动点问题专题训练
1、(09包头)如图,已知△ABC中,ABAC10厘米,BC8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运B 动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
解:(1)①∵t1秒, ∴BPCQ313厘米,
∵AB10厘米,点D为AB的中点, ∴BD5厘米.
又∵PCBCBP,BC8厘米, ∴PC835厘米, ∴PCBD. 又∵ABAC, ∴BC,
∴△BPD≌△CQP. ························································································· (4分) ②∵vPvQ, ∴BPCQ,
又∵△BPD≌△CQP,BC,则BPPC4,CQBD5, ∴点P,点Q运动的时间t∴vQCQt543154BP343A D Q C P 秒,
厘米/秒. ············································································ (7分)
(2)设经过x秒后点P与点Q第一次相遇, 由题意,得解得x803154x3x210,
秒.
初中数学专题辅导—动点问题
∴点P共运动了
803380厘米.
∵8022824,
∴点P、点Q在AB边上相遇, ∴经过
803秒点P与点Q第一次在边AB上相遇. ················································(12分)
34x6与坐标轴分别交于A、B2、(09齐齐哈尔)直线y两点,动点P、Q同
时从O点出发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四
y B 边形的第四个顶点M的坐标.
解(1)A(8,0)B(0,6) ·················· 1分 (2)OA8,OB6 AB10
点Q由O到A的时间是点P的速度是
6108P x 818(秒)
O Q A 2(单位/秒) ·· 1分
当P在线段OB上运动(或0≤t≤3)时,OQt,OP2t
························································································································· 1分 St ·
当P在线段BA上运动(或3t≤8)时,OQt,AP6102t162t, 如图,作PDOA于点D,由
S12OQPD35t22PDBOAPAB,得PD486t5, ·································· 1分
245t·················································································· 1分
(自变量取值范围写对给1分,否则不给分.)
(3)P,··········································································································· 1分
55824初中数学专题辅导—动点问题
24824122412··························································· 3分 I1,,M2,,M3, ·555555
3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴
相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8),
∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k.
在Rt△AOP中,k+4=(8+k), ∴k=-3,∴OP等于⊙P的半径,
∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P
在线段OB上时,作PE⊥CD于E. ∵△PCD为正三角形,∴DE= ∴PE=3322
2
2
12CD=
32,PD=3,
.
∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB,
33AOABPEPB4452, PB∴,即=初中数学专题辅导—动点问题
∴PB3152,
3152∴POBOPB8∴P(0,∴k31528), 8.
,
3152当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315231523152-8),
-8, -8或k=-3152∴当k=-8时,以⊙P与直线l的两个交点和圆心P为顶点的三
角形是正三角形.
4(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
初中数学专题辅导—动点问题
解:
初中数学专题辅导—动点问题
5(09河北)在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单
B 位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动
E 的时间是t秒(t>0). Q (1)当t = 2时,AP = ,点Q到AC的距
D 离是 ;
A C P
(2)在点P从C向A运动的过程中,求△APQ
图16
的面积S与 t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. ..
解:(1)1,;
58(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP由△AQF∽△ABC,BC52324, 得
QF412t53t.
.∴QF4565t45t.
∴S即S(3t)25, .
B t2t(3)能.
①当DE∥QB时,如图4. ∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得即
t33t5AQACAPABE Q D A C 图4
,
B P
. 解得t98.
Q D A P
E C ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得 即
t53t3AQABAPAC,
. 解得t158图5
.
B
Q G D A P C(E) 初中数学专题辅导—动点问题
(4)t52或t4514.
①点P由C向A运动,DE经过点C. 连接QC,作QG⊥BC于点G,如图6.
PCt,QC2QC2342222QGCG[(5t)][4(5t)]55.
52由PC2,得t23422[(5t)][4(5t)]55,解得t.
②点P由A向C运动,DE经过点C,如图7.
3445222(6t)[(5t)][4(5t)],t5514】
6(09
河南))如图,在Rt△ABC中,
ACB90°,B60°,BC2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点A E,设直线l的旋转角为. (1)①当 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当 度时,四边形EDBC是直角梯形,此时AD的长为 ;
(2)当90°时,判断四边形EDBC是否为菱形,并说A 明理由.
E O D l C B C O (备用图)
B
解(1)①30,1;②60,1.5; „„„„„„„„4分 (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED.
∵CE//AB, ∴四边形EDBC是平行四边形. „„„„„„„„6分 在Rt△ABC中,∠ACB=900,∠B=600,BC=2,
∴∠A=300.
∴AB=4,AC=23. ∴AO=
12AC=3 . „„„„„„„„8分
在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2.
初中数学专题辅导—动点问题
∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形 „„„„„„„„10分
7(09济南)如图,在梯形
ABCD中,
动点M从B点出发沿线段AD∥BC,AD3,DC5,AB42,∠B45.以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒. (1)求BC的长.
(2)当MN∥AB时,求t的值. B (3)试探究:t为何值时,△MNC为等腰三角形.
BCA D N M
C
解:(1)如图①,过A、D分别作AKBC于K,DHBC于H,则四边形ADHK是矩形
∴KHAD3. ····························································································· 1分 在Rt△ABK中,AKABsin4542.224
BKABcos454222·································································· 2分 4 ·
在Rt△CDH中,由勾股定理得,HC B
543
22∴BCBKKHHC43310························································· 3分
A
D
A
D
N
C
B
C
K
H
G
M
(图①) (图②)
(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BGAD3 ∴GC1037 ························································································· 4分 由题意知,当M、N运动到t秒时,CNt,CM102t. ∵DG∥MN
∴∠NMC∠DGC 又∠C∠C
∴△MNC∽△GDC
初中数学专题辅导—动点问题
∴即
CNCDt5CMCG ································································································ 5分
102t750解得,t ································································································· 6分
17(3)分三种情况讨论:
①当NCMC时,如图③,即t102t ∴t B
M
103 ········································································································ 7分 A
D
N
C
B
C
A
D N
M H E
(图④) (图③)
②当MNNC时,如图④,过N作NEMC于E 解法一:
由等腰三角形三线合一性质得EC在Rt△CEN中,coscEC12MC12102t5t
5tNCtCH3 又在Rt△DHC中,coscCD5
∴
5tt3解得t5258
····································································································· 8分
解法二:
∵∠C∠C,DHCNEC90 ∴△NEC∽△DHC ∴即
NCDCt5ECHC
5t3258
∴t ········································································································ 8分
12NC12t
③当MNMC时,如图⑤,过M作MFCN于F点.FC解法一:(方法同②中解法一)
初中数学专题辅导—动点问题
1MC60解得t
17解法二: cosCFC2 102t5t3A D
N F
B
(图⑤)
∵∠C∠C,MFCDHC90 ∴△MFC∽△DHC ∴
FCHCMCDCH M
C
t102t2即 3560∴t
17256010综上所述,当t、t或t时,△MNC为等腰三角形 ················· 9分
81731
8(09江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60. (1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
A E B
图1 A E B
D F C
B
A E P N
D F C B
A E P D N F C
M D F C
图2
D
M 图3
(第25题) A
E B
图5(备用)
F C
图4(备用)
初中数学专题辅导—动点问题
解(1)如图1,过点E作EGBC于点G. ························· 1分
∵E为AB的中点,
∴BE1212A E B
D F C
图1
AB2.在Rt△EBG中,∠B60,∴∠BEG30.··············2分 ∴BGBE1,EG2122 3.G
即点E到BC的距离为3. ···········································3分 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PMEF,EGEF,∴PM∥EG. ∵EF∥BC,∴EPGM,PMEG3.
同理MNAB4. ······························································································ 4分 如图2,过点P作PHMN于H,∵MN∥AB, ∴∠NMC∠B60,∠PMH30. ∴PH12PM32A E P H
B
N
D F C
.32. 32522∴MHPMcos30G M 图2
则NHMNMH4.
在Rt△PNH中,PNNHPH2352222 7.∴△PMN的周长=PMPNMN374. ············································ 6分
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角
形.
当PMPN时,如图3,作PRMN于R,则MRNR. 类似①,MR.
2∴MN2MR3. ································································································ 7分
3∵△MNC是等边三角形,∴MCMN3.
此时,xEPGMBCBGMC6132. ········································· 8分 A E B
P R
G
M
图3
C
B
G
图4
M
D N F
E A
P D F N C
B
A E D F(P) N C
G
图5
M
初中数学专题辅导—动点问题
当MPMN时,如图4,这时MCMNMP此时,xEPGM61353.
3.
当NPNM时,如图5,∠NPM∠PMN30. 则∠PMN120,又∠MNC60, ∴∠PNM∠MNC180.
因此点P与F重合,△PMC为直角三角形.
∴MCPMtan301. 此时,xEPGM6114. 综上所述,当x2或4或5·······················10分 3时,△PMN为等腰三角形. ·
9(09兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,
同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,
设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
解:(1)Q(1,0) ····································································································· 1分 点P运动速度每秒钟1个单位长度. ·························································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF ∴AF1046.
BE4.
y 在Rt△AFB中,AB826210 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵ABC90,ABBC ∴△ABF≌△BCH.
AMFONDCPHGxBQE初中数学专题辅导—动点问题
∴BHAF6,CHBF8.
∴OGFH8614,CG8412. ∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴
APABAMAF35MPBF. 45tt10AM6MP8.
35t,ONPM45t ∴AMt,PM. ∴PNOM10.
设△OPQ的面积为S(平方单位) ∴S12(1035t)(1t)54710t310t2(0≤t≤10) ························································ 5分
说明:未注明自变量的取值范围不扣分.
47310 ∵a<0 ∴当t102(310)476时, △OPQ的面积最大. ····························· 6分
此时P的坐标为((4) 当
t539415,
295135310) . ················································································ 7分
或t时, OP与PQ相等. ························································ 9分
10(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.AEF90,且EF交正方形外角DCG的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AEEF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
B E C 图1 A D
F G
B
E C 图2 A
D
F G
B 图3
C E G
A
D
F 初中数学专题辅导—动点问题
解:(1)正确. ·····························································(1分) 证明:在AB上取一点M,使AMEC,连接ME. (2分) BMBE.BME45°,AME135°. CF是外角平分线,
DCF45°, ECF135°.
AMEECF.
AEBBAE90°,AEBCEF90°,
A M B E
D
F C
G
BAECEF.
△AME≌△BCF(ASA). ············································································· (5分)
······································································································ (6分) AEEF. ·
(2)正确. ····························································· (7分) 证明:在BA的延长线上取一点N.
使ANCE,连接NE. ········································ (8分) BNBE.
NPCE45°.
N A D
F 四边形ABCD是正方形, AD∥BE. DAEBEA.
B C E G
NAECEF.
△ANE≌△ECF(ASA). ·············································································(10分)
····································································································· (11分) AEEF. ·
11(09
天津)已知一个直角三角形纸片OAB,其中AOB90°,OA2,OB4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D. (Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y
B
x O A (Ⅱ)若折叠后点B落在边OA上的点为B,设OBx,OCy,试写出y关于x的函数解析式,并确定y的取值范围;
B y x O A
(Ⅲ)若折叠后点B落在边OA上的点为B,且使BD∥OB,求此时点C的坐标. y B O A x 初中数学专题辅导—动点问题
解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.
设点C的坐标为0,mm0. 则BCOBOC4m. 于是ACBC4m.
在Rt△AOC中,由勾股定理,得AC2OC2OA2, 即4mm2,解得m22232.
3点C的坐标为0,2······························································································ 4分 . ·(Ⅱ)如图②,折叠后点B落在OA边上的点为B, 则△BCD≌△BCD. 由题设OBx,OCy, 则BCBCOBOC4y,
在Rt△BOC中,由勾股定理,得BC2OC2OB2.
4yyx,
222即y18x2 ·········································································································· 6分
2由点B在边OA上,有0≤x≤2,
解析式y18x20≤x≤2为所求.
2 当0≤x≤2时,y随x的增大而减小, y的取值范围为
32≤y≤2.················································································ 7分
(Ⅲ)如图③,折叠后点B落在OA边上的点为B,且BD∥OB. 则OCBCBD.
OCBCBD,有CB∥BA. 又CBDCBD,Rt△COB∽Rt△BOA.
OBOC有,得OC2OB. ············································································ 9分 OAOB在Rt△BOC中,
设OBx0x0,则OC2x0. 由(Ⅱ)的结论,得2x018x202,
初中数学专题辅导—动点问题
解得x0845.x00,x0845. ·············································································10分 8516. ·点C的坐标为0,12(09太原)问题解决 F
M 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当
CECD12D
时,求
AMBN的值.
B E
方法指导:
为了求得AM的值,可先求BN、AM的长,不妨设:AB=2
BN
类比归纳
在图(1)中,若
CECDCECD13,则
AMBNN
图(1)
C
的值等于 ;若
AMBNCECD14,则
AMBN的
值等于 ;若
n的式子表示)
1n(n为整数),则的值等于 .(用含
联系拓广
如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设
ABBC1mmCE1AM1,,则
CDnBN的值等
于 .(用含m,n的式子表示)
解:方法一:如图(1-1),连接BM,EM,BE.
F M A D
B
N 图(1-1)
C E
F
A M D E
B
N
图(2)
C
初中数学专题辅导—动点问题
由题设,得四边形ABNM和四边形FENM关于直线MN对称.
∴MN垂直平分BE.∴BMEM,BNEN.············································ 1分 ∵四边形ABCD是正方形,∴ADC90°,ABBCCDDA2. ∵CECD12设BNx,则NEx,NC2x. ,CEDE1. 在Rt△CNE中,NE2CN2CE2. ∴x2x1.解得x22254,即BN54 ················································ 3分 . 在Rt△ABM和在Rt△DEM中,
222AMABBM, 222DMDEEM,
2222 ······································································· 5分 AMABDMDE. 设AMy,则DM2y,∴y22y1.
2222 解得y ∴AMBN1415,即AM14. ················································································ 6分
. ··································································································· 7分
54. ·········································································· 3分
方法二:同方法一,BN 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.
F M G A D
B E
C N
图(1-2)
∵AD∥BC,∴四边形GDCN是平行四边形.
∴NGCDBC. 同理,四边形ABNG也是平行四边形.∴AGBN54.
EBCBNM90°. ∵MNBE,
MNGBNM90°,EBCMNG. NGBC,
在△BCE与△NGM中
EBCMNG, BCNG,∴△BCE≌△NGM,ECMG. ······························5分
CNGM90°.初中数学专题辅导—动点问题
∵AMAGMG,AM=∴类比归纳
25AMBN1554114 ······························································ 6分 .·································································································· 7分 .(或
410);
917;
n122n1············································································10分
联系拓广
nm2n1nm12222 ····································································································12分
因篇幅问题不能全部显示,请点此查看更多更全内容