forthevertexoperatoralgebraVL+
:Generalcase
ToshiyukiAbe1
and
ChongyingDong2
DepartmentofMathematics,
UniversityofCalifornia,SantaCruz,CA95064
Abstract
TheirreduciblemodulesforthefixedpointvertexoperatorsubalgebraV+
ofthevertexoperatoralgebraVtoanarbitrarypositivedefiniteLLassociatedevenlatticeLundertheautomorphismliftedfromthe−1isometryofLareclassified.
1Introduction
ThispaperisacontinuationofourstudyoftheZ2-orbifoldvertexoperatoralge-braVL+
whichisthefixedpointsofvertexoperatoralgebraVL(see[B],[FLM2])associatedtopositivedefiniteevenlatticeLundertheautomorphismθliftedfrom
the−1isometryofL.WeclassifytheirreduciblemodulesforVL+
.Itturnsoutthat
anyirreducibleVL+
-moduleiseitherisomorphictoasubmoduleofanirreducibleVL-moduleorasubmoduleofanirreducibletwistedVL-module.InthecasethattherankofLisone,thisresultwasobtainedpreviouslyin[DN2].
TheVL+
formsabasicclassofvertexoperatoralgebrasbesidesaffine,Virasoroandlatticevertexoperatoralgebras.Thestructureandrepresentationtheoryforaffine,Virasoroandlatticevertexoperatoralgebrasarewellunderstood(see[B],[FLM2],[D1],[DL],[DLM2],[FZ],[Li],[W])withthehelpofaffineKac-Moody
Liealgebras,Virasoroalgebrasandlattices.AlthoughVL+
isalsorelatedtothelattice,butitsstructureandrepresentationtheoryaremuchmorecomplicated.Forexample,ifLdoesnothaveanyvectorofsquaredlength2,suchastheLeechlattice,VL+hasnoweightonevectorsandishardlyrelatedtoaffineKac-Moodyalgebras.
InthiscasetheweighttwosubspaceofVL+
isacommutativenonassociativealgebra
similartotheGriessalgebra[Gr].Insomesense,VL+
isa“typical”vertexoperator
algebra.SothestudyofVL+
shouldhelppeopletoinvestigategeneralvertexoperatoralgebras.
+
ItisworthytopointoutthatVLisaZ2-orbifoldvertexoperatoralgebra.InthecasethatL=ΛistheLeechlattice,suchvertexoperatoralgebrawasusedin[FLM2]toconstructthemoonshinevertexoperatoralgebraV♮.Therehavebeeneffortson
+
studyingtherepresentationsofVLforspecialLwiththehelpofrepresentationtheoryfortheVirasoroalgebrawithcentralcharge1/2(see[D3],[DGH]).Wereferthereaderto[DLM1],[DM],[DVVV]and[K]forgeneralorbifoldtheory.
+
Asin[DN2],themainideaistodetermineZhu’salgebraA(VL)whoseinequiv-alentsimplemoduleshaveaonetoonecorrespondencewiththeinequivalentirre-+ducible(admissible)modulesforVL(see[Z]).Theresultsandmethodsfrom[DN2]inthecaseofrankoneplayimportantrolesinthispaper.Thereisafundamentaldifferencebetweenrankonecaseandhigherrankcases.Zhu’salgebrainrankonecaseiscommutativewithoneexceptionbutisnotforhigherranks.IngeneralLisnotaorthogonalsumofrankonelattices.Nevertheless,foranyelementinLwecanconsidertherankonesublatticegeneratedbytheelementandapplyresultsin[DN2].Notethattheθ-invariantsM(1)+oftheHeisenbergvertexoperatoralgebra
+
M(1)isasubalgebraofVL.SothestructureandrepresentationtheoryforM(1)+obtainedin[DN3]havebeenextensivelyusedinthispaper.Althoughtheinforma-+
tionthatwegetonA(VL)isgoodenoughtoclassifythesimplemodules,wecould
+
notprovethatA(VL)issemisimple.
+
TherearestilltwomajorproblemsaboutVL.Oneistherationalityandtheotheristodeterminethefusionrulesamongirreduciblemodules.Itiscertainlybelieved
+
thatVLisrational.InthecasethatLissomerankonelattice,therationalitywasestablishedin[A].ButrationalityforanyLremainsopen.Thisproblemisrelated
+
toC2-cofinitenessofVL,whichisobtainedrecentlyin[Y]intherankonecaseandin[ABD]ingeneral.Thedeterminationofthefusionruleswillbecarriedoutinaseparatepaper.
Thepaperisorganizedasfollows:InSection2,wereviewvarious(twisted)modulesforavertexoperatoralgebraVanddefineZhu’salgebraA(V).Wedefine
+
vertexoperatoralgebraVLanditssubalgebraM(1)+inSection3.Wealsolist
+
theknownirreduciblemodulesforVL.Section4isaboutZhu’salgebrasA(M(1)+)
+
andA(VL).Inparticularweobtainmanyidentitiesforasetofgeneratorsforin
+A(VL)byusingresultsfrom[DN1],[DN2]and[DN3].Usingtheknownirreducible++VL-moduleswecomputehowthegeneratorsofA(VL)actontheknownsimple
++A(VL)-modules.InSection4wegiveaspanningsetforA(VL)whichisusedinthelatersectionsfortheclassification.Sections5and6aredevotedtothe
++
classificationofsimpleA(VL)-modulesandirreducibleVL-modules.SinceM(1)+
++
isasubalgebraofVLthereisanalgebrahomomorphismfromA(M(1)+)toA(VL).Thishomomorphismembedsthetwod×dmatrixsubalgebrasofA(M(1)+)(see
+
[DN3])intoA(VL)wheredistherankofL.Therearetwocasesintheclassification.InSection5wedealwiththecasethatthesimplemodulesareannihilatedbythe
2
twomatrixsubalgebras.Section6handlestheothercase:thatis,oneofthematrixalgebrasdoesnotannihilatethesimplemodules.
ThroughoutthepaperZ≥0isthesetofnonnegativeintegers.
2Vertexoperatoralgebrasandmodules
Inthissectionwerecallthedefinitionsofvarious(twisted)modulesforavertexoperatoralgebra(cf.[B],[D2],[FFR],[FLM1],[FLM2],[DLM4],[Le],[Z]).WealsoreviewtheZhu’salgebraA(V)associatedtoavertexoperatoralgebraV.
AvertexoperatoralgebraVisaZ-gradedvectorspaceV=n∈ZVnequipped
−n−1
withalinearmapY:V→(EndV)[[z,z−1]],a→Y(a,z)=forn∈Zanz
a∈VsuchthatdimVnisfiniteforallintegernandthatVn=0forsufficientlysmallintegern(see[FLM2]).Therearetwodistinguishedvectors,thevacuumvector1∈V0andtheVirasoroelementω∈V2.BydefinitionY(1,z)=idV,andthe
componentoperators{L(n)}ofY(ω,z)=n∈ZL(n)z−n−2givesarepresentationoftheVirasoroalgebraonVwithcentralchargec.EachhomogeneousspaceVn(n≥0)isaneigenspaceforL(0)witheigenvaluen.
AnautomorphismgofavertexoperatoralgebraVisalinearisomorphismofVsatisfyingg(ω)=ωandgY(a,z)g−1=Y(g(a),z)foranya∈V.WedenotebyAut(V)thegroupofallautomorphismsofV.ForasubgroupG V= T−1r=0 Vr,Vr={a∈V|g(a)=e− 2πir (3)YM(1,z)=idM, T anz−n−1, 3 (4)(thetwistedJacobiidentity) z1−z2−1 z0δ −1 =z2 z1−z0 T δ −z0 z1−z0 YM(b,z2)YM(a,z1) dz holdsforanya∈V(see[DLM2]). Y(a,z)foralla∈V.(2.1) Definition2.2.Anadmissibleg-twistedV-moduleMisaweakg-twistedV-modulewhichhasa1Z≥0M(n)suchthat T a(m)M(n)⊂M(wt(a)+n−m−1) foranyhomogeneousa∈Vandm,n∈Q. (2.2) Inthecasegistheidentity,anyadmissibleg-twistedV-moduleiscalledanadmissibleV-module.Anyg-twistedweakV-submoduleNofag-twistedadmissible V-moduleiscalledag-twistedadmissibleV-submoduleifN=n∈1 Inthecasegistheidentity,ag-twistedV-moduleiscalledaV-module.AV-moduleMiscalledirreducibleifMisirreducibleasaweakV-module.Bydefinition,foravertexoperatoralgebra(V,Y,1,ω),(V,Y)becomesaV-module.IfavertexoperatoralgebraisirreducibleasaV-module,thenViscalledsimple. Itisprovedin[DLM4]thatifVisg-rationalthenthereareonlyfinitelymanyinequivalentirreducibleadmissibleg-twistedV-modulesandanyirreducibleadmis-sibleg-twistedV-moduleisordinary. WenextdefineZhu’salgebraA(V)whichisanassociativealgebrafollowing[Z].Foranyhomogeneousvectorsa∈V,andb∈V,wedefine (1+z)wt(a) a∗b=Resz Y(a,z)b,z2andextendtoV×Vbilinearly.DenotebyO(V)thelinearspanofa◦b(a,b∈V)andsetA(V)=V/O(V).Wewrite[a]fortheimagea+O(V)ofa∈V.Thefollowingtheoremisdueto[Z](alsosee[DLM4]). Theorem2.5.(1)Thebilinearoperation∗inducesA(V)anassociativealgebrastructure.Thevector[1]istheidentityand[ω]isinthecenterofA(V). ∞ (2)LetM=n=0M(n)beanadmissibleV-modulewithM(0)=0.Thenthelinearmap o:V→EndM(0),a→o(a)|M(0)inducesanalgebrahomomorphismfromA(V)toEndM(0).ThusM(0)isaleftA(V)-module. (3)ThemapM→M(0)inducesabijectionfromthesetofequivalenceclassesofirreducibleadmissibleV-modulestothesetofequivalenceclassesofirreducibleA(V)-modules. 3 + VertexoperatoralgebrasM(1)+andVL + InthissectionwerecalltheconstructionofthevertexoperatoralgebraVLassociatedwithapositivedefiniteevenlatticeLandthevertexoperatoralgebraM(1)+(cf.[FLM2]).Wealsostateseveralresultsonclassificationsofirreduciblemodulesfor+VLwhentherankofLisone(see[DN2])andM(1)+(see[DN1]and[DN3]). LetLbearankdevenlatticewithapositivedefinitesymmetricZ-bilinearform(·,·).Weseth=C⊗ZLandextend(·,·)toaC-bilinearformonh.Letˆ=C[t,t−1]⊗h⊕CCbetheaffinizationofcommutativeLiealgebrahdefinedbyh ˆ]=0[β1⊗tm,β2⊗tn]=m(β1,β2)δm,−nCand[C,h 5 ˆ+=C[t]⊗h⊕CCisacommutativesubalgebra.foranyβi∈h,m,n∈Z.Thenh ˆ+-moduleCeλbytheactionsForanyλ∈h,wecandefineaonedimensionalh ρ(h⊗tm)eλ=(λ,h)δm,0eλandρ(C)eλ=eλforh∈handm≥0.Nowwedenoteby ˆ)⊗ˆ+Ceλ∼M(1,λ)=U(h=S(t−1C[t−1])U(h) ˆ-moduleinducedfromhˆ+-moduleCeλ.SetM(1)=M(1,0).Thenthereexiststheh alinearmapY:M(1)→(EndM(1,λ)[[z,z−1]]suchthat(M(1),Y,1,ω)hasasimplevertexoperatoralgebrastructureand(M(1,λ),Y)becomesanirreducibleM(1)-moduleforanyλ∈h(see[FLM2]).ThevacuumvectorandtheVirasoroelementaregivenby1=e0andω=1 definedby Y(h(−1)1,z)=h(z)=Y(eα,z)=exp n∈Z h(−n)z−n−1, z−n eαzα, ∞α(−n)n=1 n whereh(−n)(h∈h,n∈Z)istheactionofh⊗tnonVλ+L,eαistheleftactionof ˆonC[L◦]andzαistheoperatoronC[L◦]definedbyzαeλ=z(α,λ)eλ.L Thevertexoperatorassociatedtothevectorv=β1(−n1)···βr(−nr)eαforβi∈h,ni≥1andα∈Lisdefinedby (n1−1) Y(v,z)=◦β1(z)···∂(nr−1)βr(z)Y(eα,z)◦◦∂◦, ◦ where∂=1dz)nandthenormalordering◦◦·◦isanoperationwhichreorderstheoperatorssothatβ(n)(β∈h,n<0)andeαtobeplacedtotheleftofX(n),(X∈h,n≥0)andzα. WenotethatM(1)iscontainedinVLasavertexoperatorsubalgebrawithsameVirasoroelement.Foranyλ∈L◦,M(1)⊗eλisisomorphictoM(1,λ)as M(1)-modules.ThusVλ+Lisisomorphictoα∈LM(1,λ+α)asM(1)-modules.Nowwedefinealinearisomorphismθ:VL+λi→VL−λifori∈L◦/Lby θ(β1(−n1)β2(−n2)···βk(−nk)eα+λi)=(−1)kβ1(−n1)β2(−n2)···βk(−nk)e−α−λiforβi∈h,ni≥1andα∈Lif2λi∈L,andθ(β1(−n1)β2(−n2)···βk(−nk)eα+λi) =(−1)kc2λiǫ(α,2λi)β1(−n1)β2(−n2)···βk(−nk)e−α−λi if2λi∈Lwherec2λiisasquarerootofǫ(2λi,2λi).Thenθdefinesalinearisomor-phismfromVL◦toitselfsuchthat θY(u,z)v=Y(θu,z)θv foru∈VLandv∈VL◦.Inparticular,θisanautomorphismofVLwhichinducesanautomorphismofM(1). Foranyθ-stablesubspaceUofVL◦,letU±bethe±1-eigenspaceofUforθ.Wehavethefollowingproposition(see[DM]and[DLM1]): Proposition3.1.(1)M(1)±,M(1,λ)forλ∈h−{0}areirreducibleM(1)+-modules,andM(1,λ)∼=M(1,−λ). + (2)(VL+λi+VL−λi)±fori∈L◦/LareirreducibleVL-modules.Moreoverif2λi∈Lthen(VL+λi+VL−λi)±,VL+λi,andVL−λiareisomorphic. 7 Nextwerecallaconstructionofθ-twistedmodulesforM(1)andVLfollowing 1 [FLM2]and[D2].Denotebyh[−1]=h⊗t +Z.ThenthesymmetricalgebraM(1)(θ)=S(t−2 1 2 ,z− 1 T,±± +Zandt∈T.WedenotebyM(1)(θ)andVthe±1-≥0L2 T eigenspaceforθofM(1)(θ)andVLrespectively. ˆ-moduleassociatedtoacentralFollowing[FLM2],letTχbetheirreducibleL/K characterχsatisfyingχ(κ)=−1.Thenanyirreducibleθ-twistedVL-moduleis T isomorphictoVLχforsomecentralcharacterχwithχ(κ)=−1(see[D2]).By[DLi]weget Proposition3.2.(1)M(1)(θ)±areirreducibleM(1)+-modules. ˆ(2)LetχbeacentralcharacterofL/Ksuchthatχ(ι(κ))=−1,andTχthe ˆ-modulewithcentralcharacterχ.ThenV+-modulesVTχ,±areirre-irreducibleL/KLLducible. + Itisprovedin[DN1]and[DN2]thatanyirreduciblemodulesforM(1)+andVLwithrankonelatticeLisisomorphictooneofirreduciblemodulesinPropositions3.1and3.2: Theorem3.3.([DN1])Theset {M(1)±,M(1)(θ)±,M(1,λ)(∼=M(1,−λ))|λ∈h−{0}} givesallinequivalentirreducibleM(1)+-modules. (3.2) 8 Theorem3.4.([DN2])LetL=Zαbearankoneevenlatticesuchthat(α,α)=2kwithpositiveintegerk.Theset Ti,±±± {VL,Vα/,V,Vrα/2k+L|i=1,2,1≤r≤k−1}L2+L (3.3) + givesallinequivalentirreducibleVL-modules,whereTiisanirreducibleL/2L-moduleonwhicheαactsbythescalar(−1)i−1fori=1,2. 4 + Zhu’salgebrasA(M(1)+)andA(VZα) + InthissectionwerecallthestructureofZhu’salgebrasA(M(1)+)andA(VL)fol-lowing[DN2]and[DN3]. FirstwewritedownidentitiesinZhu’salgebraA(M(1)+).Let{ha}beanorthonormalbasisofh.Setωa=ωha=1 h(−2)21.ThevectorωaandJagenerateavertexoperator2a algebraM(1)+associatedtotheonedimensionalvectorspaceCha(see[DG]).Next u¯u,Et,E¯tandΛabasfollowswesetSab(m,n)=ha(−m)hb(−n)1,anddefineEab,Eababab (see[DN3]); uEab=5Sab(1,2)+25Sab(1,3)+36Sab(1,4)+16Sab(1,5)(a=b),u¯ba=Sab(1,1)+14Sab(1,2)+41Sab(1,3)+44Sab(1,4)+16Sab(1,5)(a=b),E uuuEaa=Eab∗Eba, tEab=−16(3Sab(1,2)+14Sab(1,3)+19Sab(1,4)+8Sab(1,5))(a=b),¯t=−16(5Sab(1,2)+18Sab(1,3)+21Sab(1,4)+8Sab(1,5))(a=b),EbatttEaa=EabEba, Λab=45Sab(1,2)+190Sab(1,3)+240Sab(1,4)+96Sab(1,5). ¯u]=[Eu],[E¯t]=[Et]and[Λab]=[Λba]inA(M(1)+)Itisprovedin[DN3]that[Eabababab ut¯andE¯for[Eu]and[Et]respectively.foranya,b.ThusweoftenuseEbabababa By[DN3,Proposition5.3.12]wehaveProposition4.1.Foranya,b,c,d, uuu[Eab]∗[Ecd]=δbc[Ead], tu [Eab]∗[Et∗cd]=δbc[Ead], uttu [Eab]∗[Ecd]=[Ecd]∗[Eab]=0, tuut ]∗[Λab]=0(a=b).]=[Ecd]∗[Λab]=[Ecd[Λab]∗[Ecd]=[Λab]∗[Ecd 9 Remark4.2.Thevectors[Sab(1,n)](1≤n≤5)canbeexpressedaslinearcombi-ut nationsof[Eab],[Eab]and[Λab]asfollows(see[DN3,Remark5.1.2]); uu [Sab(1,1)]=[Eab]+[Eba]+[Λab]+u[Sab(1,2)]=−2[Eab]−[Λab]−u[Sab(1,3)]=3[Eab]+[Λab]+ 1 24 t [Eba], (4.1)(4.2)(4.3)(4.4) t [Eba]. 3 t [Eba],t[Eba],t[Eba], 1535 16315 u [Sab(1,4)]=−4[Eab]−[Λab]− 32 uu[Sab(1,5)]=5[Eab]+[Eba]+[Λab]+ 256 (4.5) ut LetAuandAtbethelinearsubspaceofA(M(1)+)spannedbyEabandEab,respectivelyfor1≤a,b≤d.Thenwehave(see[DN3,Proposition5.3.14]): Proposition4.3.(1)AuareAtaretwosidedidealsofA(M(1)+)andthequotientalgebraA(M(1)+)/(Au+At)iscommutative. (2)ThenaturalactionsofA(M(1)+)onM(1)−(0)andM(1)(θ)−induceiso-morphismsofalgebrasfromAuandAttoEndM(1)−(0)andEndM(1)(θ)−respec-tively.Underthebasis{h1(−1),...,hd(−1)}({h1(−1/2),...,hd(−1/2)}resp.)of ut M(1)−(0)(M(1)(θ)−(0)resp.),each[Eab]([Eab]resp.)correspondstothematrixelementEabwhose(i,j)-entryis1andzeroelsewhere. Remark4.4.TheidealsAuandAtareindependentofthechoiceofanorthonormal dduutt basis{ha}.Inparticular,theunitsI=a=1[Eaa]andI=a=1[Eaa]ofAuandAtareindependentofthechoiceofanorthonormalbasis. Wenextrecallsomerelations(see[DN3,Lemma5.2.2andLemma5.3.2])whichwillbeusedlater. Proposition4.5.Foranyindicesa,b,c, uu [ωa]∗[Ebc]=δab[Ebc], uu[Ebc]∗[ωa]=δac[Ebc], 1tt δab[Ebc],[ωa]∗[Ebc]= 2 1tt δac[Ebc],[Ebc]∗[ωa]= 2 [ωa]∗[Λbc]=[Λbc]∗[ωa]=0. (4.6)(4.7)(4.8)(4.9)(4.10) SetHa=Hha=Ja+ωa−4ωa∗ωa(see[DN3]).Thenthefollowingidentities(see[DN3,Proposition6.13])hold: 10 Proposition4.6.Fordistincta,bandc, 70[Ha]+1188[ωa]2−585[ωa]+27∗[Ha]=0, 1 ∗[Ha]=0,([ωa]−1)∗[ωa]− 1612uut [Hb]=2[Eaa]−2[Ebb]+[Ebb],− 94 4 (2[ωb]+13)∗[Hb]− 135 15uu =4([Eaa]−[Ebb])+ 15 ([ωa]−1)∗[Ha]+ 9 1 1 (4.11)(4.12)(4.13) uu ([Ha]+[Hb])−([Eaa]+[Ebb])− M(1)+ 10Ja 0 uEab M(1,λ)(λ∈h−{0}) eλ (ha,λ)2/2 −6δac 0 δbcha(−1)1 0 0 0 03/128 M(1)(θ)−hc(−1/2)11/16+1/2δac9/128−9/8δacδbcha(−1/2)1 0 Λab 2 h(−1)21,Jγ=h(−1)41− 11 2h(−3)h(−1)1+ 3 [ωα]− k (4k−1)(4k−9) 9 [ωα]−16 [ωα]− k 4(8k−3) [Eα], (4.18) +VZα VZα+r α(−1)1 2k α + VZα+α −α 2+e e α −VZα+α 2 0Jα 0Eα 0 T1,+ VZα r2/4k −6 0 1 α(−1/2)t1 T2,+ VZα k/4 k4/4−k2/4 0 α(−1/2)t2 1/16 3/1289/1282−2k+11/163/1289/128−2−2k+1 + Proposition4.9.Foranyα∈Lwith|α|2=2,A(VZα)isasemisimplealgebrageneratedby[ωα],[Jα],[Eα]andthefollowingidentitieshold; [Eα]∗[Eα]=4ǫ(α,α)[ωα], [Hα]∗[Eα]+[Eα]∗[Hα]=−12[ωα]∗[ωα]− 1 ∗[ωα]−4 (4.20) 1 ∗[Eα]=0. (4.22) 16 Proof.Thesemisimplicityisdueto[DLM3].SinceEα∗Eα=4ǫ(α,α)ωα,(4.20)isclear.Identities(4.20)–(4.22)areimmediateasthebothsideshavethesameactionsonthesimplemodulesbyTable3.Weonlyneedtoexplainhowtoreadtheactions −−−α onthetoplevelVZα(0)ofVZαinthetable.VZα(0)hasabasis{α(−1),F}whichareeigenvectorsfor[ωa],[Jα]and[Hα].Thevector[Eα]mapsα(−1)to−2FαandFα +α to2α(−1).InordertoseethatA(VZα)isgeneratedby[E],[ωα],[Jα],weobservethattheactionsof[ωα],[Jα],[Eα]distinguishthesimplemodules. −VZα 1ωα JαHαEα 1−6−9−2Fαt1 ωαJαHαEα 1302α(−1)1 T1,−VZα e α 2 2 2 −cαe−0 0−c3α 4 2 α 4 t2 T2,− VZα 9/16 −45/128−135/128−3/29/16−45/128−135/1283/2 Table3.Theactionsofωα,Jα,HαandEαontoplevelsinthecase|α|2=2. + FinallywediscussthetoplevelsoftheknownirreducibleVL-modules.Letλ∈L◦suchthatλhastheminimallengthinL+λ,i.e.,λsatisfiesthat|λ+α|2≥|λ|2foranyα∈L.Weassumethatthecosetrepresentativesλihavetheminimallengths.Weset ∆(λ)={α∈L||λ+α|2=|λ|2}. andL2={α∈L||α|2=2}.Weshallalsousethenotation |λ|= + forλ∈L◦.ThenthetoplevelsW(0)ofirreducibleVL-modulesWaregivenasfollows; ++ VL(0)=C1,VL(0)=h(−1)⊕C(eα−e−α),(4.23) Vλi+L(0)=Vλ±(0)i+L T,+ α∈∆(λi) α∈L2 Ceλi+α (2λi∈/L),(4.24)(4.25) = C(eλi+α±θeλi+α) T,− (2λi∈L), α∈∆(λi) VLχ(0)=Tχ,VLχ(0)=h(−1/2)⊗Tχ. (4.26) Hereh(−1)={h(−1)|h∈h}⊂M(1)andh(−1/2)={h(−1/2)|h∈h}⊂M(1)(θ). Remark4.10.Notethatif2λi∈Lthesumα∈∆(λi)C(eλi+α±θe+λi+α)isnota ¯λi)bedirectsumsinceforanyα∈∆(λi),−2λi−αalsobelongsto∆(λi).Let∆( ¯λi)∩{α,−2λi−α}|=1foranyα∈∆(λi).Thenasubsetof∆(λi)suchthat|∆( ± Vλi+L(0)=C(eλi+α±θeλi+α).(4.27) ¯λi)α∈∆( 5 + AspanningsetofA(VL) +++ Foranyα∈L,setVL[α]=M(1)+⊗Eα⊕M(1)−⊗FαandA(VL)(α)=(VL[α]+ ++++O(VL))/O(VL).ThenA(VL)isasumofA(VL)(α)forα∈L.Weobtainspanning ++ setsofA(VL)(α)forα∈LandthusforA(VL)inthissection.Thespanningsets + willbeusedinthenexttwosectionstoclassifythesimpleA(VL)-modules. + LetXbeavertexoperatorsubalgebraofVLwhoseVirasorovectormaydiffer + fromtheVirasorovectorofVL.Clearly,theidentitymapinducesanalgebrahomo-+morphismfromA(X)toA(VL).Fromnowonwewilluse[u]foru∈Xtodenote + bothu+O(X)andu+O(VL)ifthecontextisclear.Forexample,wewilluse +uutt ,EabinA(VL],[Eab]fortheimagesofEab[Eab). + Considerthemapφα:M(1,α)→VL[α]definedbyu⊗eα→1 +α (u−θ(u))⊗F.ClearlyφisanM(1)-moduleisomorphism.α2 FirstweconsideraspanningsetofM(1,α)forα∈h. Proposition5.1.M(1,α)isspannedbyu(−1)eαandu(−1)h(−n)eαforu∈M(1)+,h∈handn≥1. Proof.LetUbethesubsetofM(1,α)spannedbyu(−1)eαandu(−1)h(−n)eαforu∈M(1)+,h∈handn≥1.Weprovethat β1(−n1)···βr(−nr)eα∈U 14 (5.1) forr≥1,ni≥1andβi∈hbyinductiononthelengthr.Thecaser=1isclear.Letp≥2andsupposethat(5.1)holdsifr (γ1(−n1)···γr(−nr)1)(−1)u=◦γ1(i1)···γr(ir)◦u nj−1j=1foranyevenintegerr≥1,ni≥1,γi∈handu∈M(1,α),whereij(1≤j≤r)run throughintegerssatisfyingij=−nj.Weseethatforanyij∈Z(1≤j≤r) r−ij−1 suchthatij=−nj,thecoefficientj=1nj−1isnonzeroifandonlyifij=−njorsomeijarenonnegative.Thusifpiseventhenweseethatβ1(−n1)···βp(−np)eα=(β1(−n1)···βp(−np)1)(−1)eα+lowerlengthterms,andifpisoddthenβ1(−n1)···βp(−np)eα =(β1(−n1)···βp−1(−np−1)1)(−1)βp(−np)eα+lowerlengthterms. Byinductionhypothesis,β1(−n1)···βp(−np)eα∈U. + ByProposition5.1andusingthemapφα,weseethatVL[α]isspannedbythevectorsu(−1)Eαandu(−1)h(−n)Fαforu∈M(1)+,h∈handn≥1.Since u(−1)v=u∗v+lowerweightvectors,++ foranyhomogeneousvectorsu∈M(1)+,v∈VL[α]oneprovesthatVL[α]is + spannedbythevectorsu∗Eαandu∗h(−n)Fαforu∈M(1),h∈handn≥1byusinginductiononweight. + Lemma5.2.TheA(VL)(α)isspannedbythevectors[u]∗[Eα]∗[v]foru,v∈M(1)+. Proof.Leth∈handn>0.Itisenoughtoprovethath(−n)Fαliesinthespanof[u]∗[Eα]∗[v]foru,v∈M(1)+.Ifh∈Cα,h(−n)FαiscontainedinthespanningsetbyProposition3.15(1)of[A].Nowweassumethat(h,α)=0.Then α(−1)h(−n)1∗Eα−Eα∗α(−1)h(−n)1=(α,α)h(−n)Fα. Againh(−n)Fαiscontainedinthespanningset. + NextwewillreducethesizeofthespanningsetofVL[α]further.Fixanor-thonormalbasis{ha}ofhsothath1∈Cα.ThenbyPropositions4.8and4.9,weseethat[Eα]∗[ωb],[Eα]∗[Hb]foranybarelinearcombinationsofvectorsoftheform[u]∗[Eα]foru∈M(1)+.SinceM(1)+isgeneratedby[ωa],[Ha],[Λab]and 15 Au,At,byLemma5.2andthefactthat[Λab]and[Eα]commuteifa=1,b=1,wehave: +A(VL)(α)=span{[u]∗[Eα]|u∈M(1)+} db=2 +[E]∗A+[E]∗A+ αuαt C[E]∗[Λ1b] α (5.2) +u whereAu(Atresp.)isunderstoodtobethesubalgebraofA(VL)generatedby[Eab] T,−−t ([Eab]resp.)for1≤a,b≤d.SinceVL(0)containsh(−1)asasubspaceandVLχcontainsh(−1/2)asatensorfactorforanyχ(see(4.23)and(4.26)),byProposition4.3,AuandAtareisomorphictothematrixalgebraMd(C). Lemma5.3.Foranyb=1, [Λ1b]∗[Eα]+[Eα]∗[Λ1b]∈U1b∗[Eα]+[Eα]∗U1b, +uuuu whereUabisthesubspaceofA(VL)linearlyspannedby[Eab],[Eba],[Eab]and[Eba]. Proof.ByRemark4.2weseethat[S1b(1,1)]≡[Λ1b]≡−[S1b(1,2)]modU1b.Bydirectcalculations,wehave|α|S1b(1,n)∗Eα =|α|h1(−1)hb(−n)Eα+n|α|2hb(−n−1)Fα+(n+1)|α|2hb(−n)Fα.(5.3) α Theidentity|α|h1(−1)hb(−n)Eα=−nhb(−n−L(−1)hb(−n)Fαshowsthat1)F+2|α|[h1(−1)hb(−n)eα]=−n[hb(−n−1)Fα]−n+|α| 2 Similarly, |α|[Eα]∗[S1b(1,n)] |α|22α2 =n(|α|−1)[hb(−n−1)F]+n(|α|−1)− [hb(−n)Fα].(5.4) Since[S1b(1,1)]+[S1b(1,2)]∈U1b,weseethat[hb(−2)Fα]+[hb(−1)Fα]liesinU1b∗[Eα]+[Eα]∗U1b.Using(5.4)and(5.5)gives |α|([Λ1b]∗[Eα]+[Eα]∗[Λ1b])≡|α|([S1b(1,1)]∗[Eα]+[Eα]∗[S1b(1,1)]) modU1b∗[Eα]+[Eα]∗U1b =(|α|2−1)([hb(−2)Fα]+[hb(−1)Fα])≡0modU1b∗[Eα]+[Eα]∗U1b, asdesired. ByLemma5.3and(5.2)weimmediatelyhaveProposition5.4.Foranyα∈L, +A(VL)(α)=span{[u]∗[Eα]|u∈M(1)+}+[Eα]∗Au+[Eα]∗At =span{[Eα]∗[u]|u∈M(1)+}+[Eα]∗Au+[Eα]∗At. + Inparticular,anyvectorinA(VL)isalinearcombinationofvectorsoftheform[u]∗[Eα]and[Eα]∗aforα∈L,u∈M(1)+anda∈Au+At. + WeremarkthatthesecondspanningsetofA(VL)(α)isprovedsimilarly. Weconcludethissectionwiththefollowinglemmawhichwillbeusedinthenexttwosections. Lemma5.5.LetItbetheunitofthesimplealgebraAt.Thenforanyα∈L,It∗[Eα]−[Eα]∗It=0. Proof.WehavealreadypointedoutthatItisindependentofthechoiceofor-thonormalbasisofh.Takeanorthonormalbasis{ha}sothath1∈Cα.Then d tttt ].Itisclearthat[Eaa]∗[Eα]−[Eα]∗[Eaa]=0foranya≥2.HenceI=a=1[Eaa tt wehavetoshowthat[E11]∗[Eα]−[Eα]∗[E11]=0.Set ¯t=−16(3Saa(1,2)+18Saa(1,3)+21Saa(1,4)+8Saa(1,5)).Eaa ttt¯t∗E¯t+u+v,forsomeItiseasytocheckbydefinitionsthatE11=E12∗E21=E1122 +++ u∈M(1)Ch1andv∈M(1)Ch2whereM(1)WisthesubspaceofM(1)+corresponding ¯t]and[v]commutewith[Eα]weonlyneedtotothesubspaceWofh.Since[E22 t¯provethat[E11]and[u]commutewith[Eα].Notethattheidentitymapinducesan ++¯t]andalgebrahomomorphismfromA(VZ)toA(V).Itsufficestoprovethat[E11Lα+α [u]commutewith[E]inA(VZα). + Theresultisclearif|α|2=2asA(VZα)iscommutative(seeProposition4.8). + If|α|2=2,A(VZα)isasemisimplealgebraofdimension11byProposition4.9 ¯t]and[u]commutewith[Eα]ontheandTable3.Soitisenoughtoprovethat[E11 17 −αt unique2dimensionalmoduleVZα(0)spannedbyα(−1)andF.Since[E11]=0on−−−t¯tVL(0)weimmediatelyseethat[E11]actsonVZα(0)⊂VL(0)aszero.Clearly,[E22] −− and[v]actonVZα(0)trivially.Asaresult,[u]=0onVZα(0).Adirectcalculation ¯t)h1(−1)=o(E¯t)(Fα)=0.Thisshowsthat[E¯t]and[u]arezeroshowsthato(E111111 −α onVZα(0),andcommutewith[E]inparticular.Sotheproofiscomplete. 6ClassificationI + InthissectionandthenextsectionweclassifythesimplemodulesforA(VL)and + thusclassifytheirreducibleadmissibleVL-modules.Weprovethatanyirreducible + admissibleVL-moduleisordinaryandisisomorphictoonegiveninPropositions + 3.1and3.2.InthissectionwedealwithasimpleA(VL)-moduleWsuchthatAuW=AtW=0.Theothercaseswillbestudiedinthenextsection. + NowletWbeanirreducibleA(VL)-modulesuchthatAuW=AtW=0.An + elementu∈A(VL)iscalledsemisimpleonWifuactsonWdiagonally.Notethat + foranyα∈L,A(VZα)issemisimple,andthat[ωα]and[Jα]aresemisimpleonW.Asaresult,[Hα]issemisimpleonWsince[ωa]and[Ja]commute. Takemutuallyorthogonalelementsαa∈Lwith1≤a≤d,andconsidertheorthonormalbasis{ha}ofhsuchthatha∈Cαa.SinceAtW=AuW=0weseethat[Sab(1,1)]=[Λab]onW.Usingidentity 1 2 [(αa+αb)(−1)21]=[ωa]+|αa||αb|[Λab]+[ωb] (6.1) onW.Since[ωa],[ωb]and[(αa+αb)(−1)21]aresemisimpleandcommuteeachotheronW,[Λab]isalsosemisimpleonW.NotethatA(M(1)+)isgeneratedby[ωa],[Ja]for1≤a≤d,[Λab]for1≤a=b≤dandAu,At.Weobtainthefollowinglemma. + Lemma6.1.LetWbeanirreducibleA(VL)-modulesuchthatAuW=AtW=0.ThenanyelementinA(M(1)+)issemisimpleonW. SinceA(M(1)+)/(Au+At)isacommutativealgebrabyProposition4.3,Lemma6.1impliesthatWisadirectsumofone-dimensionalirreducibleA(M(1)+)-modulesonwhichAuandAtactaszero.ByTheorem3.3,anirreducibleA(M(1)+)-submoduleofWisisomorphictooneofthefollowing:M(1)+(0),M(1)(θ)+(0)orM(1,λ)(0)forsomeλ∈h−{0}. Nowweconsiderthecase[Hγ]W=0forsomeγ∈h.Thenwetakeanorthonor-malbasis{ha}ofhsothath1∈Cγ.Byusing(4.13),wehave [Ha]=[H1]=0 18 (6.2) submodulesisomorphictoM(1,λ)(0)ifλ=0andW0isasumofsimpleA(M(1)+)-+ submodulesisomorphictoM(1)+(0)=C1.SinceM(1,λ)∼=M(1,−λ)asM(1)-modules,wecanassumethatλrangesinh−{0}/∼,wheretheequivalenceλ∼µisdefinedbyλ=±µ. WefirstassumethatW0=0,andletvbeanonzerovectorinW0.ThenCvisisomorphictoC1asA(M(1)+)-modules.Thisshowsthat[ωα]v=0foranyα∈L. + Henceby(4.19)and(4.22)wehave[Eα]v=0.SinceA(VL)isgeneratedby[u]and ++ [Eα](u∈M(1)+,α∈L),CvisanA(VL)-moduleisomorphictoVL(0)=C1.This + showsthatWisisomorphictoVL(0). NextweconsiderthecaseW0=0.WesetP(W)={λ∈h−{0}|Wλ=0}.Lemma6.2.(1)Foranyλ,µ∈P(W),|λ|2=|µ|2. (2)Foranyα∈Landλ∈P(W),(λ,α)∈Z,i.e.,P(W)⊂L◦.(3)Foranyλ∈P(W),λhastheminimallengthinL+λ. onWforanya.WenotefromTable1thatanyirreducibleA(M(1)+)-moduleonwhich[Ha]acts0fora=1,...,disisomorphictoM(1)+(0)orM(1,λ)(0)forλ∈h−{0}.SoWisadirectsumofM(1)+(0)andM(1,λ)(0)asanA(M(1)+)-module.Infact,[Hγ]W=0foranyγ∈hwith(γ,γ)=0againbyTable1. + WewriteW=W0⊕W,whereWisasumofsimpleA(M(1))-λλλ=0 Proof.(1)followsfromthefactthattheVirasoroelement[ω]actsonWasaconstant 2 andactsonWλbyscalar|λ| .2|α|2 + Ontheotherhand,byTables2and3,[ωα]actsonanyirreducibleA(VZα)-module22(λ,α) ).Thusforanyλ∈P(W),foronwhich[Hα]=0asr 22|α|2 somer.Thisshowsthat(λ,α)isaninteger. 4 Wenowprove(3)andletα,rbeasintheproofof(2).Then(λ,α)2=r2≤|α| 8 = (λ,α)2 Proof.WehavealreadyknownthatQ(λ,W)⊂∆(λ)∪∆(−λ).Toprove∆(λ)∪∆(−λ)⊂Q(λ,W)itsufficestoshowthat[Eα]v=0foranynonzeroα∈∆(λ).Writeλ=λ1+λ2suchthatλ1∈Cαand(λ2,α)=0.Thenthecondition|λ+α|2=|λ|2impliesthat 2(λ1,α)=−|α|2.α.ByTheorem3.4andTable2andTable3,CvisanHenceλ1=(λ1,α) 2 ++ irreducibleA(VZα)-moduleisomorphictoVα+Zα(0).ThusTable2and2Table3againimplies[Eα]v=0,asdesired. Since∆(λ)∩∆(−λ)={0}foranyλ∈L◦andEα=E−αwehave W=C([Eα]v). α∈∆(λ) (6.4) ¯λ)isasubsetof∆(λ)if2λ∈L.RecallfromSection4that∆( Lemma6.4.(1)If2λ∈/L,thenWλ+α=C([Eα]v)forα∈∆(λ),Wλ+α=0for otherαandW=α∈∆(λ)C([Eα]v).(2)If2λ∈L,then Wλ+α=C([Eα]v)=C([Eα+2λ]v) forα∈∆(λ),Wλ+α=0forotherαandW= ¯λ)α∈∆( C([Eα]v). α).WetakeanProof.Letα∈∆(λ)andh∈h.Thenh=(h,α) |α|2 orthogonalbasis{ha}sothath1∈Cα.ByLemma5.3wehave [Λ1i][Eα]v=−[Eα][Λ1i]v=−(h1,λ)(hi,λ)[Eα]v for2≤i≤dand [Λij][Eα]v=[Eα][Λij]v=−(hi,λ)(hj,λ)[Eα]v 20 2 ≤d.Notethat[ωi][Eα]v= (hi,λ)Eα ]v= d(h,hi)2[ωi][Eα]v+2 (h,hi)(h,hj)[Λij][Eα]vi=1 1≤i d(λ,hi)(h,hi)2i=1 2 2((h,hd1)h1,λ)− (h,hi)(λ,hi) i=2 [Eα]v =1 2 2( (h,α) 2(−(h,α)−(h,λ))2[Eα]v = 1 for2≤i f([u]v)=o(u)f(v)=o(u)eλ +++ foranyu∈VL.Letw=[x]vforsomex∈VLandu∈VL.Then f([u]w)=f([u∗x]v)=o(u∗x)f(v)=o(u)o(x)f(v)=o(u)f([x]v)=o(u)f(w). +Thatis,fisanA(VL)-moduleisomorphism. Thecasethat2λ∈Lismorecomplicated.Inthiscase[E2λ]v=±c32λv.Weλ+αfirstassumethat[E2λ]v=c3+θeλ+α)with¯λ)C(e2λv.NotethatVL+λ(0)=α∈∆( λλ o(E2λ)(eλ+θeλ)=c32λ(e+θe)byLemma6.2(3)and(4.25),wherewetakeλtobearepresentativeofλ+L.Asbeforewedefinealinearmapf:W→Vλ++L(0)by ¯λ).ItisclearthatfisanA(M(1)+)-f([Eα]v)=o(Eα)(eλ+e−λ)foranyα∈∆( moduleisomorphism.Usingtheproofforthecasethat2λ∈/Litisenoughtoprovethatf([Eα]v)=o(Eα)f(v)foranyα∈L.Sinceo(Eα)f(v)=f([Eα]v)=0foranyα∈L−∆(λ)∩∆(−λ)andEα=E−αweonlyneedtoshowthatf([E2λ+α]v)= ¯λ).o(E2λ+α)f(v)foranyα∈∆( −2λα2λ Let0=α∈∆(λ).Then(λ,α)isanegativeinteger.Thuseα=e−=0nene + foralln≥−1andEα∗E2λ∈VL[α+2λ].Asaresultweseethat[Eα]∗[E2λ]= ++ [u]∗[Eα+2λ]onbothWandVL+λ(0)forsomeu∈M(1)byProposition5.4.Since + Co(E2λ+α)(eλ+θeλ)∼=C[E2λ+α]v∼=M(1,λ+α)(0)asA(M(1))-modules,[u]actsonCo(E2λ+α)(eλ+θeλ)andC[E2λ+α]vasasameconstantp.Then[Eα]v=[Eα][E2λ]v=p[E2λ+α]vando(Eα)(eλ+θeλ)=po(Eα+2λ)(eλ+θeλ).Since[Eα]visnonzero,pisnonzero.Thisimpliesthatf([E2λ+α]v)=o(E2λ+α)f(v).Soif[E2λ]v= + c32λv,WisisomorphictoVL+λ. − Similarly,if[E2λ]v=−c32λv,WisisomorphictoVL+λ.Theproofiscomplete. Nextweconsiderthecase[Hγ]W=0forsomenonzeroγ∈h.ByLemma6.1,thereexistsaneigenvectorv∈Wfor[Hγ].Wetakeanorthonormalbasis{ha}sothath1∈Cγ.Then(6.2)implies[Ha]v=[Hb]v=0foranya,b.By(4.14)wehave[ωa]v=[ωb]vforanyaandb.Thus(4.15)implies[wa]v=1 v.Wefinallyhave[Λab]v=0by(4.16).ByTheorem3.3128 andTable1,weseethatCvisisomorphictoM(1)(θ)+(0)asanA(M(1)+)-module.ThisshowsthatHβv=9 and0respectively128 foranyβ∈hwith(β,β)=0. Letα∈L.WeclaimthatW9/128is[Eα]-invariant.Itisenoughtoshowthat[Hα][Eα]w=0if[Eα]wisnonzeroforw∈W.ByPropositions4.8and4.9,0=[Eα]wisaneigenvectorfor[Hα]withnonzeroeigenvaluebynotingthat[ωα]∗[Eα]=[Eα]∗[ωα]and[ωα]actsonW9/128asconstant1/16.ByProposition5.4W9/128isa 22 submoduleandmustbeWitself.ThusWisadirectsumofcopiesofM(1)(θ)+(0)andeachelementofA(M(1)+)actsonWasaconstant.Thisimpliesthattheactionof[Eα]foranyα∈LcommuteswiththeactionofA(M(1)+).Forany0=α∈Lwedefine 2|α|22α|α|−1 E−Bα=2 7ClassificationII + AgainwefixanirreducibleA(VL)-moduleW.Inthissectionweconsiderthecase + AuW=0orAtW=0andcompleteourclassificationofirreducibleA(VL)-modules.FirstweassumethatAuWisnonzero.SinceAuisasimplealgebra,WcontainsasimpleAu-modulesisomorphictoh(−1).Sowecanassumethath(−1)isan + A(M(1)+)-submoduleofW.WewillusetheactionofA(VL)onh(−1)togetthewholeW. Lemma7.1.Foranynonzeroα∈Lwith|α|2=2,Eαh(−1)=0. Proof.Wetakeanorthonormalbasis{ha}sothath1∈Cα.Then[ωa]hb(−1)1=δa,bhb(−1)1.By(4.19),[Eα]hb(−1)1=0ifb=1.Inthecaseb=1,Ch1(−1)isa +α simplemoduleforA(VZα)suchthat[E]=0byTable2.¯α=[Eα]α(−1)1.Since[ωa]α(−1)1=Wenextassumethat|α|2=2.SetF ¯αisnonzero.Using(4.21)andα(−1)1andEα∗Eα=4ǫ(α,α)ωa,wehavethatF ¯α=0.Itisclearthatα(−1)1thefactthat[Hα]α(−1)1=−9α(−1)1gives[Hα]F ¯αarelinearindependentandthatCα(−1)1+CF¯αisclosedundertheactionsandF +α of[ωα],[Hα]and[Eα].SinceA(VZα)isgeneratedby[ωα],[Hα]and[E]weseethat ¯αisanA(V+)-module.ByTable3wehave:Cα(−1)1+CFZα¯αisProposition7.2.Foranyα∈L2,thetwodimensionalspaceCα(−1)1+CF+− anA(VZα)-moduleisomorphictoVZα(0).¯αisanirreducibleA(M(1)+)-moduleNowwefixα∈L2andprovethatCF isomorphictoM(1,α)(0).Wecontinuetofixanorthonormalbasis{ha}ofhsuch ¯α.Bytheproofofthath1∈CαandconsidertheactionofAu,AtandΛabonF t¯αtt¯α Lemma5.5weseethat[Eaa]F=[Eα][Eaa]α(−1)1=0foranya.Thus[Eab]F=tt¯α¯α=0.[Eab][Ebb]F=0foranya,bandAtF ¯α=[Hα]F¯α=0.Ifa>1then[Ha]F¯α=Wehavealreadymentionedthat[H1]F u¯αu¯α [Eα][Ha]α(−1)1=0byTable1.Thusby(4.14),[Eaa]F=[Ebb]Fforanya,b. u¯α¯α=0as[Eu]F¯α=[Eu][Eu]F¯α=[Eu][EaaThisshowsthatAuF]F=0.ababbbab WenowdealwithΛab.Ifb=1,onehas[Eα]hb(−1)1=0by(4.22).Henceut [Eα][Eba]ha(−1)1=[Eα][Eba]ha(−1)1=0.Lemma5.3andTable1thenshowthat ¯α=−[Eα][Λ1b]ha(−1)1=0.Itisclearthat[Λab]F¯α=0foranya=1,b=1.[Λ1b]F ¯αisanirreducibleM(1)+-moduleisomorphictoConsequently,C([Eα])h(−1)=CF M(1,α). + SinceA(VL)isgeneratedbyA(M(1)+)andEβforβ∈L,byLemma7.1,weseethat ¯α.CFW=h(−1) α∈L2 24 − Lemma7.3.Letf:W→VL(0)bealinearmapdefinedbyf(h(−1)1)=h(−1)1 ¯α)=−2Fα.ThenfisanA(V+)-moduleisomorphism.andf(FL ¯α=F¯−αandFα=F−α.WeonlyhavetoproveProof.Clearly,fiswell-definedasF + thatfisanA(VL)-modulehomomorphism.WehavealreadyprovedthatfisanA(M(1)+)-modulehomomorphism.Itsufficestoshowthat o(Eβ)f(u)=f([Eβ]u) (7.1) + foranyu∈Wandβ∈LbecauseA(VL)isgeneratedbyA(M(1)+)and[Eβ]forβ∈L. Notethat[Eβ]h(−1)=0=o(Eβ)M(1)−(0)ifβ∈/L2.So(7.1)holdsforu∈h(−1)andβ∈/L2.Ifβ∈L2andu=h(−1)1suchthat(h,β)=0,then[Eβ]h(−1)1=0inWando(Eβ)h(−1)1=0inM(1)−(0).Again(7.1)holdsinthiscase.Ifβ∈L2andu=β(−1)1,(7.1)followsfromProposition7.2.Therefore(7.1)holdsforu∈h(−1)andβ∈L. ¯αforsomeα∈L2.Notethat[Eα]h(−1)=CF¯α.ByPropositionNowletu=F 5.4if(β,α)<0thenwehave βα [E]∗[E]=[vi]∗[Eα+β]∗[wi] i ¯α)=o(Eβ)Fα.forsomevi,wi∈M(1)+.Ifα+β∈/L2thenwehave0=f([Eβ]∗F Hence(7.1)holdinthiscase.Ifα+β∈L2,C[Eα+β]h(−1)isanA(M(1)+)-moduleisomorphictoM(1,α+β)(0).Soeach[vi]actsasaconstantonC[Eα+β]h(−1).Since(7.1)holdsforanyu∈h(−1), β¯α f([E]F)=f([vi][Eα+β][wi]α(−1)1) == iii o(vi)o(Eα+β)o(wi)f(α(−1)1)o([vi]∗[Eα+β]∗[wi])α(−1)1 =o([Eβ])o([Eα])α(−1)1=−2o([Eβ])Fα ¯α).=o([Eβ])f(F ¯αandβ∈Lsuchthatα+β∈L2.Thisshows(7.1)foru=F If(α,β)=0,wehaveEβ∗Eα=ǫ(α,β)(Eα+β+Eα−β).Since|α±β|2= ¯α.Thus(7.1)holdsinthis|α|2+|β|2≥4,weseethato(Eβ)Fα=0=[Eβ]F case. Thuswegetthefollowingproposition: 25 + Proposition7.4.LetWbeanirreducibleA(VL)-modulesuchthatAuW=0. −+ ThenW∼(0)asA(VL)-module.=VL FinallysupposethatAtW=0.ThenweseethatWcontainsanirreducibleA(M(1)+)-moduleh(−1/2)isomorphictoM(1)(θ)−(0).SetW0={u∈W|Atu=0}.Ifu∈W0,thenbyLemma5.5,At[Eα]u=At([It][Eα]u)=At([Eα][It]u)=0foranyα∈L.Thatis,W0is[Eα]-invariant.SinceAtisatwo-sidedidealof + A(M(1)+),Proposition5.4impliesthatW0isanA(VL)-submoduleofW.Thus + W0=0becauseWisanirreducibleA(VL)-modulesuchthatAtW=0.Therefore,wehaveW=AtW.InfactWisadirectsumoftheuniquesimplemoduleh(−1/2).Letα∈Landwetakeanorthonormalbasis{ha}ofhsothath1∈Cα.WeseethatAuW=0and[Λab]W=0forany1≤a=b≤d.Recalltheelement + [Bα]∈A(VL)in(6.5). tLemma7.5.Forany1≤a,b≤d,[Bα]and[Eab]commuteonW.Therefore,[Bα]commuteswiththeactionofA(M(1)+). Proof.Itisenoughtoshowthelemmainthecasea=1orb=1.SinceAuW=[Λ1b]W=0,by(4.1)and(4.2),wehave t[Eab]=−[Sab(1,1)]−2[Sab(1,2)], t [Eba]=3[Sab(1,1)]+2[Sab(1,2)] onW.Thus(5.4)and(5.5)givesthefollowingidentities; tα2α |α|[E1b]∗[E]=−4(|α|−1)[hb(−3)F] −(6|α|2−5)[hb(−2)Fα]− 3 2 t2α|α|[Eα]∗[E1b]=−4(|α|−1)[hb(−3)F] |α|2−3[hb(−1)Fα], −(4|α|2−5)[hb(−2)Fα]− 1 2 Theseidentitiesimplies tααt (2|α|2−1)[E1b]∗[E]+[E]∗[E1b] |α|2−3[hb(−1)Fα]. tα2αt =−[Eb1]∗[E]−(2|α|−1)[E]∗[Eb1].(7.2) 26 +tt Notethat[E1b]([Eb1]resp.)isaneigenvectorinA(VL)fortheleftmultiplicationof[ωb]ofeigenvalue116resp.)by(4.8).Multiplying(7.2)by[ωb]ontheleftandusingthefactthat[ωb]∗[Eα]=[Eα]∗[ωb]weobtain 1 tα2αt [Eb]∗[E]+(2|α|−1)[E]∗[E]1b1.(7.3) 16 Combining(7.2)and(7.3)gives [E1tb]∗[Eα ]=− 1 ++ 5.2of[Y]andTheorem5.3of[ABD],VLisC2-cofiniteandthusA(VL)isfinite + dimensional.TheorbifoldtheoryconjecturesthatVLisarationalvertexoperator + algebra,whichimpliesA(VL)isafinitedimensionalsemisimpleassociativealgebra. + ButwecannotprovethesemisimplicityofA(VL)inthispaper. Remark7.9.InthecasethatLisunimodular,VLhasauniqueirreduciblemodule T+ VLandauniqueθ-twistedmoduleVLχ.SoVLhasexactly4inequivalentirreducible T± modules,VL,(VLχ)±.Inparticular,ifListheLeechlattice,thisgivesadifferent + proofoftheclassificationofirreducibleVL-modulespreviouslyobtainedin[D3]. References [A][ABD][B][D1][D2][D3][DG][DGH] T.Abe,Fusionrulesforthefreebosonicorbifoldvertexoperatoralgebra, J.Algebra229(2000),333–374. T.Abe,G.BuhlandC.Dong,Rationality,Regularity,andC2-cofiniteness,math.QA/0204021. R.Borcherds,Vertexalgebras,Kac-Moodyalgebras,andtheMonster,Proc.Natl.Acad.Sci.USA83(1986),3068–3071. C.Dong,Vertexalgebrasassociatedwithevenlattices,J.Algebra160(1993),245–265. C.Dong,Twistedmodulesforvertexalgebrasassociatedwithevenlattices,J.Algebra165(1994),91–112. C.Dong,Representationsofthemoonshinemodulevertexoperatoralge-bra,ContemporaryMath.,175(1994),27–36. C.DongandR.L.Griess,Rankonelatticetypevertexoperatoralgebrasandtheirautomorphismgroups,J.Algebra,208(1998),262–275.C.Dong,R.GriessJr.andG.Hoehn,Framedvertexoperatoralgebras,codesandthemoonshinemodule,Comm.Math.Phys.193(1998),407–448. C.DongandJ.Lepowsky,Generalizedvertexalgebrasandrelativevertexoperators,ProgressinMath.,Vol.112,Birkh¨auser,Boston,1993. [DL] [DLM1]C.Dong,H.LiandG.Mason,Compactautomorphismgroupsofvertexoperatoralgebras,InternationalMath.ResearchNotices18(1996),913–921. 28 [DLM2]C.Dong,H.LiandG.Mason,Regularityofrationalvertexoperatoralge-bras,Adv.inMath.,132(1997),148–166.[DLM3]C.Dong,H.LiandG.Mason,CertainassociativealgebrassimilartoU(sl2) andZhu’salgebraA(VL),J.Algebra196(1997),532–551.[DLM4]C.Dong,H.LiandG.Mason,Twistedrepresentationsofvertexoperator algebras,Math.Ann.,310(1998),571–600.[DLi][DM][DN1][DN2][DN3] C.DongandZ.Lin,Inducedmodulesforvertexoperatoralgebras,Comm.Math.Phys.,179(1996),157–184. C.DongandG.Mason,OnquantumGaloistheory,DukeMath.J.,86(1997),305–321. C.DongandK.Nagatomo,ClassificationofirreduciblemodulesforthevertexoperatoralgebraM(1)+,J.Algebra,216(1999),384–404. + C.DongandK.Nagatomo,RepresentationsofVertexoperatoralgebraVLforrankonelatticeL,Comm.Math.Phys.202(1999),169–195. C.DongandK.Nagatomo,ClassificationofirreduciblemodulesforthevertexoperatoralgebraM(1)+II.HigherRank,J.Algebra,240(2001),389–325. [DVVV]R.Dijkgraaf,C.Vafa,E.VerlindeandH.Verlinde,Operatoralgebrasof orbifoldmodels,Comm.Math.Phys.,123(1989),485–526.[FFR][FHL] A.Feingold,I.FrenkelandJ.Ries,Spinorconstructionofvertexoperator (1) algebras,trialityandE8,ContemporaryMath.121,1991. I.Frenkel,Y.HuangandJ.Lepowsky,Onaxiomaticapproachestovertexoperatoralgebrasandmodules,Mem.Amer.Math.Soc.1041993. [FLM1]I.Frenkel,J.LepowskyandA.Meurman,Vertexoperatorcalculus,in: MathematicalAspectsofStringTheory,Proc.1986Conference,SanDiego.ed.byS.-T.Yau,WorldScientific,Singapore,1987,150–188.[FLM2]I.Frenkel,J.LepowskyandA.Meurman,VertexOperatorAlgebrasand theMonster,PureandAppl.Math.,Vol.134,AcademicPress,Boston,1988.[FZ][Gr] I.FrenkelandY.Zhu,Vertexoperatoralgebrasassociatedtorepresenta-tionsofaffineandVirasoroalgebras,DukeMath.J.66(1992),123–168.R.Griess,TheFriendlyGiant,Invent.Math.69(1982),1–102. 29 [K][Le][Li][W][Y][Z] A.Kirillov,Jr.,Modularcategoriesandorbifoldmodels,Comm.Math.Phys.,229(2002),309–335. J.Lepowsky,Calculusoftwistedvertexoperators,Proc.Natl.AcadSci.USA82(1985),8295–8299. H.Li,Localsystemsofvertexoperators,vertexsuperalgebrasandmodules,J.PureAppl.Alg,109(1996),143–195. W.Wang,RationalityofVirasorovertexoperatoralgebras,DukeMath.J.IMRN,Vol.71,No.1(1993),197–211. + G.Yamskulna,C2cofinitenessofvertexoperatoralgebraVLwhenLisarankonelattice,math.QA/0202056. Y.Zhu,Modularinvarianceofcharactersofvertexoperatoralgebras,J.Amer.Math.Soc.,9(1996),237–302. 30 因篇幅问题不能全部显示,请点此查看更多更全内容