您的当前位置:首页正文

人教版六年级下册数学知识点

2024-07-27 来源:易榕旅网


小学六年级下册数学知识点

姓名:

第一单元:负数

1、负数:负数是数学术语,指小于0的实数,如-3。

任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数

小。负数用负号“-”标记,如-2,-5.33,-45,-0.6等。

2、正数:大于0的数叫正数(不包括0)。

若一个数大于零(>0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。

3、正数的几何意义:数轴上0右边的数叫做正数。

4、0既不是整数,也不是负数。

5、数轴:规定了原点,正方向和单位长度的直线叫数轴。

所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。

1

6、数轴的三要素:原点、单位长度、正方向。

第二单元:圆柱和圆锥

1、圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。如下图所示:

即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。

其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。

2、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h;如S为底面积,高为h,体积为V:V=Sh

3、圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch(注:c为πd)

圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。

特征:圆柱的底面都是圆,并且大小一样。

2

4、圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

5、圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。如下图所示:

6、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh

S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径

7、圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)

3

8、圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。

圆锥的表面积由侧面积和底面积两部分组成。

S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)

9、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。

体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。

底面积和高不相等的圆柱圆锥不相等。

10、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或

4

缺的。

第三单元:比例

1、比的意义:

(1)两个数相除又叫做两个数的比

(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

5

4、比例尺:图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

5、按比例分配:

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

6、比例的意义:比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

7、比例的性质:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

8、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

9、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字

6

母表示y/x=k(一定)

10、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)

第四单元:统计

1、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

2、统计组成部分:一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。

3、统计种类:

单式统计表:只含有一个项目的统计表。

复式统计表:含有两个或两个以上统计项目的统计表。

百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

4、统计表制作步骤:

(1)搜集数据

(2)整理数据:要根据制表的目的和统计的内容,对数据进行分类。

7

(3)设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。

(4)正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。

5、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

6、条形统计图:

(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。

(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。

(3)取一个单位长度表示数量的多少要根据具体情况而确定

(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

(5)制作条形统计图的一般步骤:

a)根据图纸的大小,画出两条互相垂直的射线。

b)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

8

d)按照数据的大小画出长短不同的直条,并注明数量。

7、折线统计图:

(1)用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

(2)优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。

(3)制作折线统计图的一般步骤:

a)根据图纸的大小,画出两条互相垂直的射线。

b)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。

c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

d)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。

8、扇形统计图:

(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

(2)优点:很清楚地表示出各部分同总数之间的关系。

(3)制扇形统计图的一般步骤:

9

a)先算出各部分数量占总量的百分之几。

b)再算出表示各部分数量的扇形的圆心角度数。

c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。

d)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

第五单元 数学广角

1、抽屉原理:把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。这种现象叫着抽屉原理。抽屉原理也被称为鸽巢原理。

原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。

其中 k= (当n能整除m时)

〔 〕+1 (当n不能整除m时)(〔 〕表示不大于 的最大整数,即 的整数部分)

原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

2、 应用抽屉原理解题的步骤:

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

10

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

例:从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

分析与解答 我们用题目中的15个偶数制造8个抽屉:

此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点)。由制造的抽屉的特点,这两个数的和是34。

第三步:运用抽屉原理。观察题意设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

3、 摸2个同色球计算方法。

① 要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(至少数-1)+1

② 极端思想:

用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有

两个球是同色的。

③ 公式:

11

a、 两种颜色:2+1=3(个)

b、 三种颜色:3+1=4(个)

c、 四种颜色:4+1=5(个)

……

4、 节约用水。

第六单元 整理和复习

1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。

4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。

5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

12

因篇幅问题不能全部显示,请点此查看更多更全内容