiontensorimagingstudiesonmotorrecoverymechanisms

moreaccurateinformationcanbeobtained[24,25,29,34,36,77].AsaexamplefortheCST,themostidealevaluationmethodforassessmentoftheCSTwouldbecapableof:1)obtaininginformationabouttheintegrityandcourseoftheCSTandquantificationoftheCSTatthesubcorticallevelusingDTIwithDTT;2)obtaininginformationontheoriginoftheCSTatthecorticallevelusingfMRI;and3)obtaininginformationonthequantificationandcharacteristicsoftheCSTusingthemotor-evokedpotentialdeterminedbyTMS[24,25,29,34,36,77].

5.Conclusion

Inthecurrentstudy,IreviewedDTIstudiesonthemotorrecoverymechanismsofstrokeaccordingtotheclassificationofmotorrecoverymechanisms.Al-thoughDTIhasuniqueadvantagesforresearchonthemotorrecoverymechanismsofstrokepatients,only13DTIstudieshavereportedonthistopic.Therefore,DTIresearchonthistopicshouldbeencouraged.Inaddi-tion,combinedstudiesusingotherbrainmappingtech-niquesandtechnicalcomplementarymeasureswouldbenecessarytocompensateforthelimitationsofDTI.

Acknowledgement

ThisworkwassupportedbyNationalResearchFoundationofKoreaGrantfundedbytheKoreanGov-ernment(KRF-2008-314-E00173)

References

[1]

Y.H.Ahn,S.H.You,M.Randolph,S.H.Kim,S.H.Ahn,W.M.Byun,D.S.YangandS.H.Jang,Peri-infarctreorganizationofmotorfunctioninpatientswithpontineinfarct,NeuroReha-bilitation21(2006),233–237.

[2]Y.AssafandO.Pasternak,Diffusiontensorimaging(DTI)-basedwhitemattermappinginbrainresearch:areview,JMolNeurosci34(2008),51–61.

[3]P.J.BasserandC.Pierpaoli,Microstructuralandphysiologicalfeaturesoftissueselucidatedbyquantitative-diffusion-tensorMRI,JMagnResonB111(1996),209–219.

[4]

F.Binkofski,R.J.Seitz,S.Arnold,J.Classen,R.BeneckeandH.J.Freund,Thalamicmetbolismandcorticospinaltractintegritydeterminemotorrecoveryinstroke,AnnNeurol39(1996),460–470.

[5]

C.CalauttiandJ.C.Baron,Functionalneuroimagingstudiesofmotorrecoveryafterstrokeinadults:areview,Stroke34(2003),1553–1566.

[6]

C.Calautti,F.Leroy,J.Y.GuincestreandJ.C.Baron,Dy-namicsofmotornetworkoveractivationafterstriatocapsularstroke:alongitudinalPETstudyusingafixed-performanceparadigm,Stroke32(2001),2534–2542.

[7]L.M.CareyandR.J.Seitz,Functionalneuroimaginginstroke

recoveryandneurorehabilitation:conceptualissuesandper-spectives,IntJStroke2(2007),245–264.

[8]R.Chen,L.G.CohenandM.Hallett,Roleoftheipsilateral

motorcortexinvoluntarymovement,CanJNeurolSci24(1997),284–291.

[9]R.Chen,C.Gerloff,M.HallettandL.G.Cohen,Involvement

oftheipsilateralmotorcortexinfingermovementsofdifferentcomplexities,AnnNeurol41(1997),247–254.

[10]F.Chollet,V.DiPiero,R.J.Wise,D.J.Brooks,R.J.Dolan

andR.S.Frackowiak,Thefunctionalanatomyofmotorre-coveryafterstrokeinhumans:astudywithpositronemissiontomography,AnnNeurol29(1991),63–71.

[11]P.Cicinelli,R.TraversaandP.M.Rossini,Post-strokereor-ganizationofbrainmotoroutputtothehand:a2-4monthfollow-upwithfocalmagnetictranscranialstimulation,Elec-troencephalogrClinNeurophysiol105(1997),438–450.[12]J.G.ColebatchandS.C.Gandevia,Thedistributionofmuscu-larweaknessinuppermotorneuronlesionsaffectingthearm,Brain112(Pt3)(1989),749–763.

[13]S.C.Cramer,G.Nelles,R.R.Benson,J.D.Kaplan,R.A.Park-er,K.K.Kwong,D.N.Kennedy,S.P.FinklesteinandB.R.Rosen,AfunctionalMRIstudyofsubjectsrecoveredfromhemipareticstroke,Stroke28(1997),2518–2527.

[14]S.C.Cramer,R.M.Weisskoff,J.D.Schaechter,G.Nelles,M.

Foley,S.P.FinklesteinandB.R.Rosen,Motorcortexactivationisrelatedtoforceofsqueezing,HumBrainMapp16(2002),197–205.

[15]E.C.Crosby,T.HumphreyandE.W.Lauer,CorrelativeAnato-myoftheNervousSystem,Macmillan,NewYork,1962,pp.262–264.

[16]R.A.Davidoff,Thepyramidaltract,Neurology40(1990),

332–339.

[17]A.Dincer,O.Ozyurt,D.Kaya,E.Kosak,C.Ozturk,C.

ErzenandM.N.Pamir,DiffusionTensorImagingofGuillain-MollaretTriangleinPatientswithHypertrophicOlivaryDe-generation,JNeuroimaging(2009).

[18]P.W.Duncan,L.B.Goldstein,D.Matchar,G.W.DivineandJ.

Feussner,Measurementofmotorrecoveryafterstroke.Out-comeassessmentandsamplesizerequirements,Stroke23(1992),1084–1089.

[19]J.Duque,F.Hummel,P.Celnik,N.Murase,R.Mazzocchio

andL.G.Cohen,Transcallosalinhibitioninchronicsubcorti-calstroke,Neuroimage28(2005),940–946.

[20]H.H.Ehrsson,A.Fagergren,T.Jonsson,G.Westling,R.S.

JohanssonandH.Forssberg,Corticalactivityinprecision-versuspower-griptasks:anfMRIstudy,JNeurophysiol83(2000),528–536.

[21]A.Feydy,R.Carlier,A.Roby-Brami,B.Bussel,F.Cazalis,

L.Pierot,Y.BurnodandM.A.Maier,Longitudinalstudyofmotorrecoveryafterstroke:recruitmentandfocusingofbrainactivation,Stroke33(2002),1610–1617.

[22]E.A.Fridman,T.Hanakawa,M.Chung,F.Hummel,R.C.Lei-guardaandL.G.Cohen,Reorganizationofthehumanipsile-sionalpremotorcortexafterstroke,Brain127(2004),747-758.

[23]J.H.Hong,S.M.Son,W.M.Byun,H.W.Jang,S.H.Ahnand

S.H.Jang,Aberrantpyramidaltractinmediallemniscusofbrainsteminthehumanbrain,Neuroreport20(2009),695–697.S.H.Jang/Areviewofdiffusiontensorimagingstudiesonmotorrecoverymechanisms

351

[24]

S.H.Jang,Aberrantpyramidaltractinthemediallemniscusofthebrainsteminapatientwithapontineinfarct:diffusiontensortractographystudy,JNeurolNeurosurgPsychiatry80(2009),243–244.

[25]S.H.Jang,Medialreorganizationofmotorfunctionincoronaradiatafollowingmiddlecerebralarteryinfarction:acasereport,Neuralregenerationresearch4(2009),668–671.[26]S.H.Jang,Areviewofmotorrecoverymechanismsinpatientswithstroke,NeuroRehabilitation22(2007),253–259.

[27]S.H.Jang,Areviewoftheipsilateralmotorpathwayasare-coverymechanisminpatientswithstroke,NeuroRehabilita-tion24(2009),315–320.

[28]S.H.Jang,Theroleofthecorticospinaltractinmotorrecoveryinpatientswithastroke:areview,NeuroRehabilitation24(2009),285–290.

[29]

S.H.Jang,S.H.Ahn,J.S.Ha,S.J.Lee,J.LeeandY.H.Ahn,Peri-infarctreorganizationinapatientwithcoronaradiatainfarct:acombinedstudyoffunctionalMRIanddiffusiontensorimagetractography,RestorNeurolNeurosci24(2006),65–68.

[30]

S.H.Jang,S.H.Ahn,J.Sakong,W.M.Byun,B.Y.Choi,C.H.Chang,D.BaiandS.M.Son,ComparisonofTMSandDTTforpredictingmotoroutcomeinintracerebralhemorrhage,JNeurolSci290(2010),107–111.

[31]

S.H.Jang,W.M.Byun,B.S.Han,H.J.Park,D.Bai,Y.H.Ahn,Y.H.KwonandM.Y.Lee,Recoveryofapartiallydamagedcorticospinaltractinapatientwithintracerebralhemorrhage:adiffusiontensorimagestudy,RestorNeurolNeurosci24(2006),25–29.

[32]

S.H.Jang,S.H.Cho,Y.H.Kim,Y.H.Kwon,W.M.Byun,S.J.Lee,S.M.ParkandC.H.Chang,Corticalactivationchangesassociatedwithmotorrecoveryinpatientswithprecentralknobinfarct,Neuroreport15(2004),395–399.

[33]

S.H.Jang,S.H.Cho,Y.H.Kim,S.H.You,S.H.Kim,O.Kim,D.S.YangandS.Son,Motorrecoverymechanismofdif-fuseaxonalinjury:acombinedstudyoftranscranialmagneticstimulationandfunctionalMRI,RestorNeurolNeurosci23(2005),51–56.

[34]

S.H.Jang,S.H.Kim,S.H.Cho,B.Y.ChoiandY.W.Cho,Demonstrationofmotorrecoveryprocessinapatientwithin-tracerebralhemorrhage,NeuroRehabilitation22(2007),141–145.

[35]

S.H.Jang,K.A.Park,S.H.Ahn,Y.W.Cho,W.M.Byun,S.M.Son,J.H.ChoiandY.H.Kwon,Transcallosalfibersfromcor-ticospinaltractinpatientswithcerebralinfarct,NeuroReha-bilitation24(2009),159–164.

[36]

S.H.Jang,S.H.You,Y.H.Kwon,M.Hallett,M.Y.LeeandS.H.Ahn,CorticalreorganizationassociatedlowerextremitymotorrecoveryasevidencedbyfunctionalMRIanddiffusiontensortractographyinastrokepatient,RestorNeurolNeurosci23(2005),325–329.

[37]P.R.Kennedy,Corticospinal,rubrospinalandrubro-olivaryprojections:aunifyinghypothesis,TrendsNeurosci13(1990),474–479.

[38]

S.G.Kim,J.Ashe,K.Hendrich,J.M.Ellermann,H.Merkle,K.UgurbilandA.P.Georgopoulos,Functionalmagneticres-onanceimagingofmotorcortex:hemisphericasymmetryandhandedness,Science261(1993),615–617.

[39]

Y.H.Kim,S.H.Jang,W.M.Byun,B.S.Han,K.H.LeeandS.H.Ahn,Ipsilateralmotorpathwayconfirmedbycombinedbrainmappingofapatientwithhemipareticstroke:acasereport,ArchPhysMedRehabil85(2004),1351–1353.

[40]

S.Y.Kwak,S.S.Yeo,B.Y.Choi,C.H.ChangandS.H.Jang,Corticospinaltractchangeintheunaffectedhemisphereatthe

earlystageofintracerebralhemorrhage:adiffusiontensortractographystudy,EurNeurol63(2010),149–153.

[41]

Y.H.Kwon,C.H.Lee,S.H.Ahn,M.Y.Lee,D.S.Yang,W.M.Byun,J.W.ParkandS.H.Jang,Motorrecoveryviatheperi-infarctareainpatientswithcoronaradiatainfarct,NeuroRe-habilitation22(2007),105–108.

[42]

Y.H.Kwon,M.Y.Lee,J.W.Park,J.H.Kang,D.S.Yang,Y.H.Kim,S.H.AhnandS.H.Jang,Differencesofcorticalactiva-tionpatternbetweencorticalandcoronaradiatainfarct,Neu-rosciLett417(2007),138–142.

[43]

S.K.Lee,D.I.Kim,J.Kim,D.J.Kim,H.D.Kim,D.S.KimandS.Mori,Diffusion-tensorMRimagingandfibertractog-raphy:anewmethodofdescribingaberrantfiberconnectionsindevelopmentalCNSanomalies,Radiographics25(2005),53–65;discussion66–58.

[44]

D.M.Little,M.F.Kraus,J.Joseph,E.K.Geary,T.Susmaras,X.J.Zhou,N.PliskinandP.B.Gorelick,Thalamicintegri-tyunderliesexecutivedysfunctionintraumaticbraininjury,Neurology74(2010),558–564.

[45]

P.Manganotti,S.Patuzzo,F.Cortese,A.Palermo,N.SmaniaandA.Fiaschi,Motordisinhibitioninaffectedandunaffectedhemisphereintheearlyperiodofrecoveryafterstroke,ClinNeurophysiol113(2002),936–943.

[46]

R.S.Marshall,G.M.Perera,R.M.Lazar,J.W.Krakauer,R.C.ConstantineandR.L.DeLaPaz,Evolutionofcorticalactiva-tionduringrecoveryfromcorticospinaltractinfarction,Stroke31(2000),656–661.

[47]S.Mori,B.J.Crain,V.P.ChackoandP.C.vanZijl,Three-dimensionaltrackingofaxonalprojectionsinthebrainbymagneticresonanceimaging,AnnNeurol45(1999),265–269.[48]P.W.NathanandM.C.Smith,Longdescendingtractsinman.I.Reviewofpresentknowledge,Brain78(1955),248–303.[49]J.J.Neil,Diffusionimagingconceptsforclinicians,JMagnResonImaging27(2008),1–7.

[50]J.Netz,T.LammersandV.Homberg,Reorganizationofmo-toroutputinthenon-affectedhemisphereafterstroke,Brain120(Pt9)(1997),1579–1586.

[51]

J.M.Newton,N.S.Ward,G.J.Parker,R.Deichmann,D.C.Alexander,K.J.FristonandR.S.Frackowiak,Non-invasivemappingofcorticofugalfibresfrommultiplemotorareas–relevancetostrokerecovery,Brain129(2006),1844–1858.[52]R.Nyberg-HansenandE.Rinvik,Somecommentsonthepyramidaltract,withspecialreferencetoitsindividualvaria-tionsinman,ActaNeurolScand63(1963),1–30.

[53]J.J.OhabandS.T.Carmichael,Poststrokeneurogenesis:emergingprinciplesofmigrationandlocalizationofimmatureneurons,Neuroscientist14(2008),369–380.

[54]

K.Pannek,J.B.Chalk,S.FinniganandS.E.Rose,Dynamiccorticospinalwhitematterconnectivitychangesduringstrokerecovery:adiffusiontensorprobabilistictractographystudy,JMagnResonImaging29(2009),529–536.

[55]

G.J.ParkerandD.C.Alexander,Probabilisticanatomicalconnectivityderivedfromthemicroscopicpersistentangularstructureofcerebraltissue,PhilosTransRSocLondBBiolSci360(2005),893–902.

[56]

R.Pineiro,S.Pendlebury,H.Johansen-BergandP.M.Matthews,FunctionalMRIdetectsposteriorshiftsinprimarysensorimotorcortexactivationafterstroke:evidenceoflocaladaptivereorganization?Stroke32(2001),1134–1139.

[57]K.Puvanendran,P.K.WongandG.A.Ransome,SyndromeofDejerine’sFourthReich,ActaNeurolScand57(1978),349–353.

[58]

J.D.Schaechter,Z.P.Fricker,K.L.Perdue,K.G.Helmer,M.G.Vangel,D.N.GreveandN.Makris,Microstructuralstatusof

352S.H.Jang/Areviewofdiffusiontensorimagingstudiesonmotorrecoverymechanisms

ipsilesionalandcontralesionalcorticospinaltractcorrelateswithmotorskillinchronicstrokepatients,HumBrainMapp30(2009),3461–3474.

[59]G.Schlaug,S.MarchinaandA.Norton,Evidenceforplasticity

inwhite-mattertractsofpatientswithchronicBroca’saphasiaundergoingintenseintonation-basedspeechtherapy,AnnNYAcadSci1169(2009),385–394.

[60]R.J.SeitzandC.M.Buetefisch,Recoveryfromischemic

stroke:atranslationalresearchperspectiveforneurology,Fu-tureNeurol1(2006),571–586.

[61]R.J.Seitz,C.M.Butefisch,R.KleiserandV.Homberg,Re-organisationofcerebralcircuitsinhumanischemicbraindis-ease,RestorNeurolNeurosci22(2004),207–229.

[62]D.J.Serrien,L.H.Strens,M.J.Cassidy,A.J.ThompsonandP.

Brown,Functionalsignificanceoftheipsilateralhemisphereduringmovementoftheaffectedhandafterstroke,ExpNeurol190(2004),425–432.

[63]S.M.Son,S.H.Park,H.K.Moon,E.Lee,S.H.Ahn,Y.W.Cho,

W.M.ByunandS.H.Jang,Diffusiontensortractographycanpredicthemiparesisininfantswithhighriskfactors,NeurosciLett451(2009),94–97.

[64]A.Stadlbauer,E.Salomonowitz,G.Strunk,T.Hammenand

O.Ganslandt,Age-relateddegradationinthecentralnervoussystem:assessmentwithdiffusion-tensorimagingandquan-titativefibertracking,Radiology247(2008),179–188.

[65]C.M.Stinear,P.A.Barber,P.R.Smale,J.P.Coxon,M.K.Flem-ingandW.D.Byblow,Functionalpotentialinchronicstrokepatientsdependsoncorticospinaltractintegrity,Brain130(2007),170–180.

[66]E.V.Sullivan,E.AdalsteinssonandA.Pfefferbaum,Selec-tiveage-relateddegradationofanteriorcallosalfiberbundlesquantifiedinvivowithfibertracking,CerebCortex16(2006),1030–1039.

[67]N.Takeuchi,T.Chuma,Y.Matsuo,I.WatanabeandK.Ikoma,

Repetitivetranscranialmagneticstimulationofcontralesionalprimarymotorcorteximproveshandfunctionafterstroke,Stroke36(2005),2681–2686.

[68]R.Traversa,P.Cicinelli,A.Bassi,P.M.RossiniandG.Bernar-di,Mappingofmotorcorticalreorganizationafterstroke.

Abrainstimulationstudywithfocalmagneticpulses,Stroke28(1997),110–117.

[69]P.P.Urban,S.Wicht,G.Vucorevic,S.Fitzek,J.Marx,F.

Thomke,A.Mika-Gruttner,C.Fitzek,P.StoeterandH.C.Hopf,Thecourseofcorticofacialprojectionsinthehumanbrainstem,Brain124(2001),1866–1876.

[70]N.S.Ward,J.M.Newton,O.B.Swayne,L.Lee,A.J.Thomp-son,R.J.Greenwood,J.C.RothwellandR.S.Frackowiak,Motorsystemactivationaftersubcorticalstrokedependsoncorticospinalsystemintegrity,Brain129(2006),809–819.[71]C.Weiller,F.Chollet,K.J.Friston,R.J.WiseandR.S.Frack-owiak,Functionalreorganizationofthebraininrecoveryfromstriatocapsularinfarctioninman,AnnNeurol31(1992),463–472.

[72]K.Yamada,K.Sakai,K.Akazawa,S.YuenandT.Nishimura,

MRtractography:areviewofitsclinicalapplications,MagnResonMedSci8(2009),165–174.

[73]T.Yamamoto,Aberrantpyramidaltract:Aclinicopathological

review,NeurolMed(Tokyo)43(1995),306–312.

[74]T.Yamamoto,[Aberrantpyramidaltract:astudywithSudan

IIIstain],NoToShinkei41(1989),777–780.

[75]T.Yamamoto,M.YamasakiandT.Imai,Retrogradepyramidal

tractdegenerationinapatientwithcervicalhaematomyelia,JNeurolNeurosurgPsychiatry52(1989),382–386.

[76]M.YamashitaandT.Yamamoto,Aberrantpyramidaltractin

themediallemniscusofthehumanbrainstem:normaldistri-butionandpathologicalchanges,EurNeurol45(2001),75–82.

[77]D.S.Yang,D.S.Kim,Y.H.KimandS.H.Jang,Demonstration

ofrecoveryofaseverelydamagedcorticospinaltract:adiffu-siontensortractographyandtranscranialmagneticstimulationfollow-upstudy,JComputAssistTomogr32(2008),418–420.[78]S.S.Yeo,B.Y.Choi,C.H.ChangandS.H.Jang,Transpontine

connectionfibersbetweencorticospinaltractsinhemipareticpatientswithintracerebralhemorrhage,EurNeurol63(2010),154–158.

[79]D.H.York,Reviewofdescendingmotorpathwaysinvolved

withtranscranialstimulation,Neurosurgery20(1987),70–73.

因篇幅问题不能全部显示,请点此查看更多更全内容