您的当前位置:首页正文

找等量关系式的四种方法

2022-05-19 来源:易榕旅网
找等量关系式的四种方法

1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和

杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系 对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷? 根据题意画出线段图:

从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程: 设:平均每天要耕X公顷 780×5+3X=6420

想一想:根据上面的线段图还可以找出哪些等量关系。 1.牢记计算公式,根据公式来找等量关系。

这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。 3.抓住关键字词,根据字词的提示找等量关系。

这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。

如“四年级有学生250人,比三年级的2倍少70人,三年级有学生多少人?”,根据题中“比……少”可知:三年级的2倍减去70人等于四年级的人数,从而列出方程2X-70=250。 4.找准单位“1”,根据“量率对应”找等量关系。

这种方法一般适用于分数应用题,有时也适用“倍比关系”应用题。对于分数应用题来说,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率。在倍比关系的应用题中,也应找准标准量。因此,正确地确定“量率对应”是解题的关键。 5.补充缺省条件,根据句子意思找等量关系。

这类应用题的特征是含有“比……多(少)”、“比……增加(减少)”等特定词,如:甲比乙多“几分之几”、少“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目

中由于常缺少主语,造成学生理解上的困难。因此,教师在平时一定要强调让学生说“谁与谁比”、“以谁为标准”等,在缺少主语的情况下,让学生先把主语补充完整。

如“小明第一天看书60页,比第二天少看 ,第二天看了多少页?”一题中,就缺少了“第一天”这个主语,通过读题、析题,要让学生明白“这里的少的 是指第二天的 ”,于是可列方程X- X=60。

6.利用好线段图,根据线段图找等量关系。

有些应用题光从字面上来看,不容易理解,有时教师可辅以线段图帮助学生理解。当然,如果学生会画线段图,题目往往很容易解开。画线段图的关键仍是找准谁是单位“1”,其它量都是与单位“1”相比较而言的。而理解单位“1”,又往往可以从“比”、“是”等词语后面找到,也即“比”、“是”后面的量通常是标准量,是单位“1”。

以上所举只是一些比较简单的应用题,如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等,这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答。当然,这里更离不开教师平时的引导与启迪。

方程(组)是解决实际问题的一个有效数学模型.列方程(组)的关键是挖掘出隐含在题目中的等量关系.寻找等量关系有三种常用方法:译式法、列表法和图示法.解题时有意识的学习使用这些方法,可以有效的帮助我们分解难点,寻找出等量关系,进而列出方程(组)求解.

一、译式法

例1 4辆小卡车和5辆大卡车共27吨;6辆小卡车和10辆大卡车共运货51吨.问小卡车和大卡车每辆每次各运多少吨?

分析:本题等量关系比较明显,只需要直接按照题意把日常用语译成代数语言即可.设小卡车和大卡车每辆每次分别运x、y吨.则“4辆小卡车和5辆大卡车共27吨”可翻译成数学式子:

4x5y27;“6辆小卡车和10辆大卡车共运货51吨” 可翻译成数学式子:6x10y51.由

这两个式子组合列出二元一次方程组即可求解.

评注: 对实际问题不要产生畏惧心理,不要想一口吃个“胖子”,要一步一步走下去,首先,要多看几遍题目,审清题意,先列出“文字”等量关系,然后用代数式逐步替换,当代数式把“文字”替换完了,方程(组)也就列出来了.这种将关键词语译成代数式列方程(组)解决实际问题的方法称为“译式法”.译式法使用非常普遍,对于大多数基础题目较为有效.

二、列表法

例3 某日小伟和爸爸在超市买12袋牛奶24个面包花了64元.第二天他们又去超市时,发现牛奶和面包均打八折,这次他们花了60元却比上次多买了4袋奶3个面包.求打折前牛奶和面包的单价?

分析:设打折前牛奶的单价为x元,面包的单价为y元.可列表如下 打折前 打折后 单价数量(袋或费用单价数量(袋或 费用(元) (元) 个) (元) (元) 个) 牛奶 x 12 12x 0.8x 16 16×0.8x 面包 y 24 24y 0.8y 27 27×0.8y 12x24y64并根据上表可得方程组

160.8x270.8y60解:略.

评注:列表法是指将题目中数量及其关系填在表格内,再据此逐层分析,找到各量之间的内在相等关系,列出方程(组)的方法.列表时分类整理排列,条理清晰,优点明显.尤其对于题目较为复杂,等量关系较为隐蔽的题目效果较好.

三、图示法

例4 甲、乙两人都以不变的速度在环形路上跑步.相向而行,每隔2分二人相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑得快,求甲乙每分各跑多少圈?

分析:根据题意可以分别画出甲、乙相向而行、同

相向 同向

向而行时的示意图(如图1和图2)

2x 如果设甲每分钟跑x圈,乙每分钟跑y圈,根据图甲 乙6 y 1可得2x2y1;根据图2可得

乙 2y 甲 6x

6x6y1.

评注:图示法是指将条件及它们之间的内在联系

图1 图2

用简单明了的示意图表示出来,然后据图找等量关系列方程(组)的方法.图示法直观、明了,是解决行程等问题的常用方法.

评注: 对于较为复杂的题目,可把三种方法结合使用.这三种方法在突破等量关系这一难点问题上,体现的是分步、分层、分散的转化思想,不论容易题、难题,都非常适用.同学们开始接触这些方法时可能觉得有些繁琐,如果有意识加强这方面的训练,形成习惯,自然会省时省力,这类问题也就会迎刃而解了.

1.把日常的语言翻译成代数的语言,而代数的语言就是方程,即可得等量关系式。

例如,商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?

日常语言:原有的重量减去每袋的重量乘以卖出的袋数等于剩下的重量。 代数的语言:χ-5×7=40(这里的χ表示原有的重量)。

又如,望岳小学买来2个足球和25根跳绳,共用44.2元。每个足球的售价4.6元,每根跳绳的售价是多少元?

日常语言:买2个足球的钱加上买25根跳绳的钱等于共用去的钱 代数语言:4.6×2+25χ=44.2(这里χ表示每根跳绳的售价)。 2.掌握常见的基本数量关系,建立等量关系式。 根据“行程问题”基本数量关系式: 速度×时间=路程

根据“工作问题”基本数量关系式: 工作效率×工作时间=工作总量

3.根据题中关键性词语来理解数量关系从中得到等量关系式。

例如,一个花坛里有3行芍药花,每行5棵。另一个花坛里有3行牡丹花,芍药花比牡丹花少9棵,牡丹花每行多少棵?

根据题中“芍药花比牡丹花少9棵”的关键性词语“比”、“少”,就可以列出: 3χ-5×3=9(χ表示每行牡丹花的棵数)

4.利用线段图的直观性,从图中发现等量关系。

例如,某农具厂计划生产新式农具144件,现在已经生产了19件,其余的要在4天内完成,平均每天应当生产多少件?

19件 χ χ χ χ

┕━━━┻━━━━┻━━━━┻━━━━┻━━━━┛

144件 从图中很容易看出: 19+4χ=144。

5.根据一些定义、公式,列出等量关系式。

例如,李家营建造一个养鸡场,用110米长的篱笆围成一个长方形场地。如果长是37米,宽应该是多少米?

根据长方形的周长公式,得:

(37+χ)×2=110(这里的χ表示长方形的宽)

★方程指的是“含有未知数的等式”。

☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。 则列方程解应用题的关键是——找出相等关系,找出了相等的关系,方程也就可以列出来了.找......等量关系常见方式有:

一、抓住数学术语找等量关系

一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。

习题:1.某数的三分之一比这个数小1,求这个数。 二、根据常见的数量关系找等量关系 最常见的数量关系:

1.速度×时间=路程(路程÷速度=时间 路程÷时间=速度) 2.单价×数量=总价(总价÷单价=数量 总价÷数量=单价) ★关于打折的问题:打几折=原价×百分之几十 3.工作效率×工作时间=工作总量

(工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率) 4.增长后的量=原量(1+增长率) 降低后的量=原量(1-降低率) 习题:1.已知皮划艇500米最好成绩是1.65分钟,求平均速度? 三、根据常用的计算公式找等量关系 最常用的计算公式有:

1.正方形周长=边长×4 正方形面积=边长×边长=(边长)2 2.长方形周长=(长+宽)×2 长方形面积=长×宽

3.三角形面积=(底×高)÷2 梯形面积=(上底+下底)×高÷2 4. 圆形周长=×直径=2×半径 圆形面积=×(半径)2

习题:1.长方形的周长为60米,已知长是宽的1.5倍,求它的面积。 四、理解文字找等量关系。

习题:1.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元。问男生有多少人? 五、画图分析找等量关系

根据题意画出图形分析图或者是表格分析图,从中找出相关等量列方程。

习题:1.某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?

因篇幅问题不能全部显示,请点此查看更多更全内容