您的当前位置:首页正文

总结R语言中矩阵运算的函数

2024-03-19 来源:易榕旅网
总结R语言中矩阵运算的函数

1 创建一个向量

在R中可以用函数c()来创建一个向量,例如:

> x=c(1,2,3,4)

> x

[1] 1 2 3 4

2 创建一个矩阵

在R中可以用函数matrix()来创建一个矩阵,应用该函数时需要输入必要的参数值。

> args(matrix)

function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

data项为必要的矩阵元素,nrow为行数,ncol为列数,注意nrow与ncol的乘积应为矩阵元素个数,byrow项控制排列元素时是否按行进行,dimnames给定行和列的名称。例如:

> matrix(1:12,nrow=3,ncol=4)

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> matrix(1:12,nrow=4,ncol=3)

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

> matrix(1:12,nrow=4,ncol=3,byrow=T)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

> rowname

[1] \"r1\" \"r2\" \"r3\"

> colname=c(\"c1\

> colname

[1] \"c1\" \"c2\" \"c3\" \"c4\"

> matrix(1:12,nrow=3,ncol=4,dimnames=list(rowname,colname))

c1 c2 c3 c4

r1 1 4 7 10

r2 2 5 8 11

3 矩阵转置

A为m×n矩阵,求A'在R中可用函数t(),例如:

> A=matrix(1:12,nrow=3,ncol=4)

> A

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> t(A)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

若将函数t()作用于一个向量x,则R默认x为列向量,返回结果为一个行向量,例如:

> x

[1] 1 2 3 4 5 6 7 8 9 10

> t(x)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 2 3 4 5 6 7 8 9 10

> class(x)

[1] \"integer\"

> class(t(x))

[1] \"matrix\"

若想得到一个列向量,可用t(t(x)),例如:

> x

[1] 1 2 3 4 5 6 7 8 9 10

> t(t(x))

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

[5,] 5

[6,] 6

[7,] 7

[8,] 8

[9,] 9

[10,] 10

> y=t(t(x))

> t(t(y))

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

[5,] 5

[6,] 6

[7,] 7

[8,] 8

[9,] 9

[10,] 10

4 矩阵相加减

在R中对同行同列矩阵相加减,可用符号:“+”、“-”,例如:

> A=B=matrix(1:12,nrow=3,ncol=4)

> A+B

[,1] [,2] [,3] [,4]

[1,] 2 8 14 20

[2,] 4 10 16 22

[3,] 6 12 18 24

> A-B

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

5 数与矩阵相乘

A为m×n矩阵,c>0,在R中求cA可用符号:“*”,例如:

> c=2

> c*A

[,1] [,2] [,3] [,4]

[1,] 2 8 14 20

[2,] 4 10 16 22

[3,] 6 12 18 24

6 矩阵相乘

A为m×n矩阵,B为n×k矩阵,在R中求AB可用符号:“%> A=matrix(1:12,nrow=3,ncol=4)

> B=matrix(1:12,nrow=4,ncol=3)

> A%*%B

[,1] [,2] [,3]

*%”,例如:

[1,] 70 158 246

[2,] 80 184 288

[3,] 90 210 330

若A为n×m矩阵,要得到A'B,可用函数crossprod(),该函数计算结果与t(A)%*%B相同,但是效率更高。例如:

> A=matrix(1:12,nrow=4,ncol=3)

> B=matrix(1:12,nrow=4,ncol=3)

> t(A)%*%B

[,1] [,2] [,3]

[1,] 30 70 110

[2,] 70 174 278

[3,] 110 278 446

> crossprod(A,B)

[,1] [,2] [,3]

[1,] 30 70 110

[2,] 70 174 278

[3,] 110 278 446

矩阵Hadamard积:若A={aij}m×n, B={bij}m×n, 则矩阵的Hadamard积定义为:

A⊙B={aij bij }m×n,R中Hadamard积可以直接运用运算符“*”例如:

> A=matrix(1:16,4,4)

> A

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> B=A

> A*B

[,1] [,2] [,3] [,4]

[1,] 1 25 81 169

[2,] 4 36 100 196

[3,] 9 49 121 225

[4,] 16 64 144 256

R中这两个运算符的区别区加以注意。

7 矩阵对角元素相关运算

例如要取一个方阵的对角元素,

> A=matrix(1:16,nrow=4,ncol=4)

> A

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> diag(A)

[1] 1 6 11 16

对一个向量应用diag()函数将产生以这个向量为对角元素的对角矩阵,例如:

> diag(diag(A))

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 6 0 0

[3,] 0 0 11 0

[4,] 0 0 0 16

对一个正整数z应用diag()函数将产生以z维单位矩阵,例如:

> diag(3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

8 矩阵求逆

矩阵求逆可用函数solve(),应用solve(a, b)运算结果是解线性方程组ax = b,若b缺省,则系统默认为单位矩阵,因此可用其进行矩阵求逆,例如:

> a=matrix(rnorm(16),4,4)

> a

[,1] [,2] [,3] [,4]

[1,] 1.6986019 0.5239738 0.2332094 0.3174184

[2,] -0.2010667 1.0913013 -1.2093734 0.8096514

[3,] -0.1797628 -0.7573283 0.2864535 1.3679963

[4,] -0.2217916 -0.3754700 0.1696771 -1.2424030

> solve(a)

[,1] [,2] [,3] [,4]

[1,] 0.9096360 0.54057479 0.7234861 1.3813059

[2,] -0.6464172 -0.91849017 -1.7546836 -2.6957775

[3,] -0.7841661 -1.78780083 -1.5795262 -3.1046207

[4,] -0.0741260 -0.06308603 0.1854137 -0.6607851

> solve (a) %*%a

[,1] [,2] [,3] [,4]

[1,] 1.000000e+00 2.748453e-17 -2.787755e-17 -8.023096e-17

[2,] 1.626303e-19 1.000000e+00 -4.960225e-18 6.977925e-16

[3,] 2.135878e-17 -4.629543e-17 1.000000e+00 6.201636e-17

[4,] 1.866183e-17 1.563962e-17 1.183813e-17 1.000000e+00

9 矩阵的特征值与特征向量

矩阵A的谱分解为A=UΛU',其中Λ是由A的特征值组成的对角矩阵,U的列为A的特征值对应的特征向量,在R中可以用函数eigen()函数得到U和Λ,

> args(eigen)

function (x, symmetric, only.values = FALSE, EISPACK = FALSE)

其中:x为矩阵,symmetric项指定矩阵x是否为对称矩阵,若不指定,系统将自动检测x是否为对称矩阵。例如:

> A=diag(4)+1

> A

[,1] [,2] [,3] [,4]

[1,] 2 1 1 1

[2,] 1 2 1 1

[3,] 1 1 2 1

[4,] 1 1 1 2

> A.eigen=eigen(A,symmetric=T)

> A.eigen

$values

[1] 5 1 1 1

$vectors

[,1] [,2] [,3] [,4]

[1,] 0.5 0.8660254 0.000000e+00 0.0000000

[2,] 0.5 -0.2886751 -6.408849e-17 0.8164966

[3,] 0.5 -0.2886751 -7.071068e-01 -0.4082483

[4,] 0.5 -0.2886751 7.071068e-01 -0.4082483

> A.eigen$vectors%*%diag(A.eigen$values)%*%t(A.eigen$vectors)

[,1] [,2] [,3] [,4]

[1,] 2 1 1 1

[2,] 1 2 1 1

[3,] 1 1 2 1

[4,] 1 1 1 2

> t(A.eigen$vectors)%*%A.eigen$vectors

[,1] [,2] [,3] [,4]

[1,] 1.000000e+00 4.377466e-17 1.626303e-17 -5.095750e-18

[2,] 4.377466e-17 1.000000e+00 -1.694066e-18 6.349359e-18

[3,] 1.626303e-17 -1.694066e-18 1.000000e+00 -1.088268e-16

[4,] -5.095750e-18 6.349359e-18 -1.088268e-16 1.000000e+00

10 矩阵的Choleskey分解

对于正定矩阵A,可对其进行Choleskey分解,即:A=P'P,其中P为上三角矩阵,在R中可以用函数chol()进行Choleskey分解,例如:

> A

[,1] [,2] [,3] [,4]

[1,] 2 1 1 1

[2,] 1 2 1 1

[3,] 1 1 2 1

[4,] 1 1 1 2

> chol(A)

[,1] [,2] [,3] [,4]

[1,] 1.414214 0.7071068 0.7071068 0.7071068

[2,] 0.000000 1.2247449 0.4082483 0.4082483

[3,] 0.000000 0.0000000 1.1547005 0.2886751

[4,] 0.000000 0.0000000 0.0000000 1.1180340

> t(chol(A))%*%chol(A)

[,1] [,2] [,3] [,4]

[1,] 2 1 1 1

[2,] 1 2 1 1

[3,] 1 1 2 1

[4,] 1 1 1 2

> crossprod(chol(A),chol(A))

[,1] [,2] [,3] [,4]

[1,] 2 1 1 1

[2,] 1 2 1 1

[3,] 1 1 2 1

[4,] 1 1 1 2

若矩阵为对称正定矩阵,可以利用Choleskey分解求行列式的值,如:

> prod(diag(chol(A))^2)

[1] 5

> det(A)

[1] 5

若矩阵为对称正定矩阵,可以利用Choleskey分解求矩阵的逆,这时用函数chol2inv(),这种用法更有效。如:

> chol2inv(chol(A))

[,1] [,2] [,3] [,4]

[1,] 0.8 -0.2 -0.2 -0.2

[2,] -0.2 0.8 -0.2 -0.2

[3,] -0.2 -0.2 0.8 -0.2

[4,] -0.2 -0.2 -0.2 0.8

> solve(A)

[,1] [,2] [,3] [,4]

[1,] 0.8 -0.2 -0.2 -0.2

[2,] -0.2 0.8 -0.2 -0.2

[3,] -0.2 -0.2 0.8 -0.2

[4,] -0.2 -0.2 -0.2 0.8

11 矩阵奇异值分解

A为m×n矩阵,rank(A)= r, 可以分解为:A=UDV',其中U'U=V'V=I。在R中可以用函数scd()进行奇异值分解,例如:

> A=matrix(1:18,3,6)

> A

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 4 7 10 13 16

[2,] 2 5 8 11 14 17

[3,] 3 6 9 12 15 18

> svd(A)

$d

[1] 4.589453e+01 1.640705e+00 3.627301e-16

$u

[,1] [,2] [,3]

[1,] -0.5290354 0.74394551 0.4082483

[2,] -0.5760715 0.03840487 -0.8164966

[3,] -0.6231077 -0.66713577 0.4082483

$v

[,1] [,2] [,3]

[1,] -0.07736219 -0.7196003 -0.18918124

[2,] -0.19033085 -0.5089325 0.42405898

[3,] -0.30329950 -0.2982646 -0.45330031

[4,] -0.41626816 -0.0875968 -0.01637004

[5,] -0.52923682 0.1230711 0.64231130

[6,] -0.64220548 0.3337389 -0.40751869

> A.svd=svd(A)

> A.svd$u%*%diag(A.svd$d)%*%t(A.svd$v)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 4 7 10 13 16

[2,] 2 5 8 11 14 17

[3,] 3 6 9 12 15 18

> t(A.svd$u)%*%A.svd$u

[,1] [,2] [,3]

[1,] 1.000000e+00 -1.169312e-16 -3.016793e-17

[2,] -1.169312e-16 1.000000e+00 -3.678156e-17

[3,] -3.016793e-17 -3.678156e-17 1.000000e+00

> t(A.svd$v)%*%A.svd$v

[,1] [,2] [,3]

[1,] 1.000000e+00 8.248068e-17 -3.903128e-18

[2,] 8.248068e-17 1.000000e+00 -2.103352e-17

[3,] -3.903128e-18 -2.103352e-17 1.000000e+00

12 矩阵QR分解

A为m×n矩阵可以进行QR分解,A=QR,其中:Q'Q=I,在R中可以用函数qr()进行QR分解,例如:

> A=matrix(1:16,4,4)

> qr(A)

$qr

[,1] [,2] [,3] [,4]

[1,] -5.4772256 -12.7801930 -2.008316e+01 -2.738613e+01

[2,] 0.3651484 -3.2659863 -6.531973e+00 -9.797959e+00

[3,] 0.5477226 -0.3781696 2.641083e-15 2.056562e-15

[4,] 0.7302967 -0.9124744 8.583032e-01 -2.111449e-16

$rank

[1] 2

$qraux

[1] 1.182574e+00 1.156135e+00 1.513143e+00 2.111449e-16

$pivot

[1] 1 2 3 4

attr(,\"class\")

[1] \"qr\"

rank项返回矩阵的秩,qr项包含了矩阵Q和R的信息,要得到矩阵Q和R,可以用函数qr.Q()和qr.R()作用qr()的返回结果,例如:

> qr.R(qr(A))

[,1] [,2] [,3] [,4]

[1,] -5.477226 -12.780193 -2.008316e+01 -2.738613e+01

[2,] 0.000000 -3.265986 -6.531973e+00 -9.797959e+00

[3,] 0.000000 0.000000 2.641083e-15 2.056562e-15

[4,] 0.000000 0.000000 0.000000e+00 -2.111449e-16

> qr.Q(qr(A))

[,1] [,2] [,3] [,4]

[1,] -0.1825742 -8.164966e-01 -0.4000874 -0.37407225

[2,] -0.3651484 -4.082483e-01 0.2546329 0.79697056

[3,] -0.5477226 -8.131516e-19 0.6909965 -0.47172438

[4,] -0.7302967 4.082483e-01 -0.5455419 0.04882607

> qr.Q(qr(A))%*%qr.R(qr(A))

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> t(qr.Q(qr(A)))%*%qr.Q(qr(A))

[,1] [,2] [,3] [,4]

[1,] 1.000000e+00 -1.457168e-16 -6.760001e-17 -7.659550e-17

[2,] -1.457168e-16 1.000000e+00 -4.269046e-17 7.011739e-17

[3,] -6.760001e-17 -4.269046e-17 1.000000e+00 -1.596437e-16

[4,] -7.659550e-17 7.011739e-17 -1.596437e-16 1.000000e+00

> qr.X(qr(A))

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

13 矩阵广义逆(Moore-Penrose)

n×m矩阵A+称为m×n矩阵A的Moore-Penrose逆,如果它满足下列条件:

① A A+A=A;②A+A A+= A+;③(A A+)H=A A+;④(A+A)H= A+A

在R的MASS包中的函数ginv()可计算矩阵A的Moore-Penrose逆,例如:

library(“MASS”)

> A

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> ginv(A)

[,1] [,2] [,3] [,4]

[1,] -0.285 -0.1075 0.07 0.2475

[2,] -0.145 -0.0525 0.04 0.1325

[3,] -0.005 0.0025 0.01 0.0175

[4,] 0.135 0.0575 -0.02 -0.0975

验证性质1:

> A%*%ginv(A)%*%A

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

验证性质2:

> ginv(A)%*%A%*%ginv(A)

[,1] [,2] [,3] [,4]

[1,] -0.285 -0.1075 0.07 0.2475

[2,] -0.145 -0.0525 0.04 0.1325

[3,] -0.005 0.0025 0.01 0.0175

[4,] 0.135 0.0575 -0.02 -0.0975

验证性质3:

> t(A%*%ginv(A))

[,1] [,2] [,3] [,4]

[1,] 0.7 0.4 0.1 -0.2

[2,] 0.4 0.3 0.2 0.1

[3,] 0.1 0.2 0.3 0.4

[4,] -0.2 0.1 0.4 0.7

> A%*%ginv(A)

[,1] [,2] [,3] [,4]

[1,] 0.7 0.4 0.1 -0.2

[2,] 0.4 0.3 0.2 0.1

[3,] 0.1 0.2 0.3 0.4

[4,] -0.2 0.1 0.4 0.7

验证性质4:

> t(ginv(A)%*%A)

[,1] [,2] [,3] [,4]

[1,] 0.7 0.4 0.1 -0.2

[2,] 0.4 0.3 0.2 0.1

[3,] 0.1 0.2 0.3 0.4

[4,] -0.2 0.1 0.4 0.7

> ginv(A)%*%A

[,1] [,2] [,3] [,4]

[1,] 0.7 0.4 0.1 -0.2

[2,] 0.4 0.3 0.2 0.1

[3,] 0.1 0.2 0.3 0.4

[4,] -0.2 0.1 0.4 0.7

14 矩阵Kronecker积

n×m矩阵A与h×k矩阵B的kronecker积为一个nh×mk维矩阵,

在R中kronecker积可以用函数kronecker()来计算,例如:

> A=matrix(1:4,2,2)

> B=matrix(rep(1,4),2,2)

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> B

[,1] [,2]

[1,] 1 1

[2,] 1 1

> kronecker(A,B)

[,1] [,2] [,3] [,4]

[1,] 1 1 3 3

[2,] 1 1 3 3

[3,] 2 2 4 4

[4,] 2 2 4 4

15 矩阵的维数

在R中很容易得到一个矩阵的维数,函数dim()将返回一个矩阵的维数,nrow()返回行数,ncol()返回列数,例如:

> A=matrix(1:12,3,4)

> A

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> nrow(A)

[1] 3

> ncol(A)

[1] 4

16 矩阵的行和、列和、行平均与列平均

在R中很容易求得一个矩阵的各行的和、平均数与列的和、平均数,例如:

> A

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> rowSums(A)

[1] 22 26 30

> rowMeans(A)

[1] 5.5 6.5 7.5

> colSums(A)

[1] 6 15 24 33

> colMeans(A)

[1] 2 5 8 11

上述关于矩阵行和列的操作,还可以使用apply()函数实现。

> args(apply)

function (X, MARGIN, FUN, ...)

其中:x为矩阵,MARGIN用来指定是对行运算还是对列运算,MARGIN=1表示对行运算,MARGIN=2表示对列运算,FUN用来指定运算函数, ...用来给定FUN中需要的其它的参数,例如:

> apply(A,1,sum)

[1] 22 26 30

> apply(A,1,mean)

[1] 5.5 6.5 7.5

> apply(A,2,sum)

[1] 6 15 24 33

> apply(A,2,mean)

[1] 2 5 8 11

apply()函数功能强大,我们可以对矩阵的行或者列进行其它运算,例如:

计算每一列的方差

> A=matrix(rnorm(100),20,5)

> apply(A,2,var)

[1] 0.4641787 1.4331070 0.3186012 1.3042711 0.5238485

> apply(A,2,function(x,a)x*a,a=2)

[,1] [,2] [,3] [,4]

[1,] 2 8 14 20

[2,] 4 10 16 22

[3,] 6 12 18 24

注意:apply(A,2,function(x,a)x*a,a=2)与A*2效果相同,此处旨在说明如何应用alpply函数。

17 矩阵X'X的逆

在统计计算中,我们常常需要计算这样矩阵的逆,如OLS估计中求系数矩阵。R中的包“strucchange”提供了有效的计算方法。

> args(solveCrossprod)

function (X, method = c(\"qr\

其中:method指定求逆方法,选用“qr”效率最高,选用“chol”精度最高,选用“slove”与slove(crossprod(x,x))效果相同,例如:

> A=matrix(rnorm(16),4,4)

> solveCrossprod(A,method=\"qr\")

[,1] [,2] [,3] [,4]

[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730

[2,] -0.1543924 0.4779277 0.1859490 -0.2097302

[3,] -0.2900796 0.1859490 0.6931232 -0.3162961

[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627

> solveCrossprod(A,method=\"chol\")

[,1] [,2] [,3] [,4]

[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730

[2,] -0.1543924 0.4779277 0.1859490 -0.2097302

[3,] -0.2900796 0.1859490 0.6931232 -0.3162961

[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627

> solveCrossprod(A,method=\"solve\")

[,1] [,2] [,3] [,4]

[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730

[2,] -0.1543924 0.4779277 0.1859490 -0.2097302

[3,] -0.2900796 0.1859490 0.6931232 -0.3162961

[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627

> solve(crossprod(A,A))

[,1] [,2] [,3] [,4]

[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730

[2,] -0.1543924 0.4779277 0.1859490 -0.2097302

[3,] -0.2900796 0.1859490 0.6931232 -0.3162961

[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627

18 取矩阵的上、下三角部分

在R中,我们可以很方便的取到一个矩阵的上、下三角部分的元素,函数lower.tri()和函数upper.tri()提供了有效的方法。

> args(lower.tri)

function (x, diag = FALSE)

函数将返回一个逻辑值矩阵,其中下三角部分为真,上三角部分为假,选项diag为真时包含对角元素,为假时不包含对角元素。upper.tri()的效果与之孑然相反。例如:

> A

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> lower.tri(A)

[,1] [,2] [,3] [,4]

[1,] FALSE FALSE FALSE FALSE

[2,] TRUE FALSE FALSE FALSE

[3,] TRUE TRUE FALSE FALSE

[4,] TRUE TRUE TRUE FALSE

> lower.tri(A,diag=T)

[,1] [,2] [,3] [,4]

[1,] TRUE FALSE FALSE FALSE

[2,] TRUE TRUE FALSE FALSE

[3,] TRUE TRUE TRUE FALSE

[4,] TRUE TRUE TRUE TRUE

> upper.tri(A)

[,1] [,2] [,3] [,4]

[1,] FALSE TRUE TRUE TRUE

[2,] FALSE FALSE TRUE TRUE

[3,] FALSE FALSE FALSE TRUE

[4,] FALSE FALSE FALSE FALSE

> upper.tri(A,diag=T)

[,1] [,2] [,3] [,4]

[1,] TRUE TRUE TRUE TRUE

[2,] FALSE TRUE TRUE TRUE

[3,] FALSE FALSE TRUE TRUE

[4,] FALSE FALSE FALSE TRUE

> A[lower.tri(A)]=0

> A

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 0 6 10 14

[3,] 0 0 11 15

[4,] 0 0 0 16

> A[upper.tri(A)]=0

> A

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 2 6 0 0

[3,] 3 7 11 0

[4,] 4 8 12 16

19 backsolve&fowardsolve函数

这两个函数用于解特殊线性方程组,其特殊之处在于系数矩阵为上或下三角。

> args(backsolve)

function (r, x, k = ncol(r), upper.tri = TRUE, transpose = FALSE)

> args(forwardsolve)

function (l, x, k = ncol(l), upper.tri = FALSE, transpose = FALSE)

其中:r或者l为n×n维三角矩阵,x为n×1维向量,对给定不同的upper.tri和transpose的值,方程的形式不同

对于函数backsolve()而言,

例如:

> A=matrix(1:9,3,3)

> A

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> x=c(1,2,3)

> x

[1] 1 2 3

> B=A

> B[upper.tri(B)]=0

> B

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 2 5 0

[3,] 3 6 9

> C=A

> C[lower.tri(C)]=0

> C

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 0 5 8

[3,] 0 0 9

> backsolve(A,x,upper.tri=T,transpose=T)

[1] 1.00000000 -0.40000000 -0.08888889

> solve(t(C),x)

[1] 1.00000000 -0.40000000 -0.08888889

> backsolve(A,x,upper.tri=T,transpose=F)

[1] -0.8000000 -0.1333333 0.3333333

> solve(C,x)

[1] -0.8000000 -0.1333333 0.3333333

> backsolve(A,x,upper.tri=F,transpose=T)

[1] 1.111307e-17 2.220446e-17 3.333333e-01

> solve(t(B),x)

[1] 1.110223e-17 2.220446e-17 3.333333e-01

> backsolve(A,x,upper.tri=F,transpose=F)

[1] 1 0 0

> solve(B,x)

[1] 1.000000e+00 -1.540744e-33 -1.850372e-17

对于函数forwardsolve()而言,

例如:

> A

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> B

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 2 5 0

[3,] 3 6 9

> C

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 0 5 8

[3,] 0 0 9

> x

[1] 1 2 3

> forwardsolve(A,x,upper.tri=T,transpose=T)

[1] 1.00000000 -0.40000000 -0.08888889

> solve(t(C),x)

[1] 1.00000000 -0.40000000 -0.08888889

> forwardsolve(A,x,upper.tri=T,transpose=F)

[1] -0.8000000 -0.1333333 0.3333333

> solve(C,x)

[1] -0.8000000 -0.1333333 0.3333333

> forwardsolve(A,x,upper.tri=F,transpose=T)

[1] 1.111307e-17 2.220446e-17 3.333333e-01

> solve(t(B),x)

[1] 1.110223e-17 2.220446e-17 3.333333e-01

> forwardsolve(A,x,upper.tri=F,transpose=F)

[1] 1 0 0

> solve(B,x)

[1] 1.000000e+00 -1.540744e-33 -1.850372e-17

20 row()与col()函数

在R中定义了的这两个函数用于取矩阵元素的行或列下标矩阵,例如矩阵A={aij}m×n,

row()函数将返回一个与矩阵A有相同维数的矩阵,该矩阵的第i行第j列元素为i,函数col()类似。例如:

> x=matrix(1:12,3,4)

> row(x)

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 2 2 2 2

[3,] 3 3 3 3

> col(x)

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 1 2 3 4

[3,] 1 2 3 4

这两个函数同样可以用于取一个矩阵的上下三角矩阵,例如:

> x

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> x[row(x)> x

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 2 5 0 0

[3,] 3 6 9 0

> x=matrix(1:12,3,4)

> x[row(x)>col(x)]=0

> x

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 0 5 8 11

[3,] 0 0 9 12

21 行列式的值

在R中,函数det(x)将计算方阵x的行列式的值,例如:

> x=matrix(rnorm(16),4,4)

> x

[,1] [,2] [,3] [,4]

[1,] -1.0736375 0.2809563 -1.5796854 0.51810378

[2,] -1.6229898 -0.4175977 1.2038194 -0.06394986

[3,] -0.3989073 -0.8368334 -0.6374909 -0.23657088

[4,] 1.9413061 0.8338065 -1.5877162 -1.30568465

> det(x)

[1] 5.717667

22向量化算子

在R中可以很容易的实现向量化算子,例如:

vec<-function (x){

t(t(as.vector(x)))

}

vech<-function (x){

t(x[lower.tri(x,diag=T)])

}

> x=matrix(1:12,3,4)

> x

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> vec(x)

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

[5,] 5

[6,] 6

[7,] 7

[8,] 8

[9,] 9

[10,] 10

[11,] 11

[12,] 12

> vech(x)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 3 5 6 9

23 时间序列的滞后值

在时间序列分析中,我们常常要用到一个序列的滞后序列,R中的包“fMultivar”中的函数tslag()提供了这个功能。

> args(tslag)

function (x, k = 1, trim = FALSE)

其中:x为一个向量,k指定滞后阶数,可以是一个自然数列,若trim为假,则返回序列与原序列长度相同,但含有NA值;若trim项为真,则返回序列中不含有NA值,例如:

> x=1:20

> tslag(x,1:4,trim=F)

[,1] [,2] [,3] [,4]

[1,] NA NA NA NA

[2,] 1 NA NA NA

[3,] 2 1 NA NA

[4,] 3 2 1 NA

[5,] 4 3 2 1

[6,] 5 4 3 2

[7,] 6 5 4 3

[8,] 7 6 5 4

[9,] 8 7 6 5

[10,] 9 8 7 6

[11,] 10 9 8 7

[12,] 11 10 9 8

[13,] 12 11 10 9

[14,] 13 12 11 10

[15,] 14 13 12 11

[16,] 15 14 13 12

[17,] 16 15 14 13

[18,] 17 16 15 14

[19,] 18 17 16 15

[20,] 19 18 17 16

> tslag(x,1:4,trim=T)

[,1] [,2] [,3] [,4]

[1,] 4 3 2 1

[2,] 5 4 3 2

[3,] 6 5 4 3

[4,] 7 6 5 4

[5,] 8 7 6 5

[6,] 9 8 7 6

[7,] 10 9 8 7

[8,] 11 10 9 8

[9,] 12 11 10 9

[10,] 13 12 11 10

[11,] 14 13 12 11

[12,] 15 14 13 12

[13,] 16 15 14 13

[14,] 17 16 15 14

[15,] 18 17 16 15

[16,] 19 18 17 16

Welcome To

Download

欢迎您的下载,资料仅供参考!

因篇幅问题不能全部显示,请点此查看更多更全内容