您的当前位置:首页正文

桥梁支架计算依据和荷载计算

2021-03-15 来源:易榕旅网


支架计算依据和荷载计算

桥梁施工中不同的支架方式均有成功的案例为后续施工提供良好的借鉴。

本文主要对不同的常规支架形式的计算进行介绍,通过对支撑结构的力学分析和理解,才能选用到适合不同工程特点的支架形式,才能对支架体系的薄弱环节进行有效的现场控制,才能对混凝土性能、浇筑高度、浇筑速度等主要指标予以确定和控制,才能保证相同桥型相同支架方式产生相同的效果,避免质量和安全事故。

1设计计算依据

《公路桥涵施工技术规范》JTJ041-2000,2000年11月

《木结构设计规范》,GB 50005-2003,2004年1月

《混凝土结构设计规范》,GB 50010-2002,2002年4月

《钢结构设计规范》,GB 50017-2003,2003年4月

《建筑工程大模板技术规程》,JGJ74-2003,2003年10月

《建筑施工扣件式钢管脚手架安全施工规范》JGJ130-2001

《建筑施工碗扣式脚手架安全技术规范》JGJ 166-2008

《建筑施工门式钢管脚手架安全技术规程》JGJ128-2000

《钢管脚手架扣件》GB15831-2006

《建筑地基基础设计规范》GB50007-2002

《建筑结构荷载规范》GB50009—2001

《扣件式钢管脚手架计算手册》,王玉龙,2008年

《建筑施工计算手册》,江正荣,2001年7月

2施工荷载计算及其传递

支架选型完成后,其计算的思路和原则应从上至下进行。

2.1侧模荷载

施工人员及设备荷载标准值1.5KN/m2。

倾倒混凝土时产生的水平荷载标准值:采用泵送混凝土时为4KN/m2;采用溜槽、串筒为2KN/m2;采用容积0.8m3以下漏斗为4KN/m2;采用容积0.8m3以下漏斗为6KN/m2。

振捣混凝土时对竖向结构模板产生的荷载标准值为4KN/m2。

现浇混凝土对模板的侧压力标准值:

F=0.22*r*t0*B1*B2*V1/2 ① F=r*H ②

F——新浇筑砼对模板的最大侧压力(KN/m2);

r——砼的重力密度(KN/m3),计算时钢筋混凝土取26 KN/m3;

t0——新浇筑的初凝时向(h),可按实测确定,如缺乏试验资料时可采用t0=200/(T+15)计算(T为砼的温度℃);

H——砼侧压力计算位置处至新浇砼顶面的总高度(m);

B1——外加剂影响修正系数,掺具有缓凝作用的外加剂时取1.2,无外加剂取1;

B2——砼坍落度影响修正系数,当坍落度小于11cm时取1.1,坍落度大于11cm时取1.15;

V——砼的浇筑速度(m/h)。

公式①、②计算结果取二者中的较小值。

取较小值的原因分析:对于高度较低的模板来说其侧压力主要取决于浇筑高度,而对于浇注高度较大的情况下按浇注高度计算结果是不真实的,因为墩身混凝土随着时间推移浇筑部位不断上移,底部混凝土凝固对底部侧模的影响逐渐减小,对于墩身浇筑选用较小值是比较符合实际。但是计算取较小值的条件:现场必须对混凝土的坍落度和浇筑速度进行严格控制,其次对初凝时间应现场认真测定。

模板荷载分项系数:活载(施工人员、机具,倾倒、振捣混凝土荷载)取1.4,恒载(新浇混凝土对侧模的压力)取1.2。

模板荷载效应组合:计算模板承载能力时=荷载*1.2+活载*1.4,计算模板抗变形能力时=荷载*1.2。

有效压头高度:h= F/r。

2.2底模荷载

施工人员及设备荷载标准值1.5KN/m2。

倾倒混凝土时产生的竖向荷载经验值2.0-4.0KN/m2。

振捣混凝土时对水平模板产生的荷载标准值为2.0KN/m2。

模板自重荷载标准值木模为0.50-0.55KN/m2,钢模0.75-1.25KN/m2。

钢筋混凝土密度取26 KN/m3,尚需*1.05(混凝土胀模系数,建议采用)。根据箱梁断面荷载作如下划分:

模板荷载效应组合:恒载*1.2+活载*1.4。(活载主要包括:施工人员荷载、施工机具荷载、倾倒混凝土荷载、振捣混凝土荷载。恒载主要包括:混凝土荷载、模板自重荷载)

2.3横向分配梁

梁底横向分配梁(模板次楞)荷载取值与底模荷载相同。

2.4纵梁

纵梁(模板主楞)荷载为横向分配梁(模板次楞)传递的集中荷载。

2.5立杆(临时墩)

立杆(临时墩)荷载为纵梁(模板主楞)下传集中荷载。由于在模板计算荷载时已考虑了恒载和活载的组合效应,故模板主楞下传至立杆的荷载可直接计算立杆稳定性。

也可根据《建筑施工扣件式钢管脚手架安全技术规范》进行荷载计算。立杆稳定性荷载组合和分项系数:

① 1.2*永久荷载+1.4*施工均布活荷载;

② 1.2*永久荷载+1.4*0.85*(施工均布活荷载+风荷载)。

永久荷载包括:混凝土荷载、模板荷载、支架荷载。

施工均布荷载:施工人员荷载,施工机具荷载,倾倒混凝土荷载、振捣混凝土荷载。

风荷载:根据《建筑施工扣件式钢管脚手架安全技术规范》对水平风荷载标准值进行计算:WK=0.7uz*us*w0 。公式中uz—风压高度变化系数,可查《建筑结构荷载规范》;

us—风荷载脚手架体型系数,可查《建筑施工扣件式钢管脚手架安全技术规范》,w0—基本风压,可查《建筑结构荷载规范》。

2.6地基荷载为立杆(临时墩)下传集中荷载。

落地支架计算顺序:模板→横梁(分配梁)→纵梁→立杆(临时墩)→地基(桩基)。

托架(牛腿、抱箍)计算顺序:模板→横梁(分配梁)→纵梁→斜撑(牛腿、箍身)→墩柱混凝土。

3材料及其力学的性能

3.1竹(木)胶板

木胶板作模板面板时根据《木结构设计规范》4.2规定抗弯强度设计值13N/mm2,弹性模量为9.0*103N/mm2,挠度极限值L/400。由于桥梁施工处于露天环境,根据规范的要求进行调整,fm=13*0.9=11.70N/mm2,E=9.0*103*0.85=7.65*103 N/mm2。自重计算时采用密度550Kg/m3(5.5KN/m3)。

竹胶板作模板面板时抗弯强度设计值30-35N/mm2(暂无相关依据,参考其产品介绍),弹性模量为5.5*103N/mm2,挠度极限值L/400。由于桥梁施工处于露天环境,根据规范的要求进行调整,fm=30*0.9=27N/mm2,E=5.5*103*0.85=4.68*103 N/mm2。自重计算时采用密度950Kg/m3(9.5KN/m3)。

两种板表面几何尺寸2440*1220mm,板厚9、10、12、15、18、20mm等规格,周转次数控制在15次以内。

3.2热(冷)轧钢板

热轧板硬度低,加工容易,延展性能好。冷轧板硬度和强度高,做钢模面板时加工相对困难,但使用过程不易变形。

一般选用4-8mm厚热轧钢板作为模板面板,根据《钢结构设计规范》3.4规定抗弯强度设计值215N/mm2,抗剪强度125N/mm2,弹性模量为206*103N/mm2,挠度极限值L/400。

深水钢护筒、钢围堰(套箱)多选用厚度10mm以上热轧钢板。

客专(50m以上跨度的公路)预制箱梁大模板多选用厚度12mm以上冷轧钢板。

3.3焊缝

抱箍、牛腿、挂蓝以及吊架等临时承重结构焊缝一般需要进行无损探伤检测,对接焊缝必须做无损探伤。焊缝验收等级共三个级别(三级为最低),对接焊缝的焊接等级不能低于二级。焊缝等级检测比较简单对现场施工影响不大,一般使用超声波探伤仪检查。对于临时结构焊缝较多时,现场对焊缝抽查时原则上优先选取受拉部位焊缝。钢模板角焊缝一般情况下无须进行探伤检测。焊缝等级见钢规7.1.1条,阅读时注意条文解释。

根据《钢结构设计规范》3.4规定:抗弯强度设计值160N/mm2,抗剪强度160N/mm2。

焊缝计算高度按实际焊缝高度的0.7为计算依据。

3.4连接螺栓

①普通螺栓:钢材材质 Q235。共分A、B、C三级,前两种是精制螺栓,现场使用较少。C级为粗制螺栓,钢模板连接基本上为C级螺栓,普通螺栓在施工中可重复使用。

普通螺栓一般为4.4级、4.8级、5.6级和8.8级。

根据《钢结构设计规范》3.4规定:4.6级和4.8级抗拉强度设计值170N/mm2,抗剪强度140N/mm2;5.6级抗拉强度设计值210N/mm2,抗剪强度190N/mm2;8.8级抗拉强度设计值400N/mm2,抗剪强度320N/mm2。

②高强螺栓:钢材材质45号钢(8.8级)和20MmTiB(10.9级),为预应力螺栓,必须按要求使用扭矩扳手施加一定的预拉力方可有效。高强螺栓不可重复使用,常用的有M16-M30,超大规格的高强螺栓性能不稳定,应慎重使用。在普通桥梁中抱箍大多采用高强螺栓,大跨桥梁的临时设备使用比较多见。

高强螺栓在使用时分为摩擦型高强螺栓与承压型高强螺栓,设计计算方法上需区别对待。摩擦型以连接板之间出现滑动作为承载能力极限状态,承压型以板层间出现滑动作为正常使用极限状态,而以连接破坏作为承载能力极限状态。

高强螺栓分为8.8级和10.9级。

根据《钢结构设计规范》3.4规定:承压型高强螺栓8.8级抗拉强度设计值400N/mm2,抗剪强度250N/mm2;10.9级抗拉强度设计值500N/mm2,抗剪强度310N/mm2。

3.5模板拉杆

根据《混凝土结构设计规范》4.2规定:

①HPB235(Q235或圆钢) 抗拉强度设计值210N/mm2,弹性模量为210*103N/mm2;

②HRB335(20MnSi或螺纹钢) 抗拉强度设计值300N/mm2,弹性模量为200*103N/mm2。

3.6方木

作为支架横纵分配梁或模板背楞,根据《木结构设计规范》4.2规定:普通松木的抗弯强度设计值13N/mm2,抗剪强度1.5 N/mm2,弹性模量为9.5*103N/mm2,挠度极限值L/400。由于桥梁施工处于露天环境,根据规范的要求进行调整,fm=13*0.9=11.70N/mm2(实际施工中建议不得),ft=1.5*0.9=1.35N/mm2,E=9.5*103*0.85=8.07*103 N/mm2。

由于木材种类较多,重要工程特殊结构使用方木时,需参考《木结构设计规范》3.1章节,确定其准确的力学指标。

3.7热轧普通型钢

热轧型钢材质大多为Q235。

热轧型钢在桥梁施工中常用的主要有角钢、槽钢、工钢、H钢及钢管等。

角钢有等边角钢和不等边角钢之分,等边角钢规格L20*3-L200*24,不等边角钢规格L25*16*3-L200*125*18,较小角钢一般作为钢模的次肋,稍大角钢可作为底模分配梁或铺设便(栈)桥桥面等。

槽钢规格[5-[40c,小号槽钢可作为钢模的主肋、底模分配梁、支架剪刀撑或铺设便(栈)

桥桥面等,大号槽钢可作为桥梁施工大型临时设备等的主要材料。

工钢规格I10-I63c,小号工钢可作为钢模的主肋、底模分配梁或铺设便(栈)桥桥面等,大号工钢可作为桥梁施工大型临时设备等的主要材料。

H钢用途与工钢相似。HW(宽翼缘)规格100*100-400*400,HM(中翼缘)规格150*100-600*300,HN(窄翼缘)规格100*50-900*300。

大钢管主要作为竖向支撑,小钢管可作为支架系杆或立杆。钢管规格Φ32*2.5-Φ630*12。

热轧型钢作为支架横纵分配梁、立杆、立柱或模板背楞等时根据《钢结构设计规范》3.4规定:

①腹板(管壁)厚度小于等于16mm,抗弯强度设计值215N/mm2,抗剪强度125N/mm2,弹性模量为206*103N/mm2,挠度极限值L/400。

②腹板(管壁)厚度大于16mm小于60mm,抗弯强度设计值205N/mm2,抗剪强度120N/mm2,弹性模量为206*103N/mm2,挠度极限值L/400。

③钢材密度为7850Kg/m3,即78.5KN/m3。自重计算时建议采用1.1-1.2的放大系数。

3.8地基或临时墩扩大基础(桩基础)

跨线施工时落地支架在既有高速公路路面时,路面承载力不大于250KPa为宜。一般

的土质地基经过换填处理应在150-220KPa,若地基承载力不能满足时,满堂支架可考虑增加立杆数量或进行场地硬化,临时支墩可增加混凝土基座的几何尺寸或采用桩基。

未硬化的满堂支架地基应注意临时排水设施通畅。

支架地基局部处于坡面位置应提前修成台阶,无法碾压处理时立杆根部垫入方木(板)或钢模等材料,立杆根部适当增加横杆、斜杆数量。

落地支架地基处理应重视承台基坑回填的质量。

地基处理应满足施工承载力的需要,数据可通过现场实测。

混凝土基础或桩基应按局部承压进行计算并满足强度要求,混凝土材料弹性模量:C15为22*103N/mm2; C20为25.5*103N/mm2; C25为28*103N/mm2; C30为30*103N/mm2。

3.9相关建议

在支架材料的选择上不主张使用特级钢或截面积较大的钢材;其次支架法浇筑箱梁不主张使用钢模,既浪费材料又增加施工恒载;横(纵)向分配梁为了固定模板可以选择方木外,纵(横)梁尽可能选用周转次数较多的型钢(槽10-槽20,I10-I20)。型钢拆除后部分可以使用在隧道初支,也可作为便桥的铺板或搭设其他施工平台。

在支架设计之前应参考同类桥型、类似地基情况以及地形比较接近的相关成功案例,结合现场实际建立一个或多个初步的支架布置方案,通过后续的检算确定其合理性和可行性。

4贝雷梁

贝雷梁作为桥梁支架、水中栈桥、便桥、施工平台或吊装设备主要的构件,在本章单独进行介绍。

4.1国产贝雷梁简介

国产贝雷梁其桁节使用16 锰钢,销子采用铬锰钛钢,插销用弹簧钢制造,焊条用T505X 型。材料的容许应力按基本应力提高30%,个别钢质杆件超过上述规定时,不得超过其屈服点的85%,计算贝雷梁自身构件时采用的容许应力如下:16 锰钢拉应力、压应力及弯应力为1.3×210=273MPa;剪应力为1.3×160=208MPa。30 铬锰钛拉应力、压应力及弯应力为0.85×1300=1105MPa;剪应力为0.45×1300=585MPa。

贝雷梁主要构件自重:桁架节270Kg/片,桁架螺栓3Kg/个,销子3Kg/个,斜撑11Kg/根,支撑架21Kg/副,弦杆螺栓2Kg/个,加强弦杆80Kg/支,下弦接头6Kg/个。

单片桁架高150cm,长度300cm。

4.2桁架片力学性质

弦杆截面面率25.48cm2,弦杆惯矩396.6cm4,弦杆断面率79.4cm4,桁片允许弯矩975.0KN.m,弦杆回旋半径3.94 cm,自由长度75cm,长细比19.0,纵向弯曲系数0.953,弦杆纵向容许受压荷载663 KN。

也可计算简化成单杆系可采用:Ix=685.12×10-8m4,y=0.0028m,截面积A=146.45×10-4m。

4.3桁架片组合成贝雷梁的力学性能

单排单层(不加强型)截面抵抗矩W=3578.5cm3,截面惯性矩I=250497.2cm4。

单排单层(加强型)截面抵抗矩W=7699.1cm3,截面惯性矩I=577434.4cm4。

双排单层(不加强型)截面抵抗矩W=7157.1cm3,截面惯性矩I=500994.4cm4。

双排单层(加强型)截面抵抗矩W=15398.3cm3,截面惯性矩I=1154868.8cm4。

三排单层(不加强型)截面抵抗矩W= 10735.6cm3,截面惯性矩I=751491.6cm4。

三排单层(加强型)截面抵抗矩W=23097.4cm3,截面惯性矩I=1732303.2cm4。

双排双层(不加强型)截面抵抗矩W=14817.9cm3,截面惯性矩I=2148588.8cm4。

双排双层(加强型)截面抵抗矩W=30641.7cm3,截面惯性矩I=4596255.2cm4。

三排双层(不加强型)截面抵抗矩W=22226.8cm3,截面惯性矩I=3222883.2cm4。

三排双层(加强型)截面抵抗矩W=45962.6cm3,截面惯性矩I=6894382.8cm4。

4.4桁架容许内力

不加强型:

单排单层容许弯矩M=788.2KN.m,容许剪力Q=245.2KN。

双排单层容许弯矩M=1576.4KN.m,容许剪力Q=490.5KN。

三排单层容许弯矩M=2246.4KN.m,容许剪力Q=698.9KN。

双排双层容许弯矩M=3265.4KN.m,容许剪力Q=490.5KN。

三排双层容许弯矩M=4653.2KN.m,容许剪力Q=698.9KN。

加强型:

单排单层容许弯矩M=1687.5KN.m,容许剪力Q=245.2KN。

双排单层容许弯矩M=3375.0KN.m,容许剪力Q=490.5KN。

三排单层容许弯矩M=4809.4KN.m,容许剪力Q=698.9KN。

双排双层容许弯矩M=6750.0KN.m,容许剪力Q=490.5KN。

三排双层容许弯矩M=9618.8KN.m,容许剪力Q=698.9KN。

说明:三排单层贝雷的容许弯矩可按单排单层的乘以3再乘以不均匀系数0.9;双排双层的可按单排单层的乘以4再乘0.9;三排双层的可按单排单层的乘以8再乘0.8。

因篇幅问题不能全部显示,请点此查看更多更全内容