LorenzaViola∗andEmanuelKnill†
LosAlamosNationalLaboratory,MailStopB256,LosAlamos,NewMexico87545
(Dated:July15,2002)
Weproposeageneralprocedureforimplementingdynamicaldecouplingwithoutrequiringarbitrarilystrong,impulsivecontrolactions.ThisisaccomplishedbydesigningcontinuousdecouplingpropagatorsaccordingtoEulerianpathsinthedecouplinggroupforthesystem.SuchEuleriandecouplingschemesoffertwoimportantadvantagesovertheirimpulsivecounterparts:theyareabletoenforcethesamedynamicalsymmetrizationbutwithmorerealisticcontrolresourcesand,atthesametime,theyareintrinsicallytolerantagainstalargeclassofsystematicimplementationerrors.
PACSnumbers:03.67.-a,02.70.-c,03.65.Yz,89.70.+c
2002Dynamicaldecouplingprovidesawell-definedframework foraddressingavarietyofissuesassociatedwiththemanipu-glationofopenquantumsystemsandinteractingquantumsub-uAsystems.Inspiredbycoherentaveragingmethodsinnuclearmagneticresonancespectroscopy[1],andcastincontrol- 9theoretictermsin[2,3],decouplingtechniquesareattract- inggrowinginterestfromthequantumcontrolandquantum1vinformationprocessing(QIP)communities.Significantappli-6cationshaveresultedintheareaofreliableQIP,wherede-5couplinghasbeeninstrumentalinthedevelopmentofquan-0tumerrorsuppressionschemes[3,4,5],withthepotentialfor8noise-tolerantuniversalquantumcomputationondynamically0generatednoiselesssubsystems[6].Inaddition,variantsof20thebasicdecouplingconceptsplayaroleinprotocolsforuni-/versalquantumsimulationofbothclosed-andopen-systemhpdynamics[7,8,9],withimplicationsforencodedsimula--tion[10,11].Inabroadercontext,applicationsofdynamicaltndecouplingtoproblemsthatrangefrominhibitingthedecayaofunstablestates[12],tosuppressingmagneticstatedecoher-uence[13],orreducingheatingeffectsinlineariontraps[14]havebeenrecentlyenvisaged.
:qvFromthepointofviewofimplementation,dynamicalde-iXcouplinghasreliedontheabilityofeffectingsequencesofrarbitrarilystrong,instantaneouscontrolpulses.Thatis,itre-aquiredtheabilitytoimpulsivelyapplyasetofcontrolHamil-tonianswithunboundedstrength(thebang-bang(b.b.)as-sumption[2]).Whileprovidingaconvenientstartingpoint,suchascenariosuffersfrombeingextremelyunrealisticforapplications.Inaphysicalcontrolsetting,additionaldisad-vantagesassociatedwithb.b.decouplingincludethediffi-cultyofsimultaneouslydescribingtheevolutionunderthenatural(drift)Hamiltonianandthecontrolterms,aswellasthepoorspectralselectivityofb.b.pulses,withsubstantialoff-resonanceeffects.Finally,althoughcompensationtech-niquesbasedoncompositerotationsexistforstabilizingcon-trolpulsesagainstoperationalimperfections[15],theyarehardtoreconcilewiththeb.b.framework,whichdoesnoteasilylenditselftoincorporatingrobustnessfeatures.
InthisLetter,weovercometheshortcomingsoftheb.b.formulationbyshowinghowtoimplementdynamicaldecou-plingbasedoncontinuousmodulationofbounded-strengthHamiltonians.IfGisthediscretegroupspecifyingthedesired
b.b.decoupler,thebasicideaistoconstrainthemotionofthecontrolpropagatorduringeachcyclealongapaththatinter-polatesbetweentheelementsofG.UndermildassumptionsonthecontrolHamiltonians,adecouplingprescriptioninduc-ingthesamesymmetrystructureasintheb.b.limitcanbeconstructedbyexploitingEuleriancyclesonaCayleygraphofG.Inadditiontosignificantlyweakeningtherelevantim-plementationrequirements,Euleriandecouplingturnsouttobelargelyinsensitivetocontrolfaults,openingthewaytotherobustdynamicalgenerationofnoise-protectedsubsystems.Decouplingsetting.−LetthetargetsystemSbedefinedonafinite-dimensionalstatespaceHS,andletEnd(HS)bethecorrespondingoperatoralgebra.Thus,HS≃Cd,End(HS)≃Matd(C)forsomed,withd=2nforann-qubitsystem.SmaybecoupledtoanuncontrollableenvironmentE,wherebytheevolutiononthejointstatespaceHS⊗HEisruledbyatotaldriftHamiltonianH0=HS⊗11E+11S⊗HE+αSα⊗Eαforappropriatetracelessnoisegenera-torsSα∈End(HS)[3].Adecouplingproblemisconcernedwithcharacterizingtheeffectiveevolutionsthatcanbegener-atedfromH0viatheapplicationofacontrolfieldHc(t)⊗11EactingonSalone[3].Letthecontrolpropagatorbe
Uc(t)=Texp−itdt′Hc(t′
)
,(1)
0
with=1.Inaframethatremovesthecontrolfield,thedy-namicsisgovernedbyatime-dependentHamiltonianH
˜(t)=Uc†(t)H0Uc(t),andtheoverallevolutionintheSchr¨odingerpictureresultsfromthenetpropagator
U(t)=Uc(t)Texp−itdt′H˜(t′
)
.
(2)0
Assumingthatthecontrolactioniscyclic,Uc(t+Tc)=Uc(t)
forsomecycletimeTc>0andforallt,thestroboscopicdynamicsU(tM=MTc),M∈NtheeffectiveevolutioninducedbyH
˜,canbeidentifiedwith
(t)in(2).First-orderdecouplingaimsatgeneratingthedesiredevolutiontolowestorderinTc,U(tM)=exp(−i
H
(0)
=
1
Whilehigher-ordercorrectionscanbesystematicallyevalu-ated,theapproximation(3)tendstobecomeexactasthefastcontrollimitTc→0isapproached[1,3,5].
Inthesimplestb.b.decouplingsetting,thetime-averagein(3)mapsdirectlyintoagroup-theoreticalaverage.LetGbeadiscretegroupoforder|G|>1,G={gj},j=0,...,|G|−1,actingonHSviaafaithful,unitary,projectiverepresentationµ,µ(G)⊂U(HS).Letimagesofabstractquantitiesunderµbedenotedasµ(gj)=gˆj,andsoforth[16].Thenb.b.decou-plingaccordingtoGisimplementedbyspecifyingUc(t)overeachofthe|G|equalsub-intervalsdefiningacontrolcycle[3]:
Uc(ℓ−1)∆t+s
=ˆgℓ−1,s∈[0,∆t),(4)withTc=|G|∆tfor∆t>0,andℓ=1,...,|G|.Theresult-ingcontrolactioncorrespondstoextractingtheG-invariant
componentofH0,
|G|
gˆ†jXgˆj,
X∈End(HS),(5)
gj∈G
istheprojectorontothecommutantCG′ofCGinEnd(HS)[3,
4].Accordingto(4),Uc(t)jumpsfromgˆℓ−1togˆℓ=
(ˆgℓgˆ†ℓ−1)ˆgℓ−1throughtheapplicationofanarbitrarilystrong,instantaneouscontrolkickattheℓ’thendpointtℓ=ℓ∆t,real-izingtheb.b.pulsepℓ=gˆℓgˆ†
Euleriandynamicaldecoupling.ℓ−1[5].
−WeseekawayforsmoothlysteeringUc(t)fromgˆℓ−1togˆℓbyacontrolactiondistributedalongthewholeℓ’thsub-interval.LetΓ={γλ},λ=1,...,|Γ|beageneratingsetforG.TheCayleygraphG(G,Γ)ofGwithrespecttoΓisthedirectedmultigraphwhoseedgesarecolouredwiththegenerators[17],wherever-texgℓ−1isjoinedtovertexgℓbyanedgeofonlyifgℓg−1
colourλifand
haveℓ−1=γλi.e.,gℓ=γλgℓ−1.Physically,imaginethatwetheabilitytoimplementeachgeneratorγˆλ,bytheapplicationofcontrolHamiltonianshλ(t)over∆t,γˆλ=Texp
−i
∆t
dt′
hλ(t′
),
λ=1,...,|Γ|.(6)
0
Thechoiceofhλ(t)isnotunique,allowingforadditionalimplementationflexibility.Onceachoiceismade,thecon-trolactionisdeterminedbyassigningacycletimeandaruleforswitchingtheHamiltonianshλ(t)duringthecyclesub-intervals.Weshowhowausefulruleresultsfromsequen-tiallyimplementinggeneratorssothattheyfollowaEuleriancycleonG(G,Γ).AEuleriancycleisdefinedasacyclethatuseseachedgeexactlyonce[17].BecauseaCayleygraphisregular,italwayspossessesEuleriancycles,whoselengthisnecessarilyL=|G||Γ|[17].
LetaEuleriancyclebeginningattheidentityg0ofGbegivenbythesequenceofedgecoloursused,PE=(pℓ)ℓ,withℓ=1,...,L,andpℓ=γλforsomeλ,foreveryℓ.Notethateachvertexhasexactlyonedepartingedgeofeachcolour,sothatPEdeterminesawelldefinedpath.Wedefine
2
EuleriandecouplingaccordingtoGbylettingTc=L∆tand
byassigningUc(t)asfollows:
Uc(ℓ−1)∆t+s
=uℓ(s)Uc(ℓ−1)∆t,
(7)wheres∈[0,∆t),anduℓ(s)=Texp(−idecouplings
0dt′hℓ(t′)),uℓ(∆t)=pˆℓ,ℓ=1,...,L.Thisprescriptionmeansthatduringtheℓ’thsub-intervalonechoosesasacon-trolHamiltoniantheonethatimplementsthegeneratorγˆλ,withγλcolouringtheedgepℓinPE.TheeffectiveHamilto-nian
1
|Γ|
λ|Γ|
=1
Theb.b.limitisformallyrecoveredbylettingFtheEulerianapproach,attheexpenseΓbetheidentitymap.Inoflengtheningthecontrolcyclebyafactorof|Γ|,thesameG-symmetrizationcanbeattainedusingboundedcontrols.Themaximumstrengthsachievableinimplementingthegenera-tors(6)directlyaffectstheminimumattainableTc,andthere-foretheaccuracyoftheaveraging[3].Whiletheoverhead|Γ|dependsonthespecificgroup,itisworthnotingthat,similar
toΠG[4],QGsatisfiesthepropertythatQG(X)=QG/G
0
(X)wheneverG0isanormalsubgroupofGandX∈CalreadyG0-invariant,EulerianG0′[18].
Thus,ifthedynamicsisdecou-plingaccordingtoGcanbeaccomplishedbyusingaCayleygraphofthesmallerquotientgroupG/G0.
Robustnessanalysis.-ThefactthatcontrolactionsarenowdistributedalongfinitetimeintervalstranslatesintomajorgainsintermsofresilienceofEulerianschemesagainstimper-fectionsinthecontrolsthemselves.ImaginethatsystematicimplementationerrorsresultinafaultycontrolHamiltonianHc′(t),andpartitionHc′(t)into
Hc′
(t)=Hc(t)+∆Hc(t),
(10)
suchthatHc(t)∈CGistheintendedcontrolHamiltonian,and
∆Hc(t)istheerrorcomponent.Nowworkinthesameframeusedearlier,whichonlyremovestheidealcontrolpartfrom
theeffectiveHamiltonian.BecauseH(t)=H0+Hc′
(t)=[H0+∆Hc(t)]+Hc(t),thismapstheevolutionunderH0with
thefaultycontrolHwiththeidealcontrol.c′
(t)intotheevolutionunderH0+∆Hc(t)Thus,theneweffectivedynamicsisobtainedbyreplacingH0withH0+∆Hc(t)in(3).
Supposethatthefaultsareproperlycorrelatedwiththeun-derlyingpath,meaningthateverytimeaparticulargeneratorγˆλisimplemented,thesameimperfectionoccursatequiva-lenttemporallocationswithinthesub-interval,regardlessofthepositionofγλalongPE.Then∆Hc((ℓ−1)∆t+s)=∆hλ(s),λbeingthecolouroftheedgethatPEusesduringtheℓ’thsub-interval.Byasimilarcalculationasintheidealcase,thequantumoperationQGQ′ismodifiedasfollows:G
where(X)=ΠGQ(X)+QG(∆Hc),X∈End(HS),
(11)
G(∆Hc)canbecomputedasin(8)and(9),butwiththeoperatorXintheintegralreplacedbyonethatdependsonsandλ.Thus,Qtoryover[0,∆t],whichG(∆Hc)isafunctionalofthefaulthis-characterizestheresidualcontroler-rorsexperiencedbythesystem.Notably,twousefulfeaturesemerge:withoutextraassumptions,suchresidualcontroler-rorsbelongtoCCG,thenallG′.If,inaddition,∆Hc(t)isitself(asHc(t))
incontroleffectsremaininCG,andtheresidual
controlerrorsbelongtothecenterZTheeffectsofQCG(∆Hc)maystilladverselyG
=CG∩CimpactG′.theper-formanceofthesystem.However,theycanbecompensatedforbyencodingsinappropriatesubsystems[6].LetJ∈J
labeltheirreduciblecomponentsofCG.ThenHScanberep-resentedas
HS≃⊕JHJ≃⊕JCJ⊗DJ≃⊕JCnJ⊗CdJ,(12)
withnJ,dJ∈N,algebra
JnJdJ=d,andtheactionofthede-couplinggroupanditscommutantgivenbyCΠG≃
⊕J11nJ⊗MatdJ(C),C
subsystemsarenoiselessGG′≃⊕JMatnJ(C)⊗11dJ,respec-tively.Becauseboth(Sα)andQandtheirdynamicalG(∆Hc)areinCG′,DJ-generationro-bustregardlessofwhether∆Hc(t)belongstoCGornot.This
appliesinparticularifGactsirreduciblyonHS,inwhichcase3
arobustimplementationofmaximaldecouplingisachievable
byaveragingoveraniceerrorbasisonCd[3,7].Infact,en-codingintoDJ-subsystemsmaybevaluableeveninsituations
wheretheassumptionthatthecontrolsareinCGGcannotbe
met:asQtationofthe(Sα)∈CG′,DJ-subsystemsremainunaffectedby
thenoise.Notethatforsuchsubsystems,boththeimplemen-decouplingschemeandtheexecutionofencodedcontroloperationsaretobeeffectedthroughfastmodulationofHamiltoniansalongthecontrolcycle[5,6].
WheneverQG(∆Hc)originatesfromfaultsinCG,addi-tionaloptionsareviable.Iftherepresentationµisprimary,
Zinated,CpressionG
=C11,thenanysystematicerroriseffectivelyelim-andnoencodingisnecessaryaslongasnoisesup-isensured,thatis,ΠG(Sα)=0forallα.Ifµisnotprimary,thenelementsinthecenterarediagonalovereachirreduciblecomponent.Thus,encodingsintoeitheraHJ-subspaceoraCJ-subsystemareinsensitivetothecontrolfaultsandprotectedagainstthenoisegeneratorifΠmayG(Sα)∈ZCaswell.Inpractice,choosingaCJ-subsystembees-peciallyG
appealing,becausenotonlyisuniversalencodedcon-trolachievablebyless-demanding,slowapplicationtoniansinCofHamil-G′[5],butaddedrobustnessagainsttrolerrorsinCarbitrarycon-Gisautomaticallyprovided[6].Next,weout-linesomeapplicationsrelevanttoQIP.
Example1:EulerianCarr-Purcelldecouplingonaqubit.-Considerasingledecoheringqubit,{Sα}={σz}[2].ThedecouplinggroupG=Z2={0,1}isrepresentedinU(C2)asGux(={11,σx}.Thereisonegenerator,γ1=1,henceL=2withnooverheads)=Texp(−iswithrespecttotheb.b.case.Let0dt′hx(t′
)),foraHamiltonianhx(t)∈CGrealizingγˆ1=σx(6).Ifhx(t)=f(t)σxforsomef(tanychoicesuchthat|),
∆t
0dsf(s)|=π/2isacceptable.OnG(G,Γ)choosePE=(γ1,γ1).ThenEuleriandecouplingisaccomplishedbylettingUc(t)=ux(t),fort∈[0,∆t),andUc(t)=ux(s)σxfort∈[∆t,∆t+s),s∈[0,∆t).ByexplicitcalculationofQG(∆Hc),oneseesthatsystematicer-rorsalongσy,σzproducenoeffect.EliminationofresidualcontrolerrorsinZCG
requiresusingthefullPauligroup.Example2:EulerianPaulidecouplingonqubits.-LetG={11,X,Y,Z}bethePaulierrorbasisforaqubit,withX=σx,Z=σz,andY=XZ.ThiscorrespondstoG=Z2×Z2,projectivelyrepresentedinU(C2).Ghastwogenerators,e.g.γ1=(0,1),γ2=(1,0),realizedasγˆ1=X,γˆ2=Z,respectively.AnEulerianpathonG(G,Γ)isPE=(γ1,γ2,γ1,γ2,γ2,γ1,γ2,γ1),oflengthL=8.The
assumptionthatbothhλand∆hλ,λ=1,2,areinCG=Mat2(C).Then(7)resultsGisauto-maticallysatisfied,asCintoa
robustimplementationofmaximalaveraging,ΠG4nandsince2generatorsareneeded(σu)=0,u=x,y,z.Fornqubits,G=Zd×Zd,withd=2n.Thus,|G|=foreachqubit,L=n22n+1,causingtheproceduretobe(asintheb.b.limit[3])inefficient.
Example3:Euleriancollectivespin-flipdecoupling.-Fornqubits,letG=Z2×Z2actviathen-foldtensorpower
representationinU((C2)⊗n),whichisprojectivefornodd,
andregularforneven.Foranyn,G=⊗nk=1σx,Z=⊗toGaveragesk=1σz={11,X,Y,Z},whereX(k)n
(k),andY=XZ.De-couplingaccordingoutarbitrarylinearnoise,
Π(Sα)=0,Sα∈span{σ(uk)
G}[5].ForEulerianimplemen-tation,thesamepathofExample2maybeused,undertheappropriaterealizationofthecollectivegeneratorsγˆ1=X,γˆ2=Z.EnsuringG-symmetrizationrequiresthatthecontrol
Hamiltoniansh1,2(t)∈CG.BecausebothCisabelianG′andZnon-trivial,residualcontrolerrorsariseduetoQCGhence(∆Hc)G
are.The
situationissimplerforneven,asCGsupport-ingfour(n−2)-dimensionalirreduciblesubspacesHJ.Be-sidesbeingnoiselessinthedecouplinglimitandinsensitivetoarbitrarycontrolerrorsinCG,encodingintoaHJ-subspace
isfurthermotivatedbythepossibilitytoachieveencodeduni-versalityviaslowapplicationoftwo-bodyHamiltoniansinCG′[6].Fornodd,bothCJandDJfactorsmayoccur.Leav-ingasidedetailshere,wenotethatDJ-subsystemsusefulifimplementingγˆ1,γˆ2viaHamiltoniansinCmaybe
Gisdiffi-cultinpractice.
Example4:Euleriansymmetricdecoupling.-LetG=Snbethesymmetricgroupofordern,actingonHS≃(C2)⊗n
viagˆj⊗nk=1|ψk=⊗n
k=1|ψgj(k),gj∈Sn.Inparticu-lar,theactioncorrespondingtoatransposition(k−1k),k∈{1,...,n},effectsanexchangegatebetweenqubitsk−1,k,denotedbyswapk−1,k.Symmetricdecouplingal-lows,inprinciple,toengineercollectiveerrormodelsonSstartingfromarbitrarylinearinteractionsbetweenSandE[4,6].AminimalgeneratingsetforSnisgivenbyγ1=(12),γ2=(12...n)i.e.,anadjacenttranspositionandthecyclic
shift,respectively.C=σk·σl.SncontainstheHeisenbergcouplings
h(k,l)Infact,everyoperatorinCSncanbe
realizedbyapplyingHeisenbergHamiltonians[19].Focus,forinstance,onS3-symmetrization,whichmayberelevantforinducingcollectivedecoherenceonblocksof3qubits[20].Thenγˆ1=swap1,2andγˆ2=swap1,2swap2,3,withL=12.Becauseexp(−iπh(k,l)/4)=swapk,l,γˆ1canbeimplementedbychoosingh1=a1h(1,2),withstrengtha1=π/4∆t,whileγˆ2canberealizedbyapiecewise-constantHamiltonianh2(t)=a2h(2,3)fort∈[0,∆t/2),h2(t)=a2h(1,2)fort∈[∆t/2,∆t],a2=π/2∆t.AEule-rianpathonG(S3,Γ)isPE=(γ2,γ2,γ2,γ1,γ2,γ1,γ1,γ2,γ1,γ1,γ2,γ1).Euleriandecoupling(7)thenallowsforaro-bustdynamicalgenerationofthesmallestnon-trivialnoiselesssubsystem[21,22],supportedbyafactorDJ≃C2carryingthetwo-dimensionalirreduciblecomponentJ=[21]ofS3.Conclusion.-Wedevelopedanapproachtodynamicalde-couplingthatcombinesthegroup-theoreticalessenceofthe
4
b.b.settingwithgraph-theoreticalcontroldesignaccordingtoEuleriancycles.Besidesallowingforconsiderableleewayinthephysicalimplementationofthebasiccontrolgenerators,Euleriandecouplingeliminatestheneedforunfeasibleb.b.pulsesandnaturallyincorporatesrobustnessagainstrealisticcontrolfaults.Combinedwithquantumcodingtechniques,ourresultssignificantlyimprovetheprospectsthatdynamicaldecouplingbecomesapracticaltoolforreliablycontrollingquantumsystemsandquantuminformation.
SupportedbytheDOE(contractW-7405-ENG-36)andbytheNSA.L.V.alsogratefullyacknowledgessupportfromaJ.R.OppenheimerFellowship.
∗†
Electronicaddress:lviola@lanl.govElectronicaddress:knill@lanl.gov
[1]U.HaeberlenandJ.S.Waugh,Phys.Rev.175,453(1968).[2]L.ViolaandS.Lloyd,Phys.Rev.A58,2733(1998).
[3]L.Viola,E.Knill,andS.Lloyd,Phys.Rev.Lett.82,2417(1999).
[4]P.Zanardi,Phys.Lett.A258,77(1999).
[5]L.Viola,S.Lloyd,andE.Knill,Phys.Rev.Lett.83,4888(1999).
[6]L.Viola,E.Knill,andS.Lloyd,Phys.Rev.Lett.85,3520(2000).
[7]P.Wocjan,M.R¨otteler,D.Janzing,andT.Beth,Q.Inf.Comp.2,133(2002).
[8]L.Dodd,M.A.Nielsen,J.Bremner,andR.T.Thew,Phys.Rev.A65,R040301(2002).
[9]S.LloydandL.Viola,Phys.Rev.A65,R010101(2002).
[10]D.A.LidarandL.-A.Wu,Phys.Rev.Lett.88,017905(2001).[11]L.Viola,Phys.Rev.A66(2002),inpress.
[12]G.S.Agarwal,M.O.Scully,andH.Walther,Phys.Rev.Lett.86,4271(2001).
[13]C.SearchandP.Berman,Phys.Rev.Lett.85,2272(2000).[14]D.VitaliandP.Tombesi,Phys.Rev.A65,012305(2002).[15]R.Tycko,Phys.Rev.Lett.51,775(1983).[16]Foraprojectiverepresentation,gjgk=ω(gj,gk)ˆ
gjgˆkforsomephaseω(gj,gk),henceG
[17]B.Bollob´as,ModernGraphisnotagroupingeneral.Theory(Springer-Verlag,NewYork,1998).
[18]Here,thesetofoperatorsG/G0isdefinedwithrespecttoan
arbitrarychoiceofcosetrepresentativesofG0andisnotneces-sarilyaprojectiverepresentation.
[19]J.Kempe,D.Bacon,D.A.Lidar,andK.B.Whaley,Phys.Rev.A63,042307(2001).
[20]L.-A.WuandD.A.Lidar,Phys.Rev.Lett.88,207902(2002).[21]E.Knill,R.Laflamme,andL.Viola,Phys.Rev.Lett.84,2525(2000).
[22]
L.Viola,E.M.Fortunato,M.A.Pravia,E.Knill,R.Laflamme,andD.G.Cory,Science293,2059(2001).
因篇幅问题不能全部显示,请点此查看更多更全内容