ContentslistsavailableatSciVerseScienceDirect
ProgressinOrganicCoatings
journalhomepage:www.elsevier.com/locate/porgcoat
Waterbornevegetableoilepoxycoatings:Preparationandcharacterization
MohammadYaseenShah,SharifAhmad∗
MaterialsResearchLab.,DepartmentofChemistry,JamiaMilliaIslamia,NewDelhi110025,India
article
info
abstract
Articlehistory:
Received15January2012
Receivedinrevisedform27April2012Accepted3May2012
Available online 2 June 2012
Keywords:WaterborneVegetableoilCoatings
Theutilizationofrenewableresourcessuchasvegetableoils[VO]forthedevelopmentofenvironmentfriendlywaterborne[WB]materialsisencouragedworldwide.ThepreparationofWBmaterialsfromVOisachallengingtaskduetotheirhydrophobicnature.ThepresentworkdescribesthesynthesisofWBepoxyfromVO[WBOE].WBOEwascharacterizedforitsstructuralandphysico-chemicalattributes.Thecuredmaterialwassubjectedtophysico-mechanical,chemicalresistancetests,andthermalanalyses.ThecoatingsofWBOEshowedgoodphysico-mechanical,chemicalresistanceaswellasthermalstabilityandmayfindapplicationaseco-friendlyWBcoatingswithsafeusageupto220◦C.
© 2012 Elsevier B.V. All rights reserved.
1.Introduction
Environmentalconcerns,limitedfossilresourcesandeco-nomiccompetitivenesshavemotivatedacademicandindustrialresearcherstowardstheenhanceduseofrenewablefeedstockfortheproductionofenvironmentfriendlymaterials.Inthiscon-text,theutilizationofrenewableresourcessuchasvegetableoils[VO]isanecessarysteptowardssustainabledevelopment.VOsuchasLinseed,Soybean,Castor,CashewnutShellLiquid,Tung,Fish,Nahar,Rubberseedoilsarebeingusedforthepreparationofalkyds[1],epoxies[2–4],polyols[5,6]andpolyurethanes[7–11].VOderivativesasvalueaddedpolymers/monomersfindenhancedapplicationsasenvironmentfriendlywithlowVOC,solventless,highsolids,hyperbranchedorwaterborne[WB]coatingmateri-alsthatofferimprovedperformanceandreduction/eliminationintheuseofvolatileorganicsolventsincoatingsproducedthere-from.Thedevelopmentofwaterborne[WB]materialsfromVOisthemostchallengingtaskduethehydrophobicnatureofVOchains.VObasedWBcoatingmaterialsaregenerallynon-toxic,non-flammable,odorlessandeco-friendly.Besidesthese,abundantavailabilityofwaterassolventandrenewablenatureofVOareadditionaladvantages[12].Theapproachoffersasignificantoppor-tunitytoreducethedependencyonpetroleumbasedrawmaterialsincludingsolvents,andprovidessustainableandgreensolutionstothecoatingsindustry.Aigbodionetal.reportedtheprepara-tionofWBcoatingsfrommaleinatedandfumarisedRubberseedoil[13,14].Polyurethanedispersions[PUD]fromFishandLinseedoilhaveshowngoodcoatingpropertiesasreportedbyNimbalkarand
Athawale.FishoilPUDexhibitedgoodimpactresistance,adhesionandflexibility[15].SoybeanalkydemulsionsmodifiedwithTungoilpreparedbyWangetal.haveshowngoodhydrolyticstabilityandfilmgloss[16].SeveralotherworkershavealsopreparedVOderivedWBalkyds[12,13],PUD[11,17]andWBoil-acrylates[18].EpoxieshavebeenpreparedfromLinseed,Rapeseed,Olive,Corn,andSunfloweroils.However,limitedattentionhasbeenpaidtothesynthesisandcharacterizationofWBepoxiesfromVO[2].Inthisarticle,wedescribethepreparationofWBepoxy[WBOE]fromLinseedoil[LSO].WBOEwascharacterizedforitsstructureandphysico-chemicalproperties.WBOEwasthenreactedwithphthalicanhydride[PA]andtheirreactionproduct[WBOE-PA]wasfinallycuredwithWBphenol–formaldehyde[PF]toobtainWBcoatings[WBOE–PA–PF].Physico-mechanical,chemicalresistanceandther-malbehaviourofthecoatingswerealsoinvestigated.
2.Experimental
2.1.Materials
LSOwaspurchasedfromPioneer(Delhi,India),glacialaceticacid,hydrogenperoxide(30%),sulphuricacid,diethanolamine[DEA],phenol,formaldehyde(37%),phthalicanhydride[PA],ethanolanddiethyletherwereobtainedfromMerck(India),orthophosphoricacidandtriethylamine[TEA]weresuppliedbyS.D.FineChem.Ltd.(Mumbai,India).
2.2.PreparationofLSOepoxy(LSOE)andwatersolublephenol–formaldehyde(PF)
∗Correspondingauthor.Tel.:+919891290510.
E-mailaddresses:muntaziryaseen@gmail.com(M.Y.Shah),sharifahmadjmi@yahoo.co.in(S.Ahmad).
LSOE[19]andwatersolublephenol–formaldehyde(PF)[20]werepreparedbymethodsreportedelsewhere.
0300-9440/$–seefrontmatter© 2012 Elsevier B.V. All rights reserved.http://dx.doi.org/10.1016/j.porgcoat.2012.05.001
M.Y.Shah,S.Ahmad/ProgressinOrganicCoatings75 (2012) 248–252
249
Table1
PhysicochemicalanalysesofLSO,LSOEandWBOE.
Characteristics
LSO
LSOE
WBOEEpoxyequivalent–241480.6Hydroxylvalue(%)–
11.7617.87Refractiveindex1.4781.4821.489Specificgravity
0.959
1.0469
1.300
2.3.PreparationofWBoilepoxyfromLSOE(WBOE)
LSOE(0.1mole)wastakeninathree-neckedroundbottomflaskfittedwiththermometerandmagneticstirrer.DEA(0.1mole)wasaddeddropwiseintothereactionflaskwithcontinuousstirringat50◦Cfor10–15minandthetemperaturewasraisedgraduallyto80◦C.Nosolventwasusedduringthereaction.Theprogressofthereactionwasmonitoredbyepoxyequivalent[EE]andthinlayerchromatography[TLC].OnachievingthedesiredEE,thereactionwasterminated.Thefinalproduct(WBOE)wasfoundtobehighlyviscous,reddishbrownincolorandsolubleinasolventblendofwater:ethanol[50v:50v].
2.4.PreparationofWBOE-PA
Asolventblendofwater:ethanol[50v:50v]wasaddedtothereactionflaskcontainingWBOE.PAwasaddedtothissolutioninthepresenceof1–2dropsoforthophosphoricacidandthetemperaturewasraisedto150±5◦Cundervigorousstirring.Theprogressofthereactionwasmonitoredbythedeterminationofacidvalue(AV)atregularintervalsoftime.ThereactionwasstoppedafterachievingthedesiredAV;finallyyellowishbrownWBOE-PAwasobtained.
2.5.Characterization
FTIRspectraweretakenonSHIMAZDUspectrometermodelIRAFFINITY-1,FTIR-8400SusinganNaClcell.PhysicochemicalpropertieslikeAV(ASTMD5555-61),EE(ASTMD1652),hydroxylvalue[HV](ASTMD1957-86),specificgravity[SG](ASTMD792)andrefractiveindex[RI](ASTMD1747),giveninTable1,weredeterminedbystandardASTMMethods.Thermo-gravimetricanal-ysis(TGA)wasperformedonEXSTARTG/DTA6000from40◦Cto700◦Cinnitrogenatmosphereat20◦C/minheatingrate.Solubilityofthematerialwasassessedasprovidedinproceedingsections.
Forthepreparationandtestingofcoatings,WBOE-PAandPFweremixedinabeakerindifferentratios.Therecipesofthreedif-ferentratiosofcoatingmaterialsthatwerepreparedfromWBOE,PAandPFaregiveninTable2.WBOE–PA–PF-1,WBOE–PA–PF-2andWBOE–PA–PF-3,insolventblendofwater:ethanol(50v/50v)using40wt%solidcontent,wereappliedbybrush,oncommer-ciallyavailablemildsteel[MS]stripsof20mm×10mm×1mmsizeforchemicalresistanceand70mm×25mm×1mmsizeforphysico-mechanicalproperties.CoatingsofWBOE–PA–PF-1,WBOE–PA–PF-2andWBOE–PA–PF-3becamedrytotouchwithin10–15minbystovingat90◦C,inanoven.Afteradditional30minatroomtemperature,thecoatingsbecamedrytohard.Physico-mechanicalpropertiessuchasscratchhardness(BS3900),impactresistance(IS:101part5/sec3,1988),andbendtest(ASTMD3281-84)ofcoatingswereevaluated.Glosswasmeasuredat45◦byGlossmeterModelRSPT20(DigitalInstruments,SantaBarbara).
Table2
Formulationofthreedifferentratiosofcoatingmaterial.
Sample
WBOE(g)
PA(g)
PF(g)
WBOE–PA–PF-160.54WBOE–PA–PF-250.55WBOE–PA–PF-3
4
0.5
6
Thethicknessesofthesecoatings,determinedbyElcometer(Model345ElcometerInstrument,Manchester,UK),werefoundtobeinbetween100and110m.Chemical/corrosionresistancetestswereperformedinacid(3.5wt%HCl),alkali(3.5wt%NaOH),andtapwaterbyplacingthemin3-in.diameterporcelaindishesintheaforementionedmedia.Corrosiontestswerealsocarriedoutin3.5%NaClinsidesaltmistchamber.Periodicexaminationofthesesampleswasconducteduntilthecoatingsshowedvisualevidenceoflossingloss,deterioration,discolorationorweightloss.
3.Resultsanddiscussion
Fig.1explainsthepreparationofLSOE,WBOE,WBOE–PAandWBOE–PA–PFfromLSO.LSOEispreparedbyepoxidationandhydrationreactiontakingplaceatunsaturationonVOvia(insitu)epoxidationbyperacid[21,22].LSOEhassomehydroxylsinsertedonitsbackboneduetooxiraneringopeningbywateroracid(Table1)[21–23].TheoxiraneringsandhydroxylspresentinLSOEbackboneserveascrosslinkingsitesduringchemicalreactions.ThesefunctionalgroupsinLSOEreactwithDEA,formingWBOE.TheamideaswellashydroxylgroupsintroducesufficientpolarityinWBOE,assistinginitssolubilityinwater:ethanolblend[50v:50v].
3.1.Spectralanalysis
TheformationofLSOEfromLSOwasconfirmedbyspectralanal-ysisasalsoreportedpreviously[21,22].
FTIRspectrumofWBOE[Fig.2A(b)]showedreductioninintensityofabsorptionbandsat822cm−1(COCoxiranestr)andformationofbandsat1051cm−1(COCetherstr)relativetoLSOE[Fig.2A(a)][20,21]duetotheconsumptionofoxiraneringsbyreactionwithDEA(Fig.2A).ThepresenceofcharacteristicabsorptionbandsforoxiraneringinWBOEconfirmsthatsomeoxi-raneringsmoreorlessremainintactinWBOE,whichmayfurtherserveascrosslinkingsitesduringreactionwithPA.InWBOE-PA,disappearanceofbandsat822cm−1(COCoxiranestr)anddecreaseinintensityofbandat3400–3300cm−1areobservedduetochemicalreactionofresidualoxiraneringsand–OHgroupsofWBOEwithanhydrideringofPA.1HNMRspectraofLSOE[21]andWBOE[Fig.2(B)]alsorevealthepresenceofcharacteristicabsorptionbands.
3.2.Physicochemicalanalysis
Besidesspectralanalysis,theformationofWBOEfromLSOEisalsosupportedbyincreaseinthevaluesofEE,SG,RIandHV(Table1).TheincreaseinEEandHVinWBOErelativetoLSOEindicatestheformationofhydroxylgroupsbytheconsumptionofoxiraneringsofLSOE.
3.3.SolubilityofLSO,LSOE,WBOE,WBOE-PAandWBOE–PA–PFinwater:ethanolblend[50v:50v]
ThesolubilityofLSO,LSOE,WBOE,WBOE-PAandWBOE–PA–PFwasassessedin50v/50vwater:ethanolblend.Fig.3showshowthesolubilitytrendisimprovingstepwisefromLSOtoformVObasedWBmaterialwhichmayfindapplicationincoatings.LSObeingimmisciblewiththeblendclearlyformsaseparateupperlayer.LSOEisalsoinsolubleandduetoitshigherSGrelativetoLSO,itsettlesatthebottomthusformingthelowerlayer.However,WBOEandWBOE-PAwhendissolvedintheblendformedclearandtrans-parentsolutionsevenatroomtemperature(28–30◦C).ItcanbecomprehendedthatthepresenceofamideandhydroxylgroupsinWBOEfacilitatesitssolubilityinwater:ethanolblend[50:50(v/v)].
250M.Y.Shah,S.Ahmad/ProgressinOrganicCoatings75 (2012) 248–252
Fig.1.PreparationofwaterbornecoatingmaterialfromLSO.
3.4.Physico-mechanicalstudies
Itwasobservedthatcoatingsloadedwith<40wt%ofPFfailedtodry(attemperature90◦C)possiblyduetoincompletecuringoftheWBOE-PAwhilethecompositionswith>60wt%werefoundtobebrittle,duetoexcessivecrosslinkingbetweenWBOE-PAandPF.Hence40–60wt%ofPFwasconsideredastheoptimumcom-positiontoprepareWBOE–PA–PFcoatingswhichwereobtainedashard,transparentandglossycoatings,bycuringat90◦C(Fig.4).
Table3showsphysico-mechanicalpropertiesofdifferentratiosofcuredWBOE–PA–PFcoatings.AdecreaseinscratchhardnessvaluewasfoundfromWBOE–PA–PF-1toWBOE–PA–PF-3.Thecoatingswerefoundtopasstheimpactstrengthaswellasbendtestonloadingofupto50wt%PFwhichmaybeduetooptimumcontentofpolargroupsleadingtohardness,adhesionandflexibil-itytocoatings.AthigherPFamount,theperformancedeteriorates,attributedtobrittlenessofcoatings.Thusthecoatingscuredwith40–50wt%PFcanservegoodpurpose.
remainedcompletelyunaffected(nolossinweight,glossoradhe-sion)in3.5wt%NaCl(saltmistchamber)foraperiodof30daysandafterthisperiodcoatingsofWBOE–PA–PF-1andWBOE–PA–PF-2startedshowingsignsofcorrosionatedgesalongwithweightloss,duetopenetrationofcorrosivemediaintothecoatings.However,thecoatingsofWBOE–PA–PF-3beingwell-adherent(thepres-enceofpendantpolargroupsprovidesadhesionattheinterfaceofcoatingandmetalsurface)remainedunaffectednotallowingthecorrosivemediatopenetratethroughthem.
ThecoatingsofWBOE–PA–PF-1showedslightlossinglosswhilethoseofWBOE–PA–PF-2andWBOE–PA–PF-3remainedunaffectedintapwaterand3.5wt%HClfor25and20days,respectively.
WBOE–PA–PF-1coatingsshowedslightlossinglossafter8h,startedtodetachafter10handfilmswerecompletelyremovedfromthesubstrateafter24hin3.5wt%NaOH.CoatingsofWBOE-PA-PF-2showedslightlossinglossafter10handlostadhesionafter30h.However,coatingsofWBOE-PA-PF-3remainedunaffectedfor24h.Slightlossinglossbecameevidentandthecoatingsdetachedfromsubstratecompletelyafter70h.
3.5.Chemical/corrosionresistance
3.6.Thermalanalysis
Tostudytheircorrosionresistancebehaviour,suchaschangesintheirweight,adhesionandoverallappearance,coatedpanelsweresubjectedtoexposureinvariouschemicalmedialiketapwater,NaCl,HClandNaOH.Itwasobservedthatthecoatedpanels
TGAthermograms(Fig.5)ofWBOE–PA–PFshowedsimilardegradationcurvesaccreditedtotheirsimilarstructure.However,theyexhibiteddifferenttemperaturesofdegradationattributed
Table3
Physico-mechanicalanalysesofWBOE–PA–PF-1,WBOE–PA–PF-2andWBOE–PA–PF-3.
Characteristics
Scratchhardness(kg)
Impactresistance(150lb/in.)Bendtest1/8inchGlossat45◦
WBOE–PA–PF-1
WBOE–PA–PF-2
WBOE–PA–PF-33.5FailFail52
4.5PassPass58
4PassPass56
M.Y.Shah,S.Ahmad/ProgressinOrganicCoatings75 (2012) 248–252
251
Fig.2.(A)FTIRspectraofLSOE(a)andWBOE(b).(B)1HNMRspectraofWBOE.
Fig.3.Photographshowingsolubilityof(1)LSO,(2)LSOE,(3)WBOE,(4)WBOE-PAand(5)WBOE–PA–PFin50v:50vwater:ethanolblend.
Fig.4.Photographofcoatings.
Fig.5.TGAthermogramsofWBOE–PA–PF-1,WBOE–PA–PF-2andWBOE–PA–PF-3.
252M.Y.Shah,S.Ahmad/ProgressinOrganicCoatings75 (2012) 248–252
tothedifferenceintheratioofWBOE-PAandPF.3–5wt%losswasobservedbelow230◦Cattributedtothetrappedwaterorwatercondensedduetoreactionbetweenresidualhydroxylandcarboxylicgroups.Beyond230◦Cthefirstdegradationcontinuedupto440◦Cincurring40wt%loss.10wt%losswasobservedat257–268◦C,50wt%losswasnoticedat450◦C,478◦Cand570◦C,inWBOE–PA–PF-1,WBOE–PA–PF-2andWBOE–PA–PF-3,respec-tively.Thehighestdegradationtemperaturesofthethreeratiosrangedfrom450◦Cto460◦C.Thusthesecoatingscanbeusedsafelyupto220◦C.
4.Conclusion
VObasedWBepoxywaspreparedthroughsimpleonesteproute.Nocomplexderivatizationsteps,modifiersortoxicvolatileorganicsolventswereusedatanystepeitherduringsynthesisorcoatingformulation.WBOEcanactasaneco-friendlymate-rialforthepreparationofrenewableresourcebasedpolymericcoatings.WBOE–PA–PFshowedgoodscratchhardness,impactresistance,flexibilityandthermalstabilityofthecoatings.Thecoatingsremainedintactinaqueous,acidicandsaltmediawhichshowedtheirhighadherencetothesubstrate.However,thesesys-temscouldnotexhibitgoodalkaliresistanceperformancewhichcanpresumablybeattributedtoVOesterandetherlinkages.Theselinkagesaremostsusceptibletoattackbyalkali.Thus,whatstillremainunsoughtareverygoodalkaliresistanceofcoatingsand100%solubilityofthecoatingmaterialinwater.
Acknowledgement
MohammadYaseenShahacknowledgestheUniversityGrantsCommission,Indiafortheawardofthenon-netfellowshipduringtheresearchwork.
References
[1]E.Odetoye,D.S.Ogunniyi,G.A.Olatunji,Ind.Crop.Prod.32(3)(2010)
225–230.
[2]D.Shikha,P.K.Kamani,M.C.Shukla,Prog.Org.Coat.47(2)(2003)
87–94.
[3]M.Ramasri,G.S.SrinivasaRao,P.S.Sampathkumaran,M.M.Shirsalkar,Prog.
Org.Coat.18(1)(1990)103–115.
[4]F.Habib,M.Bajpai,Chem.Chem.Technol.5(3)(2011)317–326.
[5]J.Argyropoulos,P.Popa,G.Spilman,D.Bhattacharjee,W.Koonce,J.Coat.Tech-nol.Res.6(4)(2009)501–508.
[6]J.LaxmikanthRao,R.S.Balakrishna,M.M.Shirsalkar,J.Appl.Polym.Sci.44(11)
(1992)1873–1881.
[7]Z.S.Petrovic,Polym.Rev.48(1)(2008)109–155.
[8]G.Lligadas,J.C.Ronda,M.Galia,V.Caˇ
ıdiz,Biomacromolecules11(2010)2825–2835.
[9]B.Ni,L.Yang,C.Wang,L.Wang,D.E.Finlow,J.Therm.Anal.Calorim.100(1)
(2010)239–246.
[10]Y.Xia,R.C.Larock,ChemSusChem4(3)(2011)386–391.
[11]Y.Xia,R.C.Larock,Macromol.Mater.Eng.296(8)(2011)703–709.
[12]V.D.Athawale,R.V.Nimbalkar,J.Am.OilChem.Soc.88(2)(2011)
159–185.
[13]A.I.Aigbodion,F.E.Okiemien,E.O.Obazaa,I.O.Bakare,Prog.Org.Coat.46(2003)
28–31.
[14]A.I.Aigbodion,F.E.Okiemien,E.U.Ikhuoria,I.O.Bakare,E.O.Obazaa,J.Appl.
Polym.Sci.89(2003)3256–3259.
[15]R.V.Nimbalkar,V.D.Athawale,J.Am.OilChem.Soc.87(2010)1035–1045.[16]C.Wang,F.N.Jones,J.Appl.Polym.Sci.76(2000)105–114.[17]Y.S.Hu,Y.Tao,C.P.Hu,Biomacromolecules2(2001)80–84.[18]Y.Lu,R.C.Larock,Biomacromolecules8(2007)3108–3114.
[19]U.Riaz,A.Vashist,S.A.Ahmad,S.Ahmad,S.M.Ashraf,BiomassBioenergy34
(2010)396–401.
[20]N.Gabilondo,M.López,J.A.Ramos,J.M.Echeverría,I.Mondragon,J.Therm.
Anal.Calorim.90(1)(2007)229–236.
[21]E.Sharmin,S.M.Ashraf,S.Ahmad,Int.J.Biol.Macromol.40(2007)407–422.[22]F.E.Okieimen,C.Pavithran,I.O.Bakare,Eur.J.LipidSci.Technol.107(2005)
330–336.
[23]S.Ahmad,E.Sharmin,F.Zafar,S.M.Ashraf,A.Hasnat,Prog.Cryst.Growth
Charact.45(2002)83–88.
因篇幅问题不能全部显示,请点此查看更多更全内容