您的当前位置:首页正文

数学分析上册课后习题答案(叶淼林)

2024-04-10 来源:易榕旅网
数学分析上册课后答案(叶淼林版)

材料提供人:13级信息二班全体同学

答案仅供参考,最终解释权归信息二班所有,侵权必究。

目录

-----------------------------------------------------------------第一章·····················31.1······················31.2······················41.3······················61.4······················101.5······················141.6······················16第二章·····················192.1······················192.2······················222.3······················322.4······················352.5······················392.6······················43第三章·····················493.1······················493.2······················523.3······················573.4······················61第四章·····················654.1······················654.2······················694.3······················714.4······················734.5······················784.6······················81第五章·····················845.1······················845.2······················865.3······················93第六章·····················986.2······················986.3······················1006.4······················1016.5······················103

第七章·····················106

7.1······················1067.2······················1147.3······················124第八章·····················1288.1······················1288.2······················131第九章····················133

9.1·····················1339.2·····················135第十章····················138

-2-第一章§1.1

1、(1)实数和数轴是一一对应的关系。(2)是无限不循环小数,是无理数。

(3)两个无理数之和还是无理数,一个有理数与一个无理数之和是无理数,当有理数不为

零时,一个有理数与一个无理数的乘积是无理数。

(4)实数的稠密性,是指任何两个不相等的实数之间必有另一个实数,且既有有理数,也

有无理数。2、(1)

(2)1111111111

11(n1)1223n(n1)1223n1nn111111n1

n1n22nnnnn2n2n2

n(n1)n2nn22n1(n1)2(3)123...n2222(4)由题意用数学归纳法,当n1时,12显然成立,假设当nk时成立,即

2

11

12k,那么nk1时,2k

111211111(1+)(1+)221...

2kk12kk1kk12k

121k1

2(1...1)2k22k22(k1)k1k1k1k1

2

2

2

11

即当nk1时,原式仍成立,综上可知12n.

n2

1

3、(1)由题意,知:a2

a

当且仅当a

a2

112a0(a0)

aa22

11

时a20即a1aa1

2,且等号当且仅当a=1时成立.a

n

从而对a0,有a

hh

(2)因为n2,3,...及1h0,所以n1h11h1

nn

-3-因为a0,b0时有anbn(ab)(an1an2bbn1),当h0时,1h1n(n1h)n1n(1h)n1n(1h)n1nn2n1n2nhnhn当1h0时,1h1n(n1h)n1n(1h)1(1h)h故当1+h0时,均有n1h1n4、(1)|x1||x2|=|1x||x2||1xx2|1(2)|x1||x2||x3||1xx3||x2|25、(1)(x2)(x3)0(2)2x3即x(2,3)(3)

2121212

5x(,),x2时,或x(,),x2时x(,2)(,)x2555

解得:4x0或2x4即x(4,0][2,4)

x2160(4)2

x2x0

111515

解得:x即x(,)(5)由题意得:|x|

326666|x5|3

(6)由题意得:0|x5|3即

|x5|0

解得:2x5或5x8则x(2,5)(5,8)

§1.2

1、(1)因为

1111

0,所以对任意给定的0,取N21,则当nN时,有1n1nn110,所以lim0

n1n1n3n2n32n32n311

(2)由于(n4),因此对任给的0,取

2n2122(2n21)4n292n3n13n2n33n2n3

Nmax4,1当nN时,有成立。故lim22n2n12n122-4-n11

(3)因为10.99...9n,所以对0(不妨设1),取Nlg1,则当nN时,

10n有10.99...9n故lim10.99...91n

(4)因为

2n22222222440,所以对0,只要取N1,则当n!123n1n12nn

2n2n

0,故lim0nN时,有

nn!n!(5)10当q0时,显然limnqn0

n

20当q0时,则有|q|11,可令|q|1=1a,a0,由于n(q)n10n|q|1n2n2n(n1)a2(n1)a222则当nN时,有故对0,取N21|q|1nqn0

n2n

,即0limnq0(|q|1)112n|q|(n1)(|q|1)

11

,对任意0,取N,便得当nN时,有an1n

111,因此对任意的0,取n1nn1n2nn1n0

12n,故lim(6)nN,|an1|

(7)因为n1n0

1

N2,则当nN时,有

4

(8)由于

nn1n0123n123nn(n1)3n12n1

0/n22,因此,对任给33

nn22n2nn

1

123n1123n所以0,lim0nn3nn30,取N,则当nN时,



(9)nN,|an1|

11

,对任意0,取N,便得当nN时,有an1n

n

2、证明:由于数列xn有界,故M0,s..tnN,有|xn|M.又由limyn=0知,0,存在正整数-5-N,当nN时,有|yn0||yn|

M1

.

故当nN时,有xnyn0=xnyn

M1

.M.即limxnyn0.

n

3、a不是数列{an}的极限:00,N0,n0N使得|an0a|0(1)取0

11111

,当n1时,有1,从而数列的极限不是13n23n

(1)nn(2)本题即证aR,有limnn0a,对01,对任意的正整数N

|a|1

,取n02N,则2

(1)|n0a||2Na|2N|a|10,故数列n(1)发散。n§1.3

1、分析:证明数列发散通常可以采用反证法,构造收敛级数,得出矛盾的结论,也可以举出

反例,本题后两个采用这种方法,对于未知参数要分类讨论。

证:设limana,数列bn发散。n

反证法:若anbn是收敛数列,即lim(anbn)C,由于limana,则n

n

limbnlim(anbnan)lim(anbn)limanCa.

n

n

n

n

即bn为收敛数列,这与已知矛盾,故anbn为发散数列。{anbn}可能收敛也可能发散,如ann,bn

为发散数列。112

,则{anbn}为收敛数列,若ann,bn,则{anbn}nn

an

情形时的结论与之相同。bn

2113(3)原式

22()n33

3nn2nnlim11

2111nn

2、(1)

1

4

(2)0(4)原式limnn(5)原式

limk1

10

nnk10.

-6-1(6)原式lim211n

2111312nn11nlim2221311n311n

33、(1)limn

111

1223n(n1)limn11212131n1n1lim

1n

1n1

111

22n142n2222n

=lim

11(2)lim

2

1

12nn

22211

1limn

2

n

2

limn

2

2lim

2n1n

22(3)lim

12nn23

1132n1132n1222nlimn22222n2222nlim352n1132n1n12222n12222nlimn13212532n12n32n122222n12n12nlimn1112112n1222n22nlim11

2n1n1n1lim12122n112n12nnnnn12

222lim4n1n

n1n3

2n22n2nlimn33222n

n

limn33limn1

2

2limnn2n3(4)当n2时,有111121n1,从而有n2n1n1(n2)

由于limn12lim1n1,故根据极限的迫敛性,得limn1nn1n1

-7-(5)由于0

1n21(n1)21(2n)2n1n2,且limn1n

00,nlim

n2limn1

n1

n20故根据极限的迫敛性,得lim111nn2(n1)2(2n)20(6)因n1nn2n

1n21n221n2n

n21,且

limnn2nlim1nnn11,limn21lim11nn1

n11n2故根据极限的迫敛性,得lim111

n

n21n22n2n14、分析(1)利用几何平均值小于算术平均值,数学归纳法,放缩法,极限的迫敛性求解。(2)先拆项,利用放缩法和极限迫敛性求解。(3)(1n)n(11),(11)1

1n

n

,及n(11

n

)nn1n,移项及极限迫敛性求解。解:(1)利用几何平均值小于算术平均值性质得:2

13213,435

235,2n(2n1)(2n1)2

(2n1)(2n1)因此0

135(2n1)1352462n(2n1)1335(2n1)(2n1)

12n1且limn

00,lim1n2n10,于是由极限的迫敛性,得:lim135(2n1)n2462n0法二:令a132n1n242n,则a2

12342n12n1n23452n2n1

2n1

则0a且lim00,1n

12n1n

lim

n

2n10,于是由极限的迫敛性,得limnan0n

p!

(2)ap1

2!...n!n

n!

1!n!1111111

nn(n1)n!1nn(n1)

n(n1)

-8-故1an1

11n2n2p1

(n2),又lim1,lim11,得:limalim=1.nnnnnnn(n1)nn(n1)n!

p!

n

11111

(3)由11,01,知11,又n0,则1nn1nn

nnnn

即1nnn

1

1n1,故有01nn

1n1(01)

n

然而lim00,lim

n

1n

1n

0(01),因此,由极限的迫敛性,得lim(1n)n0

5、分析:(1)利用nan的定义及极限迫敛性求解。(2)构造一个数列bn满足bn为收敛数列,且与an同极限,利用极限的迫敛性求解。证:(1)由nan的定义知,nN,有nan1nannan,即an

1nanan

nn

因liman

n

nana1

a,limaa,故由极限的迫敛性,得limnnnnn

(2)由于limana0,故取=

a

,则NN,当nN时,

n3

24有|ana|,即aana33构造新数列bn,使bnanN,则bn为收敛数列an的平凡子列,与an同时收敛于相同的极限,由于bn也满足

2424abna,(n1,2,...),于是nanbnna,3333又因limnn24a1,limna1,故limnbn1,从而limnan1.

nnn33小结:构造子数列是证明极限的重要方法,子列与原数列具有相同的收敛性,这样可以化复杂问题为简单问题。6、分析:(1)利用子列极限相等来证(2)利用三个子列极限相等,以及极限定义来证。1(1)n

,因为a2k1,a2k10(k1,2,...),解:(1)此结论不成立,例如,数列an

2故lima2k1,lima2k10,即a2k,a2k1均收敛,但an发散

k

k

(2)此结论成立,证明如下:设lima3k2lima3k1lima3kakkk-9-对于0,N1,N2,N3N,使得当kN1,kN2,kN3时,分别有a3k2a,a3k1a,a3ka.

取N3N13N23N3,则当nN时,上述三个不等式同时成立,故当nN时即ana,即limana

n

1.4

1、证:先假定数列an为单调增加数列,ank为其所含的一个收敛子列,且limanka,故n

0,N1N,当kN1时,有anka,即aanka,取NnN11,则当mN时,由an为单调增加数列知,aanN1amanma,故limana.

1n

若数列an为单调递减数列,令bnan,则bn为单调递增数列,而ank为其所含的一个收敛子列,且limanka,此时limbnka,于是由上述结论可知limbna,于是由上述结论可知n

n

n

limbna,即limana。n

n

2、分析:(1)(2)利用单调有界原理加以证明;(3)讨论当0c1时极限为0,当c1时利用数列有界性及迫敛性证明。证:(1)先证an是有界数列,事实上,nN有1an2现用数学归纳法证明如下:当k1时,a1设nk时结论成立,即12,122成立2akak1222.故1an2,nN再证an单调递增,由于1an2,故2anan121,因此an单调递增。ananan2an两边取极限得n由单调有界定理知liman存在,设limana,则对an1nnliman1=lim2an,即a2a解之得a2或a0(不合题意,舍去),故liman2.nn(2)先证an为有界数列,事实上,nN有0an1114c221114c22现用数学归纳法证明如下:当k1时,anc0,且c-10-设nk时结论成立,即0ak1114c,则当nk1时,22ak1cak0,且

111111ak1cakc14c14c14c222222故0an21114c,nN22再证an严格单调递增,由于2cananan1ancanancanan所以canan0,当且仅当2111114can14c时成立,故由前面结论知2222an1an0,因此an严格单调递增。由单调有界定理知liman存在,设limana,对an1nncan两边取极限得aca,解得a11111114c0(不合题意舍去)与a14c,故liman14cn222222cn11cn,且lim00,lim0,由极限的迫敛性知lim0(3)当0c1时,因0nnnnn!n!n-11-cnckcccMck(M)当c1时,记[c]=k,因0n!12kn1nnk!cMcn0,故由极限的迫敛性知lim0.且lim00,limnnnnn!2、分析:首先利用数学归纳法得an0,bn0,由已知条件及几何平均值不等式,得an1bn1,an1an,bn1bn,因而an单调递减,bn单调递增,anbn有界,由单调有界原理,liman=a,limbnb,再利用已知nn条件an1=anbn,得出结论2anbn,bn1anbn2证:由a1b10,显然有an0,bn0,因an1故an1=anbnabaaanbnbn1,an1=nnnnan,bn1=anbnbnbnbn222即an单调递减,bn单调递增.又bnana1,anbnb1,所以anbn有界,由单调有界定理知limana,limbnb,即liman与limbn皆存在。nnnn在an1=anbnab中两边取极阳得a,即ab.224、证:由题意知an,bn形成一个闭区间套,从而存在唯一的点,s.tanbn(n1,2,....)an1an,bnbn1(n2,3....)an1bn1(n2,3,....)即anbn又(n1,2,3,....)满足(1)式的具有唯一性。满足(2)式的至多有一个。-12-从而证明了存在唯一的一点s..(2)式成立。tn15、分析:首先把原不等式变形为ban[(n1)bna],令a111,b1,n1n11n2n1代入上式证得11n1n1,所以11n为递减数列。证:由bn1an1an(ba)(n1)整理后得bn1an(n1)bna令a11n1,b11n,代入上式得:

n1

11n



11

n1(n1)(111n1n)n(1n1)

n

11n1(11n1n1)

11n

1n2

21n1(1n1)1n1

这就证明了1n11n为递减数列,n11111n1114nn故011n11n111n111n4从而1n1n为有界数列。7、分析:(1)先应利用柯西收敛准则,再利用三角函数有界性,放缩法得证。(2)先利用柯西收敛准则及放缩法,再利用拆顶对消化证明。证:(1)对0,取Nlog121,则对nmN,有asin(m1)nam2m1sin(m2)sinn1112m22n2m12m22nn-13-2m11112nm111mnm122212而由mlog21知1.故有anam.m2由柯西收敛准则知数列an收敛。(2)对0,取N1,则对nmN,有2anam111(m1)2(m2)2n2111112m(m1)(m1)(m2)n1nmnm而由m2知2,故anam,由柯西准则知数列an收敛。m8、分析:本题利用单调有界原理,柯西的收敛准则及绝对值不等式证明,实际上在本题中AnM,称为“压缩数列”,今后可作为定理直接用。证:(1)由AnM,且An1Anan1an0,知An为单调有界数列,由单调有界原理知An收敛。(2)由(1)知An收敛,所以由柯西收敛准则知,对0,N0,当nmN时有AnAm而anamanan1an1an2am1amanan1an1an2am1amAnAm.则由柯西收敛准则知an收敛。1.51、分析:首先利用教材22页定义1.7证1,1为聚点,再用定义1.7证明无其他聚点证:记(1)n1n-14-10验证1,1皆为的聚点,因xn11,xn各项互异,且2n1,yn各项互异且2n1limxn1,故1是的聚点;因yn1nlimyn1,故-1也是的聚点.n2011证明无其它聚点,设实数1,取0min,,则22当n

1

0

时,有(1)n

111

(1)n200nnn

从而在(;0)内至多包含的有限多个数,故不是的聚点,

因此有且只有两个聚点1和12、分析:(1)利用有限覆盖定义证明(2)有限覆盖定义只适用于闭区间,对于开区间不一定成立。解:(1)H能覆盖(0,1)因为对任一点x(0,1)存在正整数n,使11x,事n2n实上,要想使1111x,也就是nn2,只要取n1就行.n2nxx1,因为对中任意有限个开区间,2(2)①不能从中选出有限个开区间覆盖0,设其中左端点的最小值为的任何一个。11,则0,中的点不属于这有限个开区间中N2N2111,1,列如选取,H,100n2n②能从H中选出有限个开区间覆盖n1,2,...,98,就能满足要求。小结:此例说明如果把有限覆盖定理中“闭区间[a,b]”改为“开区间(a,b)”,结论不一定成立。3、分析:有限覆盖定理的功能在于把每一点的局部性质转化到整个闭区间上,运用时需构造与欲证结论有关的一个开覆盖,而聚点定理则由点集的整体性质得出来一点的局部性质,因此本题应选用反证法。证:设S为直线上的有界无限点集,于是存在a,b

s..tS[a,b].

-15-假定[a,b]在任何点都不是S的聚点,则对每一点x[a,b]都存在相应的x0,s..t(x;x)

内至多包含S的有限多个点,令Hx;x|x[a,b],则H是[a,b]的一个开覆盖,据有限覆盖定理,H中存在有限个领域(x1;x1),,(xn;xn),使得覆盖了S.由于每个邻域中至多含S的有限个点,故这个n个邻域的并集也至多只含S的有限多个点,于是S为有限点集,这与题设S为无限点集矛盾。因此,在[a,b]中至少有一点是S的聚点。小结:有限覆盖定理在H中取出邻域(x;x),正好能包含无穷多个点,这也是聚点定义的反映。4、分析:只须证明柯西收敛准则的充分性部分,本题涉及数列,而聚点定理的推论——列紧性定理(P16)(有界数例必含有收敛子列)正好针对数列情形,故采用列紧性定理,于是只面验证an有界,找出一个收敛子列,再证明子列的极限就是原数列的极限。证:设数列an满足柯西条件,先证明an是有界的,为此,取1,则存在正整数N,当mN1及nN时有anaN11.由此得ananaN1aN1anaN1aN1aN11,令Mmaxa1,a2,...,aN,aN11则对一切正整数n均有anM于是,由列紧性定理,有界数列an必有收敛子列ank,设limankA.对k0,k0,当m,n,kK时,同时有anam,ankA,因而当取22mnk(kK)时,得到anAanankankA22,即limanAn1.61、分析:无穷大量的定义:对M0,N0,当nN时恒有xnM.n2nMnMM.证明:(1)对M0,取N2M2,当nN时恒有n2n22-16-n2从而知.为无穷大量。n2(2)令xnln(n3),则对M0,取N10M13,当nN时恒有xnM.即ln(n3)为无穷大量。(3)令xnnarctann,则对M0,NM,当nN时恒有xnMarctanMMarctanMM,即narctann为无穷大量.(4)令xn

111n1n22n2对M0,取N2M1,当nN时恒有xn1112n2n2nnn22n即N2M21M.22111为无穷大量。n1n22n2n(5)令xn2.则对M0,取NM4,当nN时n01nCnCn2n(11)nCn1nn(n1)...1n(n1)(n2)2222nnnnn22n2n3n3M,即2为无穷大量。nn2、证明:(1)因xn为无穷大量,则M0,N0,当nN时|xn|M,又因yn0,则xnynxnynMM,即xnyn是无穷大量(2)limynb0可得:取=nb|b|0,N0,当nN时ynb.22bb22从而ynynbb|b|ynbb-17-因xn为无穷大量,所以M0,N0,当nN时xn2M.|b|则xnyn2M|b|.M.|b|23|b|3|b|M,由xn可得22又ynynbbynbbx|xn|3|b|M2M.故xnyn与n是无穷大量。yn23|b|yn3、分析:斯笃兹定理:设yn是严格单调增加的正无穷大量,且limnxnxn1a(a可ynyn1以为有限数,或),则lim222xna.nyn23解:(1)令xn135(2n1),ynn,则易知yn是严格单调增加的正xnxn1(2n1)24n24n14lim3lim2无穷在量,且limnyynn(n1)3n3n3n13nn1从而由斯笃兹定理知且limxn44,即原式ny33n(2)令xnlogan(a1),ynn,则易知yn是严格单调增加的正无穷大量,n(n1)xnxn1lognalogan1且limlimlimloga0nyynnn(n1)nn1(3)令xnn(k为正整数),yna量,kna1,则易知yn是严格单调增加的正无穷大nknk(n1)knk(n1)k

且0limnlimnlimn1

nannaaan1(a1)

[n(n1)][nk1nk2(n1)(n1)k1]aknk1

=limlimnn1na(a1)a1nannk

从而可推得limn=0na

-18-第二章2.11、解:由题意可知:f(0)1;f(x)

1xx

;f(x1);1xx2

1

21xx1;1x1;f(x)1;f

1xx11x1f(x)1x

x1x12

1x

f(x2);f(f(x))1xx2

1x1x11x

1

2、解:由题意,令y

11

(x0)则x,且y0.xy

1y211111x2故f(y)12,即有f(x)

yyyyxx

3、证明:(和P33例2.3一样)xR,f(x)

故f(x)

x2x1

1x22(1x2)2

x

是R上的有界函数.1x2

tf(x0)M.5、解(1)无界函数的定义:设f定义在X上,M0,x0X,s..

(2)M0,取xMmin,1

2

11

M.,则xM(0,1)且f(xM)2

M11M1故f(x)1为(0,1)上的无界函数x21

,x(0,1]

(3)设f(x)x2由(2)的证明知f(x)为[0,1]上的无界函数.1,x0

5、证:(3)x1,x20,,x1x2,则有0

从而sinx1x2xx

,120222

x1x2xx0,sin12022-19-故f(x1)f(x2)cosx1cosx22sin所以f(x)在[0,]上严格递减。6、解:(1)因为f(x)

x1x2xx

sin120,即f(x1)f(x2)22

11

(x)4(x)21x4x21f(x),故22

f(x)

14

xx21是偶函数2

(2)对x(,),有f(x)(x)sin(x)xsinx(xsinx)f(x)故f(x)xsinx为(,)上的奇函数(3)f(x)xe

2x2在(,)上有定义,对x(,),有

22f(x)(x)2e(x)x2exf(x),故f(x)为(,)上的偶函数。(4)由1x0及x1x0知f(x)lg(x1x)在

2

2222,上有定22

2212x22,f(x)义,对x,有f(x)lg(x1x)lg2221xx

故f(x)为

22,上的非奇非偶函数。22

7、证:(1)因[a,a]关于原点对称,F(x)在[a,a]上有定义,对x[a,a]有

F(x)f(x)f(x)f(x)f(x)F(x),故F(x)为[a,a]上的偶函数。(2)因[a,a]关于原点对称,G(x)在[a,a]上有定义,对x[a,a]有

G(x)f(x)f(x)[f(x)f(x)]G(x),故G(x)为[a,a]上的奇函数(3)由(1)和(2)可得F(x)G(x)2f(x),从而有f(x)

F(x)G(x)

2

1111

F(x)G(x),而F(x)是偶函数,G(x)是奇函数,故f(x)可表示为一个奇函222211

数G(x)与一个偶函数F(x)之和。22

8、分析:狄利克雷函数由定义可证得有界性,单调性也比较明显,对周期性分有理数与无理数讨论。解:由D(x)的定义知,对xR,有|D(x)|1,故D(x)是R上的有界函数,由于对任意的有理数x1与无理数x2,无论x1x2还是x2x1,都有Dx1Dx2,r所以D(x)在R上-20-不具有单调性。对任意的有理数r有xr

有理数,当x为有理数时无理数,当x为无理数时1,当x为有理数时

D(x)

0,当x为无理数时

从而对xR有D(xr)

故任意有理数r都是D(x)的周期,但无基本周期,而任何无理数都不是

D(x)的周期,事实上,对任一无理数,无理数,D()0,而D(())D(0)1D()

小结:狄利克雷函数与黎曼函数是一类特殊函数,在以后的连续性以及极限理论中具有重要地位,要特别注意。9、分析:作函数图象找出函数关于原函数的对称点,对称中心,有绝对值号的要分类讨论。解:(1)yf(x)和yf(x)的图象关于x轴对称(2)yf(x)的图象与y=f(x)的图象关于y轴对称(3)yf(x)的图象与yf(x)的图象关于原点对称

(4)yf(x)=f(x),xD1x|f(x)0f(x),xD2x|f(x)01,xD1x|f(x)0

(5)ysgnf(x)=0,xD2x|f(x)01,xDx|f(x)03

(6)y

f(x),xD1x|f(x)01

|f(x)|f(x)=20,xD2x|f(x)0(7)y图象略10,xD1x|f(x)0|f(x)|f(x)=f(x),xDx|f(x)02210、分析:要证有界性首先想到M0,使|f(x)|M,又因为f(x)在R上以h为周期,即有f(nhx)f(x),再在[a,ah]上的x使tnhx,f(t)f(nhx)f(x),最终证得结论。证:因f(x)在[a,ah]上有界,从而M>0,对x[a,ah],有|f(x)|M,对-21-tata

t(,),设nZ,则有0n1,从而有hh

h[0,h),xah[a,ah],由tnhahnhx及f(x)的周期性,有f(t)f(nhx)f(x),所以|f(t)||f(x)|M,故f(x)在R上有界.

小结:本题不仅用到函数的周期性,有界性的概念,还应注意到函数的构造,有利于今后学习。11、证明:1从而有0对xD,f(x)0,g(x)0,有0inff(x)f(x),0infg(x)g(x)

xD

xD

inff(x)infg(x)f(x)g(x).故inff(x)infg(x)inff(x)f(x)g(x)xD

xD

xD

xD

xD

xD

xD

20对xD,f(x)0,g(x)0,有0f(x)supf(x),0g(x)supg(x)

从而有f(x)g(x)supf(x)supg(x)

xD

xD

30因f,g为D上的非负有界函数,所以fg也为D上的非负有界函数,从而inff(x)g(x)f(x)g(x)supf(x)g(x)xDxD综上可知inff(x)infg(x)inff(x)g(x)supf(x)g(x)supf(x)supg(x)xDxDxDxDxDxD2.21、分析:(1)取M



,(2)0|x2|1,右方放大,取=min1,,(3)把分母因式35

4



2分解,不等式右方放大,取Mmax2,,(4)先对4x分解,不等式右方放大,2

取=min1,

4

证:(1)0,取M

故按定义有lim

5

,则当xM时有

6x555

6.xxM

6x5

6.

xx

(2)当0|x2|1时,有

x26x102x2|x4||x2|(|x2|2)3|x2|

-22-则0,取min1,,则当0<|x2|,有(x6x10)2.故按定义有limx6x102.

x2

3

2

2

x25444

1(3)当|x|2时,有2

x1(|x|1)(|x|1)|x|1|x|x25444

1则0,取Mmax2,,当|x|M时,有2

x1|x|M

x25

故按定义有lim21.

xx1(4)当02x1时,有

4x22x2x2x4(2x)42x22x.2

则0,取min1,,当02x时,有

4

4x2022x22

故按定义有lim4x20.

x2

2

.

小结:按定义证明函数极限limf(x)A(或limf(x)A)中,常将|f(x)A|

x

xx0的表达式适当放大,使放大后的式子当x(xx0)时仍为无穷小量,且式子较为简单,以便容易求出M(),在上述放大过程中,为使式子简单有时还限定x的绝对值首先大于某一正数(或|xx0|首先小于某一正数1并在最后确定M()的值时,考虑到这个前提条件,这是用定义证明函数极限的基本方法,本题各个小题均用到这种证明技巧。

2、分析:利用定义和绝对值不等式,此外函数极限存在条件是左右极限存在且相等。

证:因为limf(x)A,则0,0,当0|xx0|时,|f(x)A|,于时有

xx0|f(x)||A||f(x)A|,故lim|f(x)||A|

xx0(但反之不真可举例说明)

-23-1,x0

1,x0

f(x)sgnx0,x0,因而|f(x)

0,x01,x0

且lim|f(x)|1,但limf(x)不存在.x0

x0

事实上,lim|f(x)|1,但limf(x)1,从而limf(x)limf(x).故limf(x)不存在.x0

x0

x0

x0

x0

(但A=0时,该命题的逆命题真)3、解:(1)因为当x0时,f(x)

|x|

1,故limf(x)lim11;当x0时,x0x0x

f(x)

|x|

1,故limf(x)lim(1)1.左右极限不相等,故limf(x)不存在。

x0x0x0x

x0

(2)当0x1时,f(x)[x]0,故limf(x)0;当1x0时,f(x)[x]1,故x0limf(x)1,从而limf(x)limf(x),故limf(x)不存在.x0

x0

x0

(3)因为

0,取log2(1)0,当0x时,|f(x)1||2x1|2x121.所以

x0

2

limf(x)1,若对>0,取,当x0时,|f(x)1||(1x)1|x22,从而limf(x)1,即limf(x)limf(x)1,故limf(x)1x0

x0

x0

x0

4、分析:本题两次利用函数极限定义

证:令limf(x)A,则0,M0,当|x|M时,|f(x)A|.

x

1111

0,则当0x时,M,于是有|f()A|,从而Mxx11limf()A.故limf(x)limf()xx0x0xx

5、分析:本题利用黎曼函数定义及函数极限性质。证:因为[0,1]上的黎曼函数定义为取

pp1,当x(p,qN,为既约真分数)

qqR(x)q

0,当x0,1或(0,1)内的无理数x0[0,1],对0,满足不等式n1)内至多有有限个既约分数

1的自然数n至多有有限个,于是在(0,

pp1,s..tR(),因此可以取0,s..t0(x0;)内qqq

不含这样的既约分数,于是只要

-24-0|xx0|(对x00,只要0x;对x01,只要01x),无论x是否为有理数,都有|R(x)0||R(x)|,故limR(x)0,x0[0,1].

xx0

6、解:(1)lim(sinxcosxx)lim2limsinxlimcosxlimxlimx

xxxxxx222222

2

2sincos

22



2

2

221

4

x2101

(2)lim21.

x02xx1001

x21(x1)(x1)x12(3)lim2limlim.x12xx1x1(x1)(2x1)x12x13(x1)3(13x)x2(x3)x3(4)limlimlim3.232x0x0x0x2xx(12x)12x

xn1(x1)(xn1xn2...x1)xn1xn2...x1n(5)limmlimlimm1m2.

x1x1x1(x1)(xm1xm2...x1)x1xx...x1m(6)limx4

12x3(12x3)(12x3)(x2)2(x2)4

limlim.x4x4x2(x2)(x2)(12x3)12x33

a2xax11limlim.(7)lim

x0x0xx(a2xa)x0a2xa2a(8)因为1cosx1,当x0时,

1

1x1xcosxx11

1.xxxxx

xcosx11

1.而lim1lim11,由迫敛性定理得lim

xxxxxx

1x1xcosxx11

1.xxxxxxcosxxcosx

从而可知lim1.故lim1.

xxxxxxsinxx

(9)当x2时,222.

x4x4x4同理当x0时1

-25-1

xx0,limx0,由迫敛性定理得limx0。lim而lim2

xx4xxx24xx24412

x

xx

当x2时,同理可得lim20,故lim20

xx4xx4

670520

(3)(8)

(3x6)70(8x5)20370820xxlim(10)lim9090xx1(5x1)590

(5)

x

7、解:(1)因为1cosx1,所以当x0时,

1

1x1xcosxx11

1.xxxxx

xcosx111.而lim1lim11,由夹逼性可得limxxxxxxxxsinxx



x24x24x241

xx0,limx0lim而lim2

xx4xxx24412x(2)因为当x2时

11

(1x)1,由夹逼性法则可得limx1.(3)当x0时1xx1.而limx0x0xx11

x1.当x0时有1x1x.同理由夹逼性法则可得limx0xx1

综上可得limx1.

x0

x(4)先求limnn的极限

x记annn1hn,这里hn0(n1),则有n(1hn)n由上式得0hn

n(n1)2

hn

2

22(n1),从而有1an1hn1n1n12n1+1.limn1.因为lim所以由夹逼性法则可得nnn1从而由海涅归结原则习得limx1,即limx1

xx

x1

x

-26-8、分析:当A=0时,直接利用函数极限证明,当A0时,nf(x)nA分子有理化,再利用放缩法证之。

证:因为f(x)0,故limf(x)A0.

xx0若A=0,由limf(x)A,则0,0,当0|xx0|时,

xx0|f(x)A||f(x)|n.所以|nf(x)0|

xx0nf(x)nn,即lim0nf(x)0nAxx

若A0,由limf(x)A,0,0,当0|xx0|时

|f(x)A|nAn1,从而有

nf(x)nA

n|f(x)A|nfn1(x)Afnn2(x)Ann2f(x)Ann1

1nAn1f(x)A故limxx0f(x)nA.9、证:0,(不防设1),为了使|ax1|.

即1ax1,利用对函数logax(当0a1)的严格递减性,只要

loga(1)xloga(1)

于是取minloga(1),|loga(1)|,则当0|x|时,就有|ax1|成立10、解:(1)lim|x|1|x|1

limlim111.

x0x1xnx0xx01xn

|x|1|x|1

(2)limlimlim111.nnx0xx0x01xx1x

x1x21xx2x3xnnxn1

lim(3)lim

x1x1x1x1x1x1

2n1n2

=lim1(x1)(xx1)(xxx1)123nx1

nn(n1)

2

(4)lim

x0

1x111

limx0nx(1x)n1n(1x)n2nx11n

(注:这里用习题8结论,有n(1x)k1,k1,2,...,n1(5)当x0时,

x1[x]xx11

1,而且limlim11,

xxxxxxx

-27-由迫敛性得lim

[x]1.

xx

x[x]x11

(当(x0时11)xxxx

1n1n2nn

(6)limsin(n21)lim(1)nsin(n21n)lim(1)nsin(n)0

1

11、分析:证明limcosx不存在只需取xn,x1n使得limcosxnlimcosxn即可。

x

xn

xn

解:设函数f(x)定义在区间[a,)上,则极限limf(x)存在的充要条件是:

x

对任何数列xn[a,),且limxn,极限limf(xn)都存在且相等。

n

n

证明:因cosx在[0,)上有定义,令xn2n,x1n2n

2

,(n1,2,...),则显然有

1xn[0,),x1n[0,),且limxn,limxn,但nn

limcosxnlim11,limcosx1nlim00,由归结原则知limcosx不存在。

nnnnx

12、解:(1)设f(x)在(,a]上有定义,极限limf(x)存在的充要条件是:

x

0,M0(Ma),s..txM,xM,有|f(x)f(x)|(2)limf(x)不存在是指:A(,),00,对X0,x0X使得x

|f(x0)A|0

A(,),若A1,对01,X0,取n充分大,使得nX,令x02n,则x0X,且|sinx0A|10;若A1,令0使得nX,令x02n存在。|A1|

,X0,取n充分大,2

x

2

,则x0X,且|sinx0A||1A|0,故limsinx不13、分析:用反证法,依据周期性,找一个数列xn,limxn,使limf(xn)0,nn由海涅归结原则即可证得。

证:假设f(x)0,则x0R,使f(x0)0,因f(x)为周期函数,不妨设周期为L0,作数列xnx0nL(n1,2,,3...),则有limxn,但f(xn)limf(x0)f(x0)0,

n

n

根据海涅归结原则,limf(x)0,与题设矛盾,故f(x)0.

n

-28-sinx1及函数极限的运算法则。

x0xsin2xsin2x

解:(1)lim2lim212.

x0x0x2x14、分析:利用重要极限limsinx3sinx3x(2)limlim3x0.x0(sinx)2x0xsinx(3)设xt

2

2

,则x

2

时相当于t0,于是

cos(t)

cosxsint2limlimlim1.t0t0ttx

2x

2tanxsinx1

(4)limlim1.

x0x0xxcosx

x

2(sin)2

tanxsinxsinx1cosx1212x11(5)limlimlimx0x0x3xx2cosxx0x2442

2(6)令arctanxy,则xtany,且x0,相当于y0,于是有

lim

arctanxyy

limlim.cosy1.

x0y0tanyy0sinyx

11siny

1(7)令y,于是当x时,y0,从而limxsinlimxy0xxysin2xsin2sinxsin

(8)limlimsinxsinxxxx

xx

2cossin22limsinxsinxx

xsin2.cosxsinxsinlimxx221cos(sinsin)2sincossin2.

(9)limx0

sin4xsin4x

lim4(x11)8x04xx11-29-x2x22sinsin1cosx222lim2lim(10)lim2x01cosxx0x0xx2(sin)2221lim1xx2x22x222112.xsin22215、(1)lim(1)xxx1

x

e21



(2)lim(1x)lim1xxex0x0



(3)lim(1tanx)

x0

1

x

cotx

lim1tanx

x0

1

x

1tanx

e

11

(1x)1x2xx

(4)limlimlim(1x)(1x)e1x01xx0x0

x

(1x)

2x1

83

13

3x2

(5)limx3x2

4

lim(1)x3x2

3x2

4



3x233e1e.3x2

88

x



(6)lim1lim1

xxxx



px

e16、分析:(3)先分子有理化,注意x包括,要分类讨论再分子分母同

除以x,(6)分子分母同时有理论;(7)先通分,再化为平方差形式。解:(1)因为x3,故可限制2x3,x[x]x2,于是

x3lim(x[x])lim(x2)321x3

(2)因为当1x2时,[x]1,从而

111

lim([x]1)lim(11).x1x12

(3)(ax)(bx)(ax)(bx)

2(ab)x(ax)(bx)(ax)(bx)

2(ab)sgnxxbab1111axxx所以

-30-xlim(ax)(bx)(ax)(bx)lim

2(ab)abab1111xxxx2(ab)abab1111xxxxxba

xlim(ax)(bx)(ax)(bx)lim

x(ba)

故当ba0时,limlimxx(ax)(bx)(ax)(bx)0,当ab0时,

(ax)(bx)(ax)(bx)不存在.(4)lim

xxaxxa2222xlim

1a1x1a1x22x

1.

(5)lim

xlim

x

1.

3(1x)231x23(1x)231x1xlim.(6)lim3x01x31xx021x1xmnm(1xn)n(1xm)(7)因为mn

1x1x(1xm)(1xn)

m(1xx2xn1)mnmnn(1xx2xm1)=

(1x)(1xx2...xm1)(1xx2...xn1)

m[(x1)(x21)xn11)]n[(1x)(1x2)(1xm1)]=

(1x)(1xx2...xm1)(1xx2...xn1)n[(x1)(x21)xn11)]n[(1x)(1x2)(1xm1)]=

(1x)(1xx2...xm1)(1xx2...xn1)=

n[1(1x)(1xx2)(1xx2xm2)]m[1(1x)(1xx2)(1xx2xn2)]

2m12n1

(1xxx)(1xxx)(1xx2xm1)(1xx2xn1)

nn[123...(m1)]m[12...(n1)]m

所以limnx11xm1xmn

-31-mn(m1)nm(n1)mn

2mn2

小结:本题求极限中,都是先把函数式作适当变形,然后利用极限的运算法则化耻一些已知的较简单函数的极限来计算,这是求一秀函数极限的常用方法,应该注意的是,像(3)(4)(5)等含有一次根式的函数变形中,必须根据x的变化趋势分清其正负号,否则容易出现错误。

17、分析:本题运用反证法与海涅归结原则

证:(反证法)假设f(x)在(0,)上不恒为A,则必存在一点

x0(0,),s..tf(x0)BA,又因为f(x)在(0,)上满足方程f(2x)f(x),从而f(x0)f(2x0)f(22x0)f(2nx0)

则得到数列2nx0(0,),lim2nx0,且limf(2nx0)limf(x0)f(x0)B.

n

n

n

而limf(x)A,由海涅归结原则有limf(2nx0)A.这与BA相矛盾

x

n

故f(x)A,x(0,)

小结:在证明恒等问题时通常采用反证法,如本题证f(x)A,设f(x)BA。

§2.3

2xx22xx21、证:(1)因lim2,则由函数极限的局部有界性知,在某U0(0)

x0xx内有界,所以2xx2O(x)(x0)

(2)因limx0

xsinxx

3

2

limx0

sinx1,由函数极限的局部有界性知,x32

xsinxx

32

在某U(0)内有界,所以xsinxO(x)(x0)

0

(3)因lim

x0

1x1limx0

x0,由函数极限的局部有界性知

1x11x1在U0(0)内有界,所以1x1O(1)(x0).

2233nnCnxCnxCnx(1x)n(1nx)

(4)因为limlim0,由函数极

x0x0xx

-32-(1x)n(1nx)

限的局部有限界性知在U0(0)内有界。

x

所以(1x)n1nxO(x)(x0,n为正整数)2x32x2

(5)因为lim2,由函数极限的局部有界性,在某3xx2x32x2U()内有界,故2x3x2O(x3)(x)3x(6)任取f(x)O(g(x),(xx0),则lim

xx0f(x)

g(x)

从而lim

xx0f(x)f(x)f(x)

limlim

xx0g(x)g(x)xx0g(x)

故O(g(x))O(g(x))O(g(x)),同理有O(g(x))O(g(x))O(g(x))(xx0)(7)任取f1(x)O(g1(x)),f2(x)O(g2(x))(xx0).则lim

xx0f1(x)f(x)

lim2g1(x)xx0g2(x)

f1(x)f2(x)f(x)f(x)

lim1lim2.故xxxx0g(x)0g(x)g1(x)g2(x)12

从而lim

xx0O(g1(x))O(g2(x))O(g1(x)g2(x))(xx0).

2、证:(1)由题设f为xx0时的无穷小量,即limf(x)0,从而对M0,0,

xx0当oxx0时,有f(x)有

1

,又因f(x)在U0(x0)不等于0,故当xU0(x0;)时,M

11

M,因此lim

xx0f(x)f(x)

(2)由题设g为xx0时的无穷大量,从而0,0,当0xx0时,便有g(x)1,故

111

,从而有lim0,为xx0时的无穷小量。

xx0g(x)g(x)g

x

sinx~2

3、解:(1)因为当x0时sin2x2sinx2sinx(cosx1)4sin2

-33-sin2x2sinxx

4x~x3从而有lim1.3x02x

故当3时,sin2x2sinx与x当x0时为同阶无穷小量。

2

1x2(2)因为(1x)~x2(x0),

1x1x

1

(1x)

11x所以limlim1,2x0x0x1x

1即当2时,(1x)与x当x0时为同阶无穷小量。

1x(3)因为1tanx1sinx

tanxsinx1cosx.1tanx1sinx1tanx1sinx1

.sinx~x(x0).cosx所以lim

x0

1tanx1sinx1,故当1时1tanx1sinx与x

x当x0时为同阶无穷小量。

(4)因为3x4xx35x~3x(x0)

552325

5525

所以limx03x24x3x253.故3x4x与x当x0时为同阶无穷小量,即

5523252。525

4、分析:(2)提出x.(2)与x2.比较解:(1)因为limx2x5x52x(3)每一项分别除以xn即可。

15251,所以,当时,xx与3x2lim1xx当x时为同阶无穷大量(注意,这里当x时,函数x2x5无意义).

(2)因为当|x|2时

1xx2(2sinx)1

2sinx1214.2x2x

所以,当2时,xx2(2sinx)与x当x时为同阶无穷大量。

-34-(3)因为lim所以,当

(1x)(1x2)(1xn)

x

n(n1)2

x

111lim121n11.xxxx

n(n1)

时,(1x)(1x2)(1xn)与x当x时为同阶无穷大量。2

§2.4

1、证明:(1)对x0D,D(,0)(0,),由于limf(x)lim

xx011

f(x0)xx0xx0

故f(x)在xx0连续,即f(x)在D内连续。

2x0f(x0)(2)对x0D,DR,由于limf(x)limx2x0xx0xx0故f(x)在xx0连续,即f(x)在D内连续。

k(3)对x0D,DQ,由于limf(x)limxkx.0(k为正整数)

xx0xx0故f(x)在xx0,即f(x)在D内连续。

2、证:由f(x)在xx0连续,得limf(x)f(x0),从而

xx0xx0limf2(x)limf(x)limf(x)f2(x0).故f2在xx0连续xx0xx0由f(x)f(x0)|f(x)f(x0)|知若f(x)在xx0连续,则|f|在xx0连续

1即|f|在xx0连续。反之则未必成立。如构造函数f(x)

1

(x0)(x0)

则有f(x)1,f2(x)1,xR.即f(x),f2(x)在R上连续,但f(x)在x0不连续,因此,由|f|或f2在I上连续,f亦有可能是在I上连续的,这只要将f取为连续函数即可。

3、分析:(1)构造函数F(x)f(x)g(x),利用f,g在x0点的连续性与局部保性。

(2)利用f,g在x0连续及极限得不等式性证明。

证:(1)设F(x)f(x)g(x),由连续函数性质知,F(x)在x0连续,而

F(x0)f(x0)g(x0)0.

tx(x0;)F(x)0.由连续函数的局部保号性得(x0;),s..

-35-即f(x)g(x).

(2)由于f,g在点x0连续,故limf(x)f(x0),limg(x)g(x0)

xx0xx0由题设条件,据函数极限得不等式性得limf(x)limg(x),即f(x0)g(x0)

xx0xx04、证:因为F(x)maxf(x).g(x)1f(x)g(x)|f(x)g(x)|21

G(x)minf(x).g(x)f(x)g(x)|f(x)g(x)|2

由习题2知,f在点x0连续,则|f|亦在点x0连续,而f(x),g(x)均在区间I上连续,因此f(x)g(x)在I上连续,故|f(x)g(x)|在I上连续,由连续函数性质知,F,G都在I上连续.5、证:F(x)

1

|Cf(x)||Cf(x)|2

由于f(x),常量函数C均在R上连续,故|Cf(x)|亦在R上连续,进而

F(x)在R上连续。

6、分析:要让f在[a,)上有界,由于limf(x)存在,|f(x)||A|1,取[a,M],再利

x用闭区间连续性质,f在[a,)上有界,不一定存在最值,利用分类讨论法。证:记limf(x)A,则对于01,Mmaxa,0,当xM时有

x

|f(x)A01,即|f(x)||f(x)A||A||A|1又

f(x)在[a,M]上连续,由闭区间连续函数性质知,

B0,使f(x)在[a,M]上有|f(x)|B.故有x[a,),|f(x)|max|A|1,B从而f在[a,)上有界.

考察f(x)arctanx,g(x)arctanx,x[0,),均满足本题条件,但前者无最大值,后者无最小值,故f在[a,)上不一定有最大值,也不一定有最小值,但

f在[a,)上至少有最大值,最小值之一。

由于limf(x)A(A为有限值),我们分类讨论

x

I)x0[a,),使f(x0)A.

-36-f(x0)A

,则M10,当xM1且xx0时有2f(x0)Af(x0)AAf(x)A

223Af(x0)f(x0)A

即f(x)且f(x)f(x0)

22取0

而在[a,M1]上f(x)有最大值M,x[a,),f(x)f(x0)M.故x[a,),f(x)M,M为f(x)的最大值。II)x0[a,),使f(x0)A.

Af(x0),则M20,当xM2且xx0时有2Af(x0)Af(x0)Af(x)A

22

Af(x0)3Af(x0)即,故x(M2)有f(x0)f(x).f(x)

22取0而f(x)在[a,M2]上取到最小值M,对于x(M2)有f(x)f(x0)m故对x[a,),f(x)m,m为f(x)的最小值。III)f(x)A,x[a,)

此时,A即为f(x)的最大值又为f(x)的最小值。7、解:可推出f(x)在(a,b)内连续,证明如下:

xabx0

,任取x0(a,b),令0min0,则00且22a0a

x0ax0abx0x0b

x0,b0bx0.2222

从而x0[a0,b0](a,b),因f(x)在[a0,b0]上连续,所以f(x)在x0上连续,由x0的任意性,证得f(x)在(a,b)内连续。

1

但推不出在[a,b]连续.如f(x),x(0,1),则f(x)在(0,1)内任一闭区间连续,

x但f在[0,1]不连续(因为在x0处无定义)。

38、解:(1)lim(x)tanx()tan444x

4

-37-x12xx2111211213(2)lim

x1x1112excosx5e0cos05(3)lim62x01x21n(1x)101n(10)(4)

xx1limxxxxlimlimx2xxxxxx1111xxx1

(5)令t,则当x0时,t,则

x

111111limlimttttttx0txxxxxx2ttlimlim1

tt1111tttttt11tttttt111xxx111x1sinlimcosxln(1sinx)xx011x211t(6)lim

xxxxlimxx1(7)lim(1sinx)cotxlimecotxln(1sinx)e

x0

x0

lim

ecoso.lneelnee

bn9、证:limanlimebnlnanenbnlnaneblnaab

n

n

10、分析:(1)f在有理点上f(x0)0且f在I上连续,由实数稠密性则在无理点上

f0,故在I上f0.

(2)在任意两个有理数中,函数f(x)严格增,f在I上连续,利用实数连续性定理

f(x)在I上严格增。

证:(1)x0I,若x0为有理数,则f(x0)0;若x0为无理数,则存在有理数列

rnx0,由f在I上连续,知limrn,使rnI,nN,且lim

nxx

0f(x)f(x0)

-38-由归结原则知limf(rn)f(x0),而limf(rn)lim00,因此f(x0)0

nn

n

由此,对于x0I,有f(x0)0,即在I上f(x)0(2)对于x1,x2I,x1x2,存在有理数列rn1,使

rn1x1

x2x1xx

,且limrn1x1,存在有理数列rn,使limrnx2且x121rnnn22

xx1xx2由于f在I上连续,故limf(x)f(x1),limf(x)f(x2).由海涅归结原则知limf(rn)f(x1),limf(rn)f(x2).

n

n

而rnx1

x2x1xx,rnx12122

故r0使rnr0rn,由题意得f(x1)f(r0)f(x2).故f在I上严格增。

§2.5

1、解:(1)fog(x)f[g(x)]sgn(1x2)1

fog在R上连续。

2(x0)

gof(x)g[f(x)]1[sgnx]2

1(x0)

gof在(,0)(0,)上连续,x0为其第一类可去间断点(2)gof(x)g[f(x)][1(sgnx)2]sgnx0

gof在R上连续

1(x(,1)(0,1))

(fog)(x)f[g(x)]sgn[x(1x2)]0(x0,x1)

1(x(1,0)(1,)

fog在(,1)(1,0)(0,1)(1,)上连续,x0,x1为其第一类,跳跃间断点。2、分析:间断点分为第一类与第二类,判断间断点的类型。

解:(1)因f(x)仅在x0处无定义,故x0为函数的间断点,又因

x0limf(x),limf(x),所以x0为第二类间断点。x0

-39-(2)x0时,f(x)无定义,且

x0limsinxsinxsinxsinxlim1,limlim1,故x0为f的跳跃间断x0x0x0|x|x|x|x点。

(3)当xn时,f(x)|cosn0.

xn时,由于cosn1,故f(x)cosn0且limf(x)lim00f(n)|cosx|xlimxnxnn故xn(n0.1,2,...)为f(x)的第一类可去间断点。(4)当x0时,f(x)sgn|x|0

当x0时,f(x)sgn|x|1且limf(x)limsgn|x|lim|1f(0)

x0

x0

x0

故x0时,f(x)的第一类可去间断点.(5)当x2n

当2n

2

(n0,1,2,....)时,f(x)sgn(cosx)0

2

23

当2nx2n(n0,1,2,....)时,f(x)sgn(cosx)1

22当x02n

xx0x2n

(n0,1,2,....)时,f(x)sgn(cosx)1

2

(n0,1,2,....)时

xx0xx0limf(x)limsgn(cosx)1,limf(x)limsgn(cosx)1

xx0当x02n

xx02

(n0,1,2,....)时

xx0xx0limf(x)limsgn(cosx)1,limf(x)limsgn(cosx)1

xx0故x02n

2

(n0,1,2,....)是函数f的第一类跳跃间断点.

xx0xx0(6)当x0时,limf(x)0;当x0时,limf(x)与limf(x)均不存在,故

x0

x0R0均为f的第二类间断点。(7)limf(x)limx7

x7

1

,limf(x)limx1f(1)x1x1x7

-40-x1

limf(x)lim(x1)sinx1

1

0x1

故x7为f的第二类间断点,x1为f的第一类跳跃间断点。

x383、解:(1)x2为f(x)的间断点,但limf(x)limlim(x22x4)12x2x2x2x2f(x)(x2)

故x2为f(x)的可去间断点,定义F(x),则F在R上连续。

12(x2)4、分析:设f为U0(x0)上单调有界函数,利用确界与极限关系,证明左右极限均存在,

x0为间断点。证

f为区间I上单调函数,取U0(x0)I,且满足xU0(x0),x1,x2I,

使

x1xx2,则f在U0(x0)上为有界函数。

00

取x*U(x0),则由f(x)在U0(x0)上递增知,对xU(x0),有f(x)f(x*),即0f(x)在U0(x0)上有上界,由确界原理知f(x)在V(x0)上有上确界,记Asupf(x).

0xU(x0)

00

于是对>0,x1U(x0),使f(x1)A.记x0x10,则当xU(x0;)时,就有。可见,当xx1,从而由f(x)在U0(x0)上递增知Af(x1)f(x)AA0xU(x0;)时,|f(x)A|,故有limf(x)f(x00)Asupf(x)

xx00xU(x0)

同理可证f(x00)也存在,且f(x00)inf0xU(x0)

f(x).

即f在x0左,右极限均存在,因此x0若为f的间断点,则x0必为f的第一类间断点,若f为区间I上单调减函数,则令F(x)f(x),则F(x)为I上单调增函数,

从而f(x00)F(x00)inff(x)supf(x)0xU(x0)

0xU(x0)

f(x00)F(x00)supf(x)inf00xU(x0)xU(x0)f(x)因此,结论同样成立。5、分析:由f在[a,b]上的增函数,比较值域的端点值即可。证:x0[a,b],由f为[a,b]上的增函数及上题可知,f(x00)与f(x00)均存在,且此时有f(x00)f(x0)f(x00),x0(a,b).或f(b0)f(b),或f(a)f(a0)

-41-若以上各式不等号有一个成立,不失一般性,设f(x0)f(x00),则对于f(x0),f(x00)f(a),f(b),将不存在xa,b,s..tfx,事实上,若x[a,b],使fx,则x必为以下二种情形之一:

i)xx0,此时有fxfx0ii)xx0,此时有fxfx00故与[f(a),f(b)]为f的值域矛盾,因此,有f(x00)f(x0)f(x00),f(b0)f(b),f(a)f(a0)

由x0的任意性知,f[a,b]上连续。6、分析:要证g在R上右连续,即x0对一切x(x0,x0),有g(x)g(x0),利用g(x)f(x0)证|f(x0)f(x00)|,再利于f在R上的单调性及极限定义。证:假设f为R上的单调增函数,x0R,因f(x00)存在,0,即xx0limf(x)f(x00),知>0,当x0xx0时有|f(x)f(x00)|由f为R上的单调增函数,知f(x)f(x00),xR且对于满足条件,

x0xxx0的x有f(x)f(x0)f(x)

即有f(x0)f(x00)f(x)f(x0)f(x)

从而|g(x)g(x0)||f(x0)f(x00)||f(x)f(x00)|g(x)g(x0),由x0的任意性,得g为R上右连续函数故limxx0若f为R上的单调减函数,取Ff,则F为R上单调增函数,且为R右连续函数,故易知g为R上右连续函数。7、分析:(1)利用分段函数在1111

,,为某一常量。(2)利用狄利克雷函数;(3)利用,234x

分段函数思想;(4)利用狄利克雷函数。-42-1

111(x)(x)(x)

解:(1)f(x)234

1

111(x,,)234

x[0,1]

111(x,,)234

111

(2)f(x)xxxD(x),x[0,1]

23411x(x0,且x(i1,2,...,n)xi

1(x0)x[0,1](3)f(x)10x(i1,2,...,n)

i

(4)f(x)

xD(x),x0

D(x),x0

小结:构造函数是数学学习中的难点,通常要考虑间断点,可可采用分段函数法和特殊函数法,本题中(2)(4)都用了D(x)

2.6

1、分析:要让f在[a,)上有界,由于limf(x)存在,|f(x)||A|1,取[a,M]再利用闭区间x

连续性质,f在[a,)上有界,不一定存在最值,利用分类讨论法,

证:记limf(x)A,则对于01,Mmaxa,0,当xM时有|f(x)A|01

x

即|f(x)||f(x)A||A||A|1

又f(x)在[a,M]上连续,由闭区间连续函数性质知,B0,使f(x)在[a,M]上有|f(x)|B.

故有x[a,],|f(x)|min|A|1,B,从而f(x)在[a,)上有界。考察f(x)arctanx,g(x)arctanx,x[0,),均满足本题条件,但前者无最大值,后者无最小值,故f(x)在[a,)上至少有最大值,最小值之一。由于limf(x)A,(A为有限值),我们分类讨论.

x

i)x0[a,),使f(x0)A

-43-f(x0)A

,则M10,当xM1且xx0时有2f(x0)Af(x0)AAf(x)A

223Af(x0)f(x0)A

即f(x)且f(x)f(x0)

22取0

而在[a,M1]上f(x)有最大值M,x[M1,),f(x)f(x0)M.

故x[a,),f(x)M,M为f(x)的最大值。ii)x0[a,),使f(x0)A,取0

Af(x0)

,则M20,当xM2且xx0时有2

Af(x0)Af(x0)Af(x0)3Af(x0)

,即Af(x)Af(x)

2222

故x(M2,)有f(x0)f(x).

而f(x)在[a,M2]上取到最小值m,对于x(M2,)有f(x)fx0m.故对x[a,),f(x)m,m为f(x)的上最小值。iii)f(x)A,x[a,).此时,A既为f(x)的最大值又为f(x)的最小值。小结:证在开区间上有界,采用在此区间内取一个闭区间,证明最值要利用单调性和有界性。2、分析:用反证法,应用零点定理得出与已知矛盾。证:反证法:若x1,x2[a,b]使得f(x1)0,f(x2)0,则由f在[a,b]上连续得,则由f在[a,b]

上连续得,f在minx1,x2,maxx1,x2上连续,由根的存在定理知。minx1,x2,maxx1,x2[a,b].

s..tf0,与题设矛盾,故f在[a,b]上恒正或恒负。3、证:记f(x)a0xa1x

n

n1

an1xan,则aalimf(x)limxna0nnxxxxnaalimf(x)limxna0nnxxxxn由limf(x),知M0,N0,当xN时f(x)M0.

x

由limf(x),知M0,N0,当xN时f(x)M0.

x

-44-由上知,f(x)在[N1,N1)上连续,且f(N1)0,f(N1)0,由根的存在性定理,tf(x0)0,故f(x)至少有一个实根。至少存在一点x0(N1,N1),且s..

ab

4、分析:因为f(a0)f(b0),取Mf0,

2

所以在x(a,a)(b,b)上f(x)M,在[a,b]上应用介值定理。ab

f(x)及limf(x)证:取Mf0,由xlimaxb2

知0,且

1

(ba),当x(a,a)时,有f(x)M.3

当x(b,b)时,有f(x)M.

而f(x)在(a,b)上连续,故[a,b]s..tx[a,b]有f()f(x)

由f(x)在[a,b]上连续,故[a,b]s..tx[a,b]有f()f(x)

abab

a,b,则有ffMf(x),x(a,a)(b,b)22

综上所述,x(a,b),有f

f(x),即f在x取到最小值,a,b(a,b)

5、分析:失去分母,得一个关于x的一元二次方程F(x)0,利用代数基本定理。证:只需证方程a1(x2)(x3)a2(x1)(x3)a3(x1)(x2)0在(1,2)与(2,3)内各有一根即可,设F(x)a1(x2)(x3)a2(x1)(x3)a3(x1)(x2)0

则F(x)0为一元二次方程,由代数基本定理,知F(x)至多有二个实根,而F(1)a1(12)(13)0F(2)a2(21)(23)0F(3)a3(31)(32)0

由根的存在定理知,F(x)0在(1,2)(2,3)内至少各有一根,故原方程在(1,2)与(2,3)内各有一根。6、分析:要证f

0可利用反证法,f在[a,b]上连续,由最值定理知,|f

|在[a,b]上一定取-45-tf得最小值m,即[a,b],s..|

|m,且有x[a,b],|fx|f()|m,下证m0.

反证法:若m0,即m0,则|f

|m0,由[a,b],知y[a,b],

s..t|f(y)|

1

|f()|f()|m.2

与m为最小值矛盾,故m0,由此得|f()|0,即f()0,[a,b].

7、证:f(xi)maxf(x1),f(x2),...,f(xn)f(xj)minf(x1),f(x2),...,f(xn)不失一般性,设xixj

i)若f(xi)f(xj),则f(x1)f(x2)...f(xn),此时有

f(xk)1f(x1)2f(x2)...nf(xn),k1,2,...,n

取xk,即可

ii)若(fxi)f(xj),则(fxi)f(xj),故有f(xj)1f(x1)2f(x2)...nf(xn)f(xi)t由连续函数介值性定理,知xi,xj[a,b],s..f1fx12f(x2)nf(xn)由此本题得证。

8、证:(1)由题意知limf(x)lim

x

1

0,即取0kA,当x[1,]时xx

有f(x)kA,对上述,令

kA

,则当x1,x2[1,)且x1x2时,则f(x1)f(x2)f()(x1(x2)f()x1x2kA

从而f(x)lnx在[1,)上一致连续得证。(2)f(x)sin

kA

.

1112在(0,1)内取xn,xnxn(n1)取取0

12,对0,只要n充分大总有xnx1.n2n(n1)-46-h(n1)h(n1)

h(n1)122f(xn)f(xn)sinsin2cos2sin21022221

所以f(x)sin在(0,1)内不一致连续。x

9、证:充分性:设f(a0)limf(x)c,f(b0)limf(x)d,规定xa

xb

c,xaF(x)f(x),x(a,b)d,xb则F(x)在[a,b]上连续,从而在[a,b]上一致连续.故f(x)在[a,b]上一致连续.

必要性:因为在a,b上的连续函数f为一致连续

从而0,0,对x1,x2(a,b)且x1x2有fx1fx2.故当x,x(a,a)时有fxfx由柯西准则知limf(x)存在,同理可证limf(x)存在。xa

xb

10、证明:设(a,b)为有界限区间,则f在(a,b)上一致连续,由上题的必要性知xalimf(x)和limf(x)均存在,分别令limf(x)c,limf(x)d,规定xb

xa

xb

c,xaF(x)f(x),x(a,b)d,xb则F(x)在[a,b]上连续,由有界性定理知F(x)在[a,b]上有界,从而f(x)在(a,b)上有界。当I为无限区时间不一定成立,如f(x)lnx在[1,)上一致连续,却无界。11、因为{xn}为有界数列,则存在收敛子列{xnk},设xnkx,(k),则x[a,b],由limf(xn)A,知limf(xnk)A,又f在[a,b]连续,故Alimf(xnk)f(limxnk)f(x)。n

k

k

k

12、证明:(1)由本节第10题知f和g均在有限区间I上有界。tf(x)|A,|g(x)|B.即xI,A0,B0,s..|

由f(x)在有限区间I上一致连续知,对>0,1

2A

,对x1,x2I.且-47-|x1x2|有fx1f(x2)同理由f(x)在有限区间I上一致连续知对上述>0,2

2B

,对x3,x4I.

|x3x4|有gx3g(x4)对上述0,min



,,对x,xI,且xx有2A2B

f(x)g(x)fxgxf(x)g(x)fxgxfxgxfxgxf(x)g(x)fxgxfxgxfxgxf(x)g(x)gxgxfxfxA

续。13、首先证明f在(a,b)连续,只需证x0(a,b),及任意数列{xn}:xnx0(n),有2A

B

2B

.即f.g有I上一致连limf(xn)f(x0)。事实上,当n,xn不取x0时,由归结原则,limf(xn)存在且相等,设为A,n

n

当xn偶子列全取x0时,此时奇子列不取x0,则limf(x2n1)A,而limf(x2n)f(x0),则由极n

n

限的唯一性知Af(x0)。从而可得f在(a,b)连续。其次证明f(a0),f(b0)都存在。对xn:xna,(n),由limf(xn)存在,则由归结原则n

知,f(a0)存在,同理f(b0)存在。从而f在(a,b)内一致连续。14、证:0,由limf(x)A知M0,当xM时,有

x

f(x)A/2.

故对x,x[a,),当x,xM时有

f(x)fxfxAfxA/2/2而f在[a,M]上连续,因此,f在[a,M]上一致连续,即>0,当|xx|,且x,x[a,M]时有fxfx.

取min,,则x,x[a,),当xx时,或者x,x[a,M],故

14

f在(a,)上一致连续。-48-第三章3.1

1、解:从t到tt时间内S5(2t)(2t)25222t29t.v分别令t0.1,0.01,得:

st9.tslim(t9)9.t0tt0f(x0x)f(x0x)0f(x0x)f(x0)

2、解:limlimlimf(x0)5.

x0x0x0xxx

平均速度v(0.1)9.1,v(0.01)9.01.瞬时速度vlim3、分析:考察分段函数在分段点的可导性一般会涉及函数在该点的左、右导数,f(1)存在的充要条件是f(1)和f(1)都存在且相等,据此可确定出a,b.

f(x)f(1)x312

解:f+(1)lim=lim=lim(x+x1)3.x1x1x1x1x1

f(1)limx1

f(x)f(1)axb1a(x1)(ab1)ab1

=lim=limlim(a)x1x1x1x1x1x1x1

若f(1)存在,须ab10,此时f(1)a,由f(1)f(1)得a3,从而b2.

4、解:(1)由题意:lim

x0

f(x0x)f(x0)f(x0x)f(x0)

limx0xx

f(x0x)f(x0)

f(x0),故Af(x0)

x0x

f(x)f(x)0f(x)f(0)

(2)因为f(0)0,所以limlimlimf(0)

x0x0x0xx0x0

lim故Af(0)(3)lim

f(x0h)f(x0h)f(x0h)f(x0)f(x0)f(x0h)

lim

h0h0hh

f(x0h)f(x0)f(x0h)f(x0)limlimh0h0hhf(x0)f(x0)2f(x0)故A2f(x0)

5、分析(1)中带有绝对值的函数可化为分段函数再求导,实际上导数存在的前提条

件是连续。

-49-x3,x0

解:(1)f(x)0,x0

x3,x0

x30

当x0时,f(x)3x;当x0时,f(x)3x;当x0时,f(0)lim0.

x0x0

2

2x30

f(0)lim0.所以f(0)0.

x0x03x2,x0

故f(x)2

3x,x0.

ex1ex1

(2)当x0时,f(x)e;当x0时f(x)1;当x0时,f(0)limlim1,

x0x0x0x

x

f(0)limx0

x11

1,所以f(0)1x0

ex,x0故f(x)1,x0.6、解:(1)当m1时,limxmsin10,因此,对一切正整数m,f(x)在x0连续。

x0x1xmsin0

f(x)f(0)1x(2)limlimlimxm1sin.x0x0x0x0xx

11

当m1时,limxm1sin0,当m1时,limxm1sin不存在。

x0x0xx

故正整数m2时,f(x)在x0可导且f(0)0.(3)设m2,当x0时,f(x)mxm1sin

11

xm2cos.xx

11

0,limxm2cos不存在,所以此时limf(x)不存在;

x0x0x0xx

11

当m2时,limmxm1sin0,limxm2cos0,所以limf(x)0f(0).

x0x0x0xx当m2时,limmxm1sin

故正整数m3时,f(x)在x0连续.

x20

7、解:由题意,得:f(0)lim0.

x0x0

因为f(0)f(0).故f(0)不存在。

f(0)limx0

x0

1x0

-50-exe0ex1

8、解:由题意:y(0)limlim1.

x0x0x0x故切线方程:y1y(0)(x0)即xy10.法线方程:y1

1

(x0)即xy10.y(0)

10

g(x)g(0)1xsin.

x0x0x

9、解:

f(x)f(0)

x0因lim

x0

g(x)sin

g(x)g(0)11

g(0)0,sin1.即sin有界.

x0xx

x0所以f(0)limf(x)f(0)g(x)g(0)1limsin0.x0x0x0x10、分析:利用已知条件赋特殊值,得出f(0)1,再利用定义证明。

证:由f'(0)1知,f(x)不恒为零,设f(x0)0由题设f(x1x2)f(x1)f(x2),有

f(x0)f(x00)f(x0)f(0),所以f(0)1.

f(xx)f(x)f(x)f(x)f(x)f(x)1f(x)xxxf(x)f(0)

(fx).

x

f(xx)f(x)

所以f(x)limf(x)f(0)f(x).

x0x并且对xR有a2

11、证明:由xya得y.设(x0,y0)为题中任一点。

x

2

y(x)y(x0)a2

2则y(x0)lim

xx0xx0x0

a2

故在(x0,y0)点的切线为yy02(xx0)

x0

从而该切线方程在x轴和y轴上的截距分别为:

2x0y

A20x0

a

a2

By0

x0

2y011x0a2

x0y0则该切线方程与两坐标辆构成的三角形面积sAB2

22ax0

-51-22x0y112

2x0y0a204a22a22a2

即结论得证。

§3.2

1、解:(1)y5x42x3sinx

(2)y2tanxsecxx(3)ysinxtanx

则y20x32xln23cosx则y2sec2xsecxtanx1

y(sinx)tanxsinx(tanx)

cosxtanxsinxsec2xsinxtanxsecx

(4)yx3log3x则y(x3)log3xx3(log3x)

lnx

3xlog3xx

ln3

2

3

3x2log3x

1x2

(5)y

1x2x2

1x2ln3

(1x2)(1x2x2)(1x2)(1x2x2)则y(1x2x2)216xx2



(1x2x2)2

(6)y

lnxx

则y则

(lnx)x(x)lnx1lnx

x2x2

(7)yx2lnxsinx

y(x2)lnxsinxx2(lnx)sinxx2lnx(sinx)

2xlnxsinxxsinxx2lnxcosx

(8)y

1sinx

1cosx

则y

(1sinx)(1cosx)(1cosx)(1sinx)

(1cosx)2

cosxsinx1(1cosx)2

(9)y(xx)tanx则y(xx)tanx(xx)(tanx)

-52-11

(x21)tanx(xx)sec2x2

(10)yex.sinx

则y(ex)sinxex(sinx)

exsinxexcosx

(11)yx2arctanx

则y(x2)arctanxx2(arctanx)

x2

2xarctanx

1x2

(12)y(x21)(x22x1)(1x3)

y(x21)(x22x1)(1x3)(x21)(x22x1)(1x3)(x21)(x22x1)(1x3)2x(x22x1)(1x3)(x21)(2x2)(1x3)(x21)(x22x1)(3x2)2x(1x)3(x2x1)2(x1)2(x21)(x2x1)3x2(x21)(x1)22、解:(1)f(x)sinxcosx

故y

则f(x)cosxsinx

x

6

cos

6

sin

6

31

2

22222

y

x

4

cos

4

sin

4

(2)f(x)

x

cosx

则f(x)(xsecx)secxxsecxtanx故f(0)sec001(3)f(x)1xf()secsectan1

111122则f(x)(1x)(1x)2(1x)2故f(1)

11

21122f(0)

11

2102

3、解:(1)y(3x2)5则y5(3x2)315(3x2)

(2)ycos(2x3)则ysin(2x3)(2x3)

sin(2x3)22sin(2x3)

(3)ye2x

2则ye2x(2x2)4xe2x

22-53-(4)yln(1cosx)则y

1sinx

(1cosx)

1cosx1cosx

(5)ysin3x则y3sin2x.(sinx)3sin2x.cosx(6)yln(lnx)则y

11.(lnx)lnxxlnx

1x1x2x1x2(7)yln(x1x2)则y

3



1x1x211x21x2

(8)y,两边加绝对值后取对数可得:2

1x

ln|y|3ln|1x2|3ln|1x2|,对x求导可得:y2x2x33y1x21x2111x2

故y6x2221x1x1x

3

(9)ytan(x2)则ysec2(x2)(x2)2xsec2(x2)(10)yarctane

2x

12e2x2x

则y(e)2x2

1(e)1e4x则ycos1x2x1x2(11)ysin1x21x2

2x21x2cos1x2

cos1x2(12)y(sinx2)2

则y2sinx2sinx22sinx2cosx2x2

4xsinx2cosx22xsin2x2

1

则y(13)yarctanx

1111

2221x21x1x

11

xx1

11(cos2x)2(cos2x)

2cosx.(sinx)1(cos2x)2sin2x1(cos2x)2(14)yarcsin(cos2x)则y

(15)yxsinx,两边同时取对数:lnylnxsinxsinxlnx

-54-对x求得可得:

(16)y2cosx

xxysinxsinxsinx

cosxlnx,故y(cosxln)xyxx

则y2cosxln2(cosx)2cosxln2(sinx)(ln2)2cosxsinx

x

yxxx

(17)yx,两边同时取对数:lnyxlnx.对x求导(x)lnx

yx

令wxx,同理用对数求导法lnwxlnx,即w(lnx1)xx

xxxxx

从而y(lnx1)xlnxx.

x

(18)ye2xcos2x则y(e2x)cos2xe2x(cos2x)

2e2xcos2x2e2xsin2x2e2x(cosxsin2x).

(19)yxxx则y12xxx1xxx1xx12xx2xxx

11

2xx2xxx

111

1

2x2x11

x2xx2xxx

(20)ysin(sin(sinx)).则ycos(sin(sinx)).(sin(sinx))

cos(sin(sinx)).cos(sinx)(sinx)cos(sin(sinx))cos(sinx).cosx

(21)y

1x1x1x1x则y

1x1x

1x1x

1x1x1x1x

1x1x2

-55-1121x21x

11x21x1x111x1x21x21x1x1x2

11x21则y

1x11x1x1x

x11x2x1x1x(22)yarcsin1x令w

1x11

,两边取对数:lnwln(1x)ln(1x)1x22

w11两边对x求导:ln(1x)ln(1x)w22即w

11x1(x1),从而y1x21x1x22x(23)y

x2(3x)4

两边加绝对值后取对数可得:

(x1)5

1

ln|y|ln|x2|4ln|3x|5ln|x1|对x求导可得:

2

y145145x2(3x)4

,从而yy2(x2)3xx1(x1)52(x2)3xx1

(24)yxsinx1ex1111

两边取对数:lnylnxsinx1exlnxlnsinxln(1ex)

2224

y1cosxex

对x求导可得:

y2x2sinx4(1ex)1cosxexxxsinx1e故yx2x2sinx4(1e)xacos4、(1)

ybsinx(1sin)(2)

ycosdyy()bsinbsinbcot解:

dxx()acosacosa

cosdyy()cossin解:

dxx()(1sin1sincos-56-xat2(3)3ybt3bt3btdyy(t)

解:

dxx(t)

at22a

t

xetsintdyy(t)ecostcostsint

5、解:因为所以tdxx(t)tyecostesintsintcost

dy

dx

t

3

1332133133

又t时对应于曲线上的点为2e,2e3

1从而切线方程为ye3

2

33

32xe即y2

32x

31e3.

11333

xe即y法线方程为ye2232

6、(1)f(x)g(xg(a))(2)f(x)g(xg(x))(3)f(x)g(g(x))(4)f(x)g(xg(x))

32x

31e3.

解:f(x)g(xg(a))(xg(a))g(xg(a))解:f(x)g(xg(x))(xg(x))g(xg(x))(1g(x))

f(x)g(g(x))(g(x))g(g(x))g(x)

f(x)g(xg(x))(xg(x))g(xg(x))(g(x)xg(x))

§3.3

1、(1)yexsinx.yexsinxexcosxex(sinxcosx).

yex(sinxcosx)ex(cosxsinx)2excosx(2)y2x2cosx(3)yln(1x)(4)ytanx

22

y4xsinxy4cosx

(1x2)x(2x)2(1x2)

y222

(1x)(1x2)2

2xx

y2

1x21x2

ysec2xy2sec2x(secx.tanx)2sec3xtanx1x2

y2xarctanx2xarctanx1

1x2

-57-(5)y(1x)arctanx

y2arctanx

2x1x2

y2x1x1x221x2111x2(6)yln(x1x2)33

1122222

y1x1x2xx1x.

22

(7)yxex

2yexxex2xex2x2ex(12x2)ex

22222222y4xex(12x2)ex2x2x(32x2)ex

lnx

x

1lnxx2

(8)yy

1

x2(1lnx)2x

2lnx3

yx

x4x3

2、解:(1)f(x)3x42x3x10,则f(x)12x36x1

f(x)36x26从而f(0)6

(2)f(x)x21x2则f(x)2xx31x232f(x)

23x1x22

23

22

1

322

2xx1x2x

23

1x23

2x1x

1x23

2x2

1x2

52从而f(0)2;

3、(1)yf(sinx)f(1)

122

24

dyf(sinx)(sinx)f(sinx).cosxdxd2y

f(sinx)(sinx)cosxf(sinx)(sinx)2

dx

f(sinx)cos2xf(sinx)sinx

2f(2)yln(x)dy12f(x)f(x)2f(x)22f(x)dxf(x)f2(x)f(x)-58-d2y2f(x)f(x)2f(x)f(x)2f(x)f(x)2f2(x)

dx2f2(x)f2(x)

(3)yf(f(x))

dy

f(f(x))(f(x))f(f(x))f(x)dx

d2y2

f(f(x))f(x)f(x)f(f(x))f(x)f(f(x))f(x)f(f(x))f(x)2

dx

4、分析:求高阶导数往往先求出一、二阶,再利用观察法求n阶。(1)ylnx

y1x

,

y

1x

2,y(1)(2)

1x

3,y

(n)

(1)(2)((n1))1(1)n1(n1)!

xn

xn

(2)yax

yaxlna,yax(lna)2,...y(n)ax(lna)n

(3)y

lnx

x

.由莱布尼茨公式可得:n

(nk)

y

(n)

Ck(k)

n

lnx.k01x

n

(n1)

n

lnx(1)n!x

n!(1)k1(kn!(nk)!

1)!(1)nk(nk)!

xk

xnk1k1(1)nn!lnx(1)n1n!n1(1)nn!(k1)!nxn1xn1k1kxn1lnx1k1k(4)yxlnxylnx1,y1x,y1x22从而y(n)

(1)(2)((n2))x(n1)

(1)n(n2)!xn1

(n2)(5)yxex

yexxex,

y2exxex,

y3exxex,,

从而y

(n)

nexxex

(6)ysin2

x

y2sinxcosxsin2x,y2cos2x,y22sin2x,,

从而y

(n)

2n1sin



2x(n1)2(n1)

xet5、(1)cost

yet

sint

-59-解:dyy(t)(etsint)sintdxx(t)(etcost)

costcostsint

dd(

dyddy2y

dx)(dx)dx2dxdt1dxsintcost

dtcostsint(et

cost)

211sin2te(costsint)2

tet

(1sint)(costsint)

t2(2)x2

y1t解:dydxy(t)x(t)(1t)1(t2t2)d2

y

d(

dydx)d(dy)dx

2

dxdtdxdx1

dtt11

t2t3

2

(3)

xf(t)

ytf(t)f(t),f(t)存在且不为0解:dydxy(t)x(t)f(t)tf(t)f(t)f(t)tdyd2

yd(

dx)ddt(dydx)dx

2

1

dxdxdtf(t)6、解:由反函数的求导法则可得:(f1)(y)1f(x)d1

(f1)(y)

ddy1dxf(x)

f(x)f(x)1f(x)dy23dxf(x)f(x)f(x)(f1

)(y)df(xddy)f(x)/dy

f(x)3dxf(x)3dx

-60-

f(x)f(x)f(x)3f(x)f(x)

32

f(x)y2x6

f(x)

3f(x)f(x)f(x)

2

f(x)5

7、(1)证明:因为yarctanx从而y1,21x2

1x22所以有1x

y2xy1x

2

x0

2x

1x0.

22

2x

1

0.1x2

(2)y

x0

11x2

1,y

x0

当n3时,将方程两边求(n-2)次导数,即1x2y(n2)2xy(n2)0由莱布尼茨公式有(n2)(n3)2(n)(n1)(n2)1xy(n2)2xy2y2

(n1)

(n2)2y(n2)2xy0

令x0,解得y

故y

(n)

(n)

x0

(n1)(n2)y(n2)

x0

0,n2mx0m

(1)(2m)!,n2m1

§3.4

1、解:y(xx)2(xx)(x2x)dy(2x1)x

x22xxx

所以在x1处,当x0.1时

y0.12210.10.10.11dy(211)0.10.1

当x0.01时

y0.012210.010.010.0101.

dy(210.011)0.010.01

1112、解:(1)y2x2xy4x2

xx2x-61-dy



4x11x22xdx(2)yxlnxsinx.ylnxcosx1dy(lnxcosx1)dx.3(3)y

xx21y(x2

1)

3

2

dyx2

1

2

dx

(4)yarcsinx2y2x2x1x4y

1x4dx(5)yln2(1x).y

2ln(1x)2ln(1x1dyx)

x1

dx

(6)yexcos(3x)yexsin(3x)cos(3x)dyexsin(3x)cos(3x)dx.(7)yeaxcosbx.yeax(acosbxbsinbx)

dyeax(acosbxbsinbx)dx(8)yarctan1x

y1

1x11x

11x21x21x1x

dy

11x2

dx3、(1)yln2xex2,求d2y,d3y

2x2解:y

ex2xex2ln2x;y4ex2ex22x2x

x

22eln2x4xeln2x

2y12xe212ex2ln2x8x3ex

2ln2x2exxx

3

d2y2x2exx22

4e2x4x2ex222elnln2xxdx

2dy12xex212xex2ln2x8x3ex2ln2x2ex3

x3

dx3

(2)ylnxx21,求d2y,d3y;

-62-353解:y1x21,yx(x21)2;y3x2(x21)2(x21)2d2

y3x(x2

1)2dx2



d3y533x2(x21)2(x21)2dx3(3)y1x(1x),求dny.解:y

1x(1x)11

x

x1

可令u1x,v1

x1.则y(n)u(n)v(n)

u(1)

1x2

v(1)

1(x1)2

u(1)(2)1x3v(1)(2)1(x1)3



u(n)(1)nn!

1n)xn1

v((1)nn!1(x1)n1y(n)u(n)v(n)(1)nn!1(1)nn!

1xn1

(x1)n1

(1)nn!11xn1(x1)n1从而dn

y(1)n

n!

1x

n11

(x1)n1dxn(4)yln(x1),求dny.解:y

1

x1

,y

1(x1)2

y(1)(2)

1(1(x1)3,,yn)(1)n1

(n1)!(x1)n

-63-dny(1)n1(n1)!

4、(1)31.03解:令f(x)

31n

dx

(x1)n

x,x01,x0.03

0.03

1.013

由f(x0x)f(x0)f(x0)x知:31.031(2)lg10.5

解:令f(x)lgx,x010,x0.5.

由公式f(x0x)f(x0)f(x0)x知:lg10.5lg10(3)sin3030解:令f(x)sinx.

0.51

lg10

10ln1020ln10

x030

6

,x30

13030

36060180360



由公式f(x0x)f(x0)f(x0)x知:

13sin3030sinsincos0.5076

6636027206360

(4)24解:令f(x)

x,x025,x1,则f(x0)5,f(x0)

1

10

1

(1)4.910

从而由公式可得:24f(x0x)f(x0)f(x0)x5

434D3

5、解:球的体积vrD

3326

vv(r)rv(D)

D2

DD243D2D

3

则

v

v43vD6

D2D

由v3DD3

2%2%13%v2DD2

即这时测量直径D的相对误差不能超过13%。-64-6、解:由物理学知道,单摆周期T与摆长l的关系为T2lgg(2)2

其中y是重力x速度,已知钟摆周期为1秒,故此摆原长为l0

当摆长最多缩短0.01cm时,摆长的增量l0.01,它引起单摆周期的增量dTT

dl

ll0l

122ll.

ggl022

(0.01)0.0002(秒)980

即加快约0.0002秒,因此每天大约加快6060240.000217.28(秒)第四章§4.1

1、分析:方程f(x)0的点称为f(x)的稳定点(1)cosxsinx解:ysinxcosx令y0即2sinx解得x

04k(k0,1).4

3

2

2

(2)yx4x3x1y3x8x3

令y0即3x28x30x3或x

13

2、费马定理在定义区间端点不在适用,如f(x)x,x[0,1],则f(x)在x0处取得最大值,且f(0)存在,但是f(0)10。3、证明:ylnsinx在x

'

'

22,上连续,在开区间,3333

内可导。

-65-3223

又ylnsinln,ylnsinln,即y

3232333

则由罗尔中值定理应存在一点

2

y3

2

,,s..ty()0,事实上,取即可。这是由于233

令y(x)

cosxcos2

0。故罗尔中值定理适用于ylnsinxx,,则y()

sinxsin33

4、(1)f(x)x.(x[1,1])

x,0x1

解:f(x)x

x,10x012xcos,x0,(2)f(x)x0,x0解:limf(x)limxcos

x0

x0

1,0x1

f(x)不存在,x0,故不存在,使得f'()0

1,1x0

12

0f(0).故f(x)在0,上连续,且x

2

f(0)f()0

1112

f(x)cossin,x(0,).xxx从而,f(x)在0,22上满足罗尔定理条件,即tf()0.0,,s..5、解:因为函数f(x)在R上连续可导,并且f(1)f(2)f(3)f(4)0.

tf(1)0,2(2,3).s..tf(2)0,所以由罗尔定理知1(1,2).s..

3(3,4).s..tf(3)0,从而可知f(x)0至少有三个实根1,2,3,其中1(1,2),

2(2,3),3(3,4)。3

6、反证法:设f(x)x3xC,若x1,x2[0,1],x1x2,s..tf(x1)f(x2)0

则由罗尔定理知x1,x2),s..tf()0,即3301(x1,x2)[0,1]矛盾,所以f(x)0不可能有两个不同的实根。7、证明:(1)令f(x)x,由于x在[b,a]上连续,在(a,b)内可导,由拉格朗日中值定理可知-66-n

n

2

anbnanbnn1n1n1n1

(b,a),s..tf(),而f()=n(nb,na),从而有nbnan1

abab

即nb

n1

(ab)anbnnan1(ab)

(2)由于arctanharctanharctan0,取f(x)arctanx,则f(x)在[0,h]上满足拉格郎日中值定理的条件,则(0,h).s..arctantharctanharctan0

1

h.2

1又0h,得hhhh.即arctanhh.1h2121h28、令F(x)

f(a)

g(a)f(x)

,则F(x)在[a,b]连续,在(a,b)可导,有拉格朗日中值定理知,存在g(x)

f(a)F(b)F(a)

,又F(a)0,F'(x)

g(a)baf(b)f(a)

,即g(b)g(a)f(a)f(b)f(x)

f(b)f(a)

(ba)g(b)g(a)

f'(x)

,所以有g'(x)

(a,b),使得F'()

f(a)g(a)

f'()1f(a)

g'()bag(a)

f'()

。g'()

1a1

9、证:由题意,设S(x)1b

2

1x

则S(a)S(b)0,且S(x)在[a,b]上连续,在(a,b)上可导,由罗尔中值定理得1a1

(a,b),s..tS()0,即S()1b

2

01f(a)f(b)0f()f(b)f(a)ba

从而f(b)f(a)f()(ba)0即f()

10、证明:令g(x)lnx.则g(x)在[a,b](a0)上连续,在(a,b)内可导,且g(a)g(b),从而由柯西中值定理知(a,b).

s..t

f(b)f(a)f()

g(b)g(a)g()

即f(b)f(a)f()

1lnblna

从而f(b)f(a)f()ln

b

a

-67-11、证:因为函数f(x)在R上满足f(x)f(x)所以xR,[e

x

f(x)]'ex(f'(x)f(x))0,所以,exf(x)C,xR,又由f(0)1可得C1,从而f(x)ex

12、分析:利用单调有界定理证明左右极限存在,再利用拉格朗日中值定理分别证明左右导数存在且相等。证:不失一般性,设f(x)在(a,b)内单调递增,则x0(a,b),有

(1)xx0时,f(x)单调增加且有上界f(x0),故limf(x)存在,又由拉格朗日中值定理得xx0(x,x0),s..tf()

f(x)f(x0)

xx0

由xx0时有x0及limf(x)存在,因此有xx0xx0

limf(x)limf()limx0xx0f(x)f(x0)

f(x0)

xx0

xx0(2)xx0时,f(x)单调减少且有下界f(x0),故limf(x)存在,由与(1)安全相同的方法得limf(x)limf()limxx0x0xx0f(x)f(x0)

f(x0),(x0,x),而xx0

f(x)在x0导数存在,即f(x0)f(x0)f(x0)f(x)limf(x)f(x0)故有limxx0x0即limf(x)f(x0)

xx0f(x)f(a)f(x)f(b)

0,lim0,由极限xaxbxaxb

f(x)f(a)

的保号性知0,使得x(a,a),有0,x(b,b)有xa

f(x)f(b)

分别在(a,a),(b,b)中任取x1,x2,则f(x1)f(a),f(x2)f(b),又f0,xb

13、证:不妨设f(a)0,f(b)0,即有lim'

'

在[x1,x2]连续,故由介值性可知(x1,x2)(a,b),使得f()f(a)k14、由柯西中值定理有f(x)f(x)f(0)f'(x1)

,其中x1介于0与x之间,nnn1xx0nx1

同样f'(x1)f'(x1)f(0)f''(x2)

,其中x2介于0与x1之间,n2

nx1n1nx1n10n(n1)x2

-68-f(x)f(n)(xn)

这样利用n次柯西中值定理就有,就有其中xn介于0与x之间,记

xnn!xnx,(01)可得所证结论§4.2

exexexex

1、解:(1)limlim2

x0sinxx0cosx

tanxsinxsec2xcosx2sec2xtanxsinx(2)limlimlim32x0x0x0x3x6xtanxsinx111

)2

x06x6x662sinxsina

(3)lim

x0xa

sinx

1a0时,原式lim1

x0x

sinxsina0sinasina

2a0时,原式lim

x0xa0aa11

ln(1x)xx1

(4)limlim1xlimlim1

x0x0sinxx0sinxx0cosxcosx1

4sec24x

2

lntan4x4sec4xtan3xtan4xlimlim(5)lim22x0lntan3xx03sec3xx03sec3xtan4x

tan3x

lim(2sec2x

sec24xtan3x4xlim12x0sec3x3xtan4xxm1mxm1m

(6)limnlimn1

x1x1x1nxn

1ex1xex1ex11(7)limxlimlimlimx0xe1x0x(ex1)x0ex1xexx0exexxex2

(8)lim

11x112

limlimx1x21x1x1x21x12x2

-69-1

1

2(9)limxex

x0

2

2ex2xex2limlimlimee3x01x0x02x

x2

12x

13x21

(10)lim1x

x0

1

2x2lim(1x)e01x0



lnx

1sinx

lim

lnx1sinx

sin2xxcosx

2sinxcosx

x

(11)limxx0

sinx

limex0

sinxlnx

limex0

e

x0e

x0lim

e

x0cosxxsinx

lim

e01

1(12)limx0x

tanx

limex0

tanxln

1

x

e

1xlim1x0tanx

ln

1x2

limx2x0secx

e

tanx

2e

x0lim

tanxtanxxsec2x

e01

2、证明:因为f(n)(0)存在,从而可知f(x)的n阶导存在

f(n)(0)nf(x)f(0)f(0)xxn!所以limnx0xf(n)(0)n1

f(x)f(0)f(0)xx

(n1)!lim

x0nxn1f(n)(0)n2f(x)f(0)f(0)xx

(n2)!lim

x0n(n1)xn2

f(n1)(x)[f(n1)(0)f(n)(0)x]lim

x0n!x

1(n)

f(0)f(n)(0)0n!

1f(n1)(x)f(n1)(0)

limf(n)(0)n!x0x

从而得证。3、首先易知0,则lim2x

arctanxx1122x11xxlimlimlim

xx1xx1x

要使lim2x

arctanxx存在非零有限极限,只有10即1,此时lim2x

arctanxx=11112xsincos

xlimxx不存在。4、解:用洛比达法则lim

x0sinxx0cosx

x2sin

-70-1

xlimxsin1xlimxsin1limx010但lim

x0sinxx0xsinxx0xx0sinx

x2sin

5、分析:等式左侧为零阶导数,右方为二阶导数,联想到两次应用柯西中值定理,令F(x)f(ax)f(ax)2f(a),G(x)x2.证:设F(x)f(ax)f(ax)2f(a),G(x)x.由已知,>0,s..tf在(a,a)内有二阶导数,则当0h时,F(x)和G(x)在[0,h]上满足柯西中值定理条件,2

(0,h),s..t

F(h)F(0)F()

G(h)G(0)G()

即f(ah)f(ah)2f(a)f(a)f(a),0h2h2而F(x)f(ax)f(ax),G(x)2x,在[0,]上满足柯西中值定理条件,且F(0)0,G(0)0,则(0,)(0,h),使F()F()F(0)F()f(a)f(a),0h.G()G()G(0)G()2

记h,01,则有

f(ah)f(ah)2f(a)f(ah)f(ah)

,(01,0h)

h22

(1x)

6、解:lim

x0e

lime

x0

1

x

1ln(1x)x2x2lim(1x)lime

11x0x0xeex

11

x

11ln(1x)xx2ln(1x)x

lime

x01

x02(1x)lim

x2e

12

11

lim1xx02x

lime

x0

11x2x(1x)

eef(0)

故f(x)在x0处连续。§4.3

111、解:(1)因为f(x)(1x)2,则展开到含x4的顶时1x-71-13!!25!!37!!4

f(x)1xxxxo(x4)234

22!23!24!2

(2)因为f(x)cosx.所以由题意f22sin;fcos.4242442(4)2fsin.fcos.424244fx0fx0fx023

从而f(x)fx0(xx0)xx0xx0

1!2!3!

f(4)x044xx0oxx04!3

4

4

22222xxxxox224641244844

(3)由f(x)

2

1111可知,f(x)2,f(x)(1)(2)3,,f((xn))(1)nn!n1xxxx

2nn从而在x1处f(x)1(x1)(x1)(x1)o((x1))或用间接法f(x)

1

[1(x1)(x1)n]o((x1)n)

1(x1)

x4

x2x4x24

110(x4)2!4!22!x2

cosxe22、(1)lim2lim2xxxln(1x)xx

x2x(x0(x2)

2

x4

0(x4)

1

lim12xx46

0(x4)2

(2)lim

11111tanxx

cotxlimlimx0x0xxxxtanxx0x2tanx

1

xx3o(x3)x

13lim

x0x33

(3)因为ln(1)

1

x

111122o3x2x3xx

-72-o所以limxxln(1)limxx

xxx23xx2

x232

x(1xo(x))(xo(x2))xo(x2)x

xeln(1x)322(4)limlimlimx0x0x0x2x2x22x3cosx5

x(01)4、因为sinxx

3!5!

cosx5x555

x从而R4(x),即误差上界为55!5!5!45!45

2

11111

§4.4

1、(1)y2x

44y22xx

x(,0)(0,)

当x,22,时y0,即y在,2与2,上单调增;当x(2,0)(0,2)时y0,即y在2,0与0,2上单调减(2)y2x6x

3

y6x26,xR

当x1或x1时,y0,即y在,1与1,上单增当1x1时,y0,即y在(-1,1)上单减.

(3)y(x1)(x1),y(x1)(4x2)3

211

当x时,y0,则y在,上单增2211

当x时,y0,则y在,上单减22

(4)y

2xx2定义域为[0,2]y

1x2xx2且x(0,2)

当0x1时y0,即y在0,1上单增。当1x2时y0,即y在1,2上单减。x21

(5)y定义域为,00,x

-73-1x21因为y120,所以函数y的单调增区间为(,0),(0,)。xx2、解:(1)令f(x)sinxtanx2x,则f(x)cosxsecx2,f(x)在[0,

2

2

]上连续,在222

0,,f(x)cosxsecx2cosxsecx202

从而f(x)在0,



内严格单增,即f(x)f(0)0故sinxtanx2x2

x3

(2)令f(x)tanxx,则f(x)sec2x1x2,f(x)在0,上连续,在3322

0,内f(x)secxx103

x3

从而f(x)在0,内严格单增,即f(x)f(0)0,故sinxtanxx

33

(4)由题意2x

sinxx

2



sinx

1.x0,x2

x(0,)

2

令f(x)

sinxxcosxsinxxtanx

,则f(x)2

2

xxx/cosx

令t(x)xtanx,即t(x)在(0,

则t(x)1sec2x1(1tan2x)tan2x0,x(0,)2

)单减,故t(x)t(0)0,从而f(x)0,x(0,).222sinx

于是f(x)在(0,)单减,从而f()f(x)f(0),即1.

22x

2故xsinxxx(0,)2

3、讨论:先证明如下结论:若多项式p(x)的导函数p(x)有n个实根,则p(x)至多有n+1个实根。反证法:设p(x)0有n1个以上的实根,则至少为n2个,设其前n+2个实根依次为p(x1)p(x2)p(x3)p(xn1)p(xn2)0t则由罗尔定理知,k(xk,xk1)(k1,2,...,n1),s..

p(k)0(k1,2,...,n1)

与p(x)0有n个实根矛盾,故结论成立-74-当n3时f(x)3x2pp(p0)3方程f(x)至多有两个实根,x1,2故xpxq0至多有三个实根4、解:(1)yxln(1x)

3

(x0)y1

1x

1x1x

解y0得稳定点x0,而y

1

10.(1x)2

所以x=0是函数的极小值点,且极小值y(0)=0.(2)yx(1x)(x1)y1121x而y0恒成立,所以yx1x在定义域[1,)上无极值2x

(3)y

1x22(1x2)y解y0得稳定点x11,x212

1x

12x4x58x3

y

(1x2)4

而y(1)

16

10,所以x11是函数的极大值。4216

y(1)410,所以x21是函数的极小值。2

1sin3x在x处取得极值,则由费马定理得f0333

5、解:若f(x)asinx

即acos

3

cos3

3

0解得a2

从而f()30,此时f()333

处取得极大值3又f(x)asinx3sin3x所以当a2时,f(x)在x

423

6、解:(1)yx8x2(x[3,3])y4x316x由y0得x[3,3]上的稳定点x10,x22,x32

得:y(3)11y(3),y(0)2,y(2)14y(2).从而ymaxy(3)y(3)11,yminy(2)y(2)14.

-75-1

cos2x(x[0,2]).ysinxsin2x21311132343

由y(0)1;y()1;y(2)1;y();y()

2222223434

243

所以,yminy()y();ymaxy(0)y(2)3/2

334

(2)ycosx(3)yx3x2

2

x[10,10];

x23x2x[10,1][2,10]

y2

x(1,2)x3x2

令y1x3x2

2

x[10,1][2,10]

2x3由y10得[10,1][2,10]上的稳定点不存在。y1

2x3由y20得(1,2)上的稳定点x1y2

3

2321.4

而y(10)132;y(10)72;y(1)0y(2);y()所以yminy7、(1)解31

;ymaxy(10)132.24

p

p

设f(x)x(1x),x[0,1],p1,由f(x)在[0,1]连续及f(0)f(1)1与f(x)x1x1知,f(x)在[0,1]内部取最小值,令f(x)0得最小值点x12

p1

1

,从而有2

xp(1x)p13x33xf(x)

x13x3

x[1,0]

x[0,1]x[1,2]x[2,3]

(2)解:由题意得:3x(1,0)1x(0,1)

因f(x)

1x(1,2)3x(2,3)

故f(x)的最值在各个区间的端点取得:因f(x)3,f(1)6,f(1)2,f(2)4,f(3)6.所以fmax(x)6,fmin(x)2,即2|x||x1||x2|6.

x[1,3]

-76-9、由泰勒公式f(n1)(x0)f(n)(x0)n1f(x)f(x0)f(x0)(xx0)(xx0)(xx0)no((xx0)n)(n1)!n!f(n)(x0)

o(1)(xx0)n,若n为偶数时,等式右边在x0的某个与已知条件可得f(x)f(x0)

n!

小邻域内不变号,故此时函数f在x0取极值。10、解:由题意向设平行于轴的矩形面积为S4xy。x2y2

又点(x,y)是椭圆2+21上的点,从而abx22S4x12ba2(0xa)2x2x2a于是S412b4x02xa212b2a

在(0,a)内解得稳定点x

abb12而S(0)0S(a)

ab4ab2S02

2b1b14ab2

所以当x时矩形面积最大,为2

2b1b1ab11、解:由于抛物线y2px关于x轴对称,故设曲线上所求之点为(a,b),且b0,则由2

y22px得y

2ppp

,即y/(a,b)2yyb

b

(xa)p

2

因此,且(a,b)点的法线方程为yb

b2

代入y2px中求另一交点,即b(xa)2px

p

整理得bx(2ba2pb2p)xpbba2pba0

2

2

2

2

3

22

2

2

2

-77-由根与系数关系得x2232

1x2(2ab2pb2p)/b注意到x2

1a为方程之根,即b2pa,故

2p3a22pap2

x22a2p2paaa(ap)2/a

yb(ap)/a

则(a,b)与

(ap)2a,ba(ap)

之间距离的平方。

(ap)22

b2

d2

(a)aaa

(ap)bp(pa)3/a2

由于d(a)2p(p2a)2

(ap)/a3

0,得ap,a

p

2

.由于a与p同号,故仅有解ap,所以所求之点为(p,2p)与(p,2p)12、解:由题意设法时间为t时两船之间的距离为S(t)(hv2222t)(v1t)(8216t)2(20t)656t24t10.25则S(t)

6562t42t24t10.25656t2t24t10.250

得稳定点t2,此时s(2)1041所以当t2h时,两船距离最近为1041千米§4.51、解:(1)yx

1

x

(x0)y

2x3

当x0时,y0;当x0时,y0

故(0,)为yx1

x的凸区间(,0)为yx1

x

的凹区间(2)y4xx

2

y20

故(,)为y4xx2

凹区间(3)yxarctanx

y

2

(1x2)2

0

故(,)为yxarctanx的凸区间4)y

x2

(1x2y

2(3x21)(1x2)3

-78-当

33x时,y033

当x

33或x时,y033

33x233x2

,故的凸区间,,为y23,为y1x2的凹区间。331x31nxyn

2、(1)xy,其中x0,y0,xy,n1.

22

证:令f(x)x,则f(x)n(n1)x

n

n2

n

因x0,n1,所以f(x)0,即f(x)在(0,)上为严格凸函数,当xy时,从而由(4.13)11nxyn

式当时有xy

222

(2)xlnxylny(xy)ln

n

xy

(x0,y0,xy);21

证:令f(x)xlnx,则f(x)0,(x0)

x

即f(x)在(0,)上为严格凸函数。1xlnxylny(xy)xy时,有ln2222xy即xlnxylny(xy)ln(x0,y0,xy)2xy

(3)2arctanarctanxarctany(x0,y0).

2

当xy时由(4.13)式当证:令f(x)arctanx,则f(x)

2x

022

(1x)

(x0)

即f(x)在(0,)上为严格凹函数。当xy时由(4.14)式当即2arctan

1xyarctanxarctany时有arctan222

xy

arctanxarctany2

3、分析:(1)直接利用凸函数定义证明;(2)构造函数(x)f(x)g(x),再利用凸函数定义证明,前两个小题说明了凸函数具有线性性。(3)利用(1)(2)的结论以及复合函数的性质证明。证:(1)若f为凸函数,则(0,1)及x1,x2,有f(x1(1)x2)f(x1)(1)f(x2)-79-而0,因此f(x1(1)x2)[f(x1)](1)[f(x2)]由定义知f为凸函数(2)记(x)f(x)g(x),(0,1)及x1,x2,由于f,g均为凸函数,故有(x1(1)x2)f(x1(1)x2)g(x1(1)x2)

f(x1(1)f(x2)g(x1)(1)g(x2)f(x1)g(x1)](1)f(x2)g(x2)(x1)(1)(x2)

故(x)为凸函数,即fg为凸函数.

(3)x1,x2I及(0,1),由于f为I上的凸函数,故f(x1(1)x2)f(x1)(1)f(x2)

又由minf(x1),f(x2)f(x1)(1)f(x2)maxf(x1),f(x2)得f(x1)(1)f(x2)I故g为上的凸增函数时有gofx1(1)x2gf(x1)(1)f(x2)gf(x1)(1)f(x2)gf(x1)(1)gf(x2)(gof)(x1)(1)(gof)(x2)

由此知gof为I上的凸函数。4、解:由题意可知:由x2时曲线有水平切线知y(2)0,即y(2)12a4bc0.又(1,10)为其拐点,所以y(1)0.即6a2b0(2)且y(1)10,即abcd10

(3)又曲线y通过(-2,44),即-8a4b2cd44

(4)由(1)(2)(3)(4)可解得:a22,b66,c0,d44

-80-1)(5、证:反证法:假设x1为f(x)在区间I上的另一个极小值点,即x1I,且x1x0,0,

当xU0(x;)时f(x1)f(x),记aminx0,x1,bmaxx0,x1,则f在[a,b]上为严格凸函数。C[a,b],令

bcca

,1,则baba

(0,1),Ca(1)b.

由此得f(C)f(a(1)b)f(a)(1)f(b)maxf(a),f(b),由于C为[a,b]上任意一点,故由上式可得,b的某左邻域或a的某右邻域,使其中任意一点函数值均严格小于f(b)或f(a),这与a,b为极小值点矛盾。6、证:由凸函数定义,设(0,1),x1,x2I,并令F(x)maxf(x),g(x),则有f(x1(1)x2)f(x1)(1)f(x2)F(x1)(1)F(x2)

g(x1(1)x2)g(x1)(1)g(x2)F(x1)(1)F(x2)从而maxf(x1)(1)x2),g(x1)(1)x2)F(x1)(1)F(x2).

F(x1(1)x2)F(x1)(1)F(x2)

因此F(x)为I上凸函数。22

如f(x)x,g(x)(x1),x[0,1],则min{f,g}在[0,1]上不是凸函min{f,g}未必为凸函数,数。§4.61、作出下列函数的图像(1)y解:1

0

x1x2x

的定义域为(,)2

1x

y

1x22x(x42x23)f(x),f(x)(1x2)2(1x2)420

f(x)的零点为x11,x21;f(x)的零点为x10,x23,x33;它们把定义域分成如下区间:-81-(,3),(3,1),(1,0),(0,1),(1,3),(3,)30

f(x),f(x)在各区间的符号如下表所示30 拐点f(x)(-3,-3)4(3,1)10极小值1/2(1,0)00拐点(0,0)(0,1)_10极大值1/2(1,3)30 拐点(3,3)4(3,)x(,3)f(x)f(x)40

函数图像如图所示:(2)yxe

解:1

0

x

yxex的定义域为(-,+)

f(x)(1x)ex,f(x)(x2)ex20

f(x)的零点为x1,f(x)的零点为x2,它们把定义域分成如下区间:(,1),(1,2),(2,)30

f(x),f(x)在各区间的符号如表所示:1

0极大值1/e

(1,2)

20拐点(2,2e)

2

x(,1)f(x)f(x)f(x)40

(2,)



函数图象如图-82-(3)yx6x9x10解:1

0

32

yx36x29x10的定义域为(-,+)

f(x)3x212x9,f(x)6x1220

f(x)的零点为x11,x23;f(x)的零点为x2,它们把定义域分成如下区间:(,3),(3,2),(2,1),(1,)30

f(x),f(x)在各区间的符号如表所示:30极大值-10

(3,2)

20拐点(2,12)

(2,1)

10极小值14

(1,)

x(,3)f(x)f(x)f(x)

(4)yx2arctanx解:1

0

yx2arctanx的定义域为(,),且为奇函数x2122

f(x),f(x)4x(1x)2

1x20f(x)的零点为x11,x21;f(x)的零点为x0,它们把定义域分成如下区间:(,1),(1,0),(0,1),(1,)-83-30f(x),f(x)在各区间的符号如表所示:10极大值(1,0)00拐点(0,0)(0,1)10极小值(1)2(1,)x(,1)f(x)f(x)f(x)2140lim

x

f(x)2

lim(1arctanx)1xxx

x

x

limf(x)xlim(2arctanx)limf(x)xlim(2arctanx)x

x

得渐近线yx,yx50

函数图象如图所示:第五章5.1不定积分概念与基本积分公式1.一曲线通过点(e2,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程。解:设曲线方程yf(x)经过点(x,y),则f(x)1,f(x)lnxC,又因为曲线x通过点(e2,3),代入得C1,则该曲线的方程为f(x)lnx1-84-2.证明:若f(x)dxF(x)C,则f(axb)dx1F(axb)C(a0)a证明:由f(x)dxF(x)C得F(x)f(x)1dF(axb)1dF(axb)d(axb)F(axb)f(axb)adxad(axb)dx故f(axb)dx1aF(axb)C⑴(x3x2x23x2)dx11(x2x32x122x132)dx233x341224x34x23x32xC⑵(x121x)dx(x22xx)dx13343x3x2lnxC⑶x2(5x)3dx(x515x475x3125x2)dx16x63x57512534x43xC⑷(2x3x)2dx(4x26x9x)dx4x26x9x2ln2ln62ln3C⑸55144x2dx21x2dx52arcsinxC⑹x211x23(1x2)dx311x2dx13(111x2)dx13x13arctanxC⑺tan2xdx(sec2x1)dxtanxxC⑻cos2xdxcos2x12dx12(cos2x1)dx14sin2x12xC⑼cos2xcosxsinxdxcos2xsin2xcosxsinxdx(cosxsinx)dxsinxcosxC⑽cos2xcos2xsin2xdxcos2xsin2xcos2xsin2xdx1sin2xdx1cos2xdxcotxtanxC⑾5t32tdt5t9tdt45tdt45tln45C-85-⑿(1x1x)⒁cosxcos2xdx1x1xdx(12sin2x)d(sinx)(21x2)dx2(11x2)dx令sinxu2arcsinxC原式(12u2)duu23u3C⒀(cosxsinx)2dxsinx2sin33xC(1sin2x)dxx12cos2xC5.2换元积分法和分部积分法1.利用分部积分法求下列不定积分:原式=11sin(2x3)dxt1002dt1101设2x3t202tCdx14(1x)pdx2dt若p1原式=sin12dt12costC原式=(1x)1dx12cos(2x3)Cln(x1)C2xex2dxx若p1设x1t设x2tdxdtdx112tdt原式=tpdt1原式=tet11dt1et(x1)p2t2dtp1C1etC1et2C1225exexdx3(2x1)100dx设ext设2x-1tdx1tdtdx12dt原式=111tt1tdtt21dtarctantCarctanexC86622x3dx设2x+3=tdx=12dt22x3dx2t12dt11t22x32ln22Cln2C714x29dx1116(2x32x3)dx1612x3dx1162x3dx令2x3p令2x3qdx12dpdx12dq上式111162pdp62qdq112(lnplnq)C112ln2x32x3C8x32x2dx144x32x2dx设32x2tdt4xdx上式=114tdt14lntC14ln(32x2)C9xsinx2dx令x2tdx112tdtxsinx2dxtsint112tdt1costC1cosx222C10112xdx令1+2xtdx(t1)dt1112xdxt(t1)dt1dt1tdttlntC2x1ln(2x1)C1111cosxdx令x2tdx2dt11cosxdx211cos2tdt212cos2tdtsec2tdttantCtanx2C12dx1sinx令x2tdxdtdtt2d2dx1sinxdt1sin(2t)dt21cos2ttdt2cos2287tant2Ctan(4x2)C13cscxdx

1sinxdx121dxsinxcosx1xxxd222sin2cos21xtanxxd22cos22令tanx2tdt1cos2x2上式=dttlntClntanx2C14x1x2122x1x2dx令1x2tdt2xdx上式=1dt2t122tC1x2C15x4x4dx11x24d1(x2222)令x22t上式=1dt41t214arctantC14arctanx22C16dxxlnx令tlnxxetdxetdtdxxlnx1ttetedtlnlnxCx417(1x5)3dx155x4(1x5)3dx令t(1x5)3令t(1x5)3上式=-115t3dt110t2C110(1x5)2C18x3x82dx14x34x82dx令x4tdt4x3dx上式=1dt4t22182(1t21t2)dt1182t2dt1t2dt1282lntt2C88182lnx42x42C191x(x1)dx(111xx1)dxxdx1x1dxlnxlnx1C20cotxdxcosxsinxdx令sinxtdtcosxdx上式1tdtlntClnsinxC21cos5xdx令sinxtdtcosxdxcos5xdxcos4xcosxdx(1t2)2dt(t42t21)dt15t523t3tC15sin5x23sin3xsinxC221sinxcosxdxcosxsinxcos2xdx1tanxcos2xdx令tanxtdtdxcos2x上式1tdtlntClntanxC232x3x23x8dx令x23x8tdt(2x3)dx2x3x23x8dxdttlnx23x8C24x22(x1)3dx令x1tdxdtx22(t1)22(x1)3dxt3dtt22t31t3dt(t23t2t3)dtlnt23t2t2C=lnx123x12(x1)2C25x2a2x2dx令xasintdxacostdta2原式=sin2tacostacostdta2sin2tdta2(1cos2t)dta2(1cos2t22)dt12a2ta24sin2tC12x2aarcsinaa242sint1sin2tC12a2arcsinxax2aax2C8926x51x2dx原式1x4(2x)dx221x令1x2tdt2xdxt12tdtt1222(1)tdt2(t2)dtt1t1t24t4lnt1Cx4x14ln(x11)C2.利用分部积分法求下列不定积分:1x4上式21x2(2x)dx22(1)xsinxdxx(cosx)dx1(1t)2tdt1t2t12tdtxcosxcosxdx13xcosxsinxC2(t22t1t)dt(2)ln2xdxln2x(x)dx15315t223t2t2Cxln2x2lnxdx1531(1x2)22(1x2)2(122xln2x2(x)lnxdx53x)Cxln2x2(xlnxx)C271x1x2dxxln2x2xlnx2xC令xsintdxcostdt3x2cosxdxx2(sinx)dx上式=costsintcostdtx2sinx2xsinxdx1sintcostcostsint2sintcostdtx2sinx2(xcosxsinx)C12(1costsintsintcost)dtx2sinx2xcosx2sinxC12t121sintcostd(sintcost)(4)excosxdx12t12lnsintcostCcosx(ex)dx12arcsinx12lnx1x2Cexcosxsinxexdx28x11sinxexdx=sinx(ex)dxx11dxsinxex令x1tdx2tdtexcosxdx①②90将①代入②:excosxdxexcosxexsinx2C(5)lnx2dx(x)lnx2dxxlnx22xC6xarctanxdxarctanx(122x)dxx212arctanx2x21x2dxx21x2arctanx2112x21dxx21x2112arctanx2x21dxx22arctanx112x2arctanxC7exsin2xdxex1cos2x2dx12exdxexcos2xdx12ex12excos2xdx11112ex2ex(2sin2x)dx1112ex4exsin2x4exsin2xdx12ex14exsin2x14ex(12cos2x)dx12ex14exsin2x118excos2x8excos2xdx2由12解得:excos2xdx2exsin2xexcos2x5将上式代入1得:exsin2xdx1x2exsin2xexcos2x2e108(arcsinx)2dx(arcsinx)2xdxx(arcsinx)22arcsinxx1x2dxx(arcsinx)22arcsinx(1x2)dxx(arcsinx)22arcsinx1x22dxx(arcsinx)22arcsinx1x22xC9sec3xdxsecx(tanx)dxsecxtanxtan2xsecxdxsecxtanx(sec2x1)secxdxsecxtanxsec3xdxsecxdxsecxtanxsec3xdxlnsecxtanx移项整理得:sec3xdxsecxtanxlnsecxtanx2C10x2a2dx(a0)x2a2xdxxx2a2x2x2a2dx91xx2a2x2a2a2dxx2a2xx2a2x2a2dxa21x2a2dxxx2a2x2a2dxa2xx2a21x2a2xx2axx2a2x2a2dxa21xx2a2)xx2(a2=xx2a2x2a2dxa21du【令uxx2a2u】=xx2a2x2a2dxa2lnuxx2a2x2a2dxa2lnxx2a2移项整理得:x2a2dx112xx2a22a2lnxx2a925.31、求下列不定积分⑴x3x1dxx311x1dx(x1)(x2x1)1x1dx1(x2x1)x1dx13x3122xxlnx1C⑵x2x27x12dxx2(x3)(x4)dx21x4x3dx2lnx4lnx3Cln(x4)2x3C⑷11x3dx1(1x)(x2x1)dx112x31xx2x1dx112x3ln1x613x2x1x2x1dx113ln1x6d(x2x1)1dxx2x12x2x19313ln1x16lnx2x11dx2(x132)241(1x)2326lnx1x2x13arctan3C⑷x21x4dx12111x21x2dx1121x2dx12arctanx1112ln1x22arctanxC⑸2x2(x1)(x21)2dx2x2(x1)(x21)2Ax1BxCDxEx21(x21)22x2A(x21)2(BxC)(x1)(x21)(DxE)(x1)AB0A1BC0B1BCD02AC1BCDE2D2ACE2E0代入得:2x2(x1)(x21)2dx1x1x12xx21(x21)2dxlnx1x12xx21x21dx(x21)2dxlnx1arctanx1x21112(x21)2d(x21)lnx1arctanx11x212lnx21C⑹x2(2x22x1)2dx9414x84(2x22x1)2dx14x2514(2x22x1)2dx2(2x22x1)2dx14d(2x22x1)(2x22x1)2518[2(x1212dx2)4]2.求下列不定积分:1x1⑴xx1dx令x1x1txt21t2

1dx

4t

(t21)2

dt

原式=t214tt21t(t21)2dt4t2

(1t2)(1t2

)

dt2(11

1t21t2

)dt

2ln|1t2|2arctantc2ln|

2x1|2arctanx1x1

c⑵x11x11dx令x1txt2

1

dx2tdt原式t-1

t1

2tdt

2t2tt1dt952(t1)23(t1)2t1dt(t1)26t4ln|t1|c(x11)26x14ln|x11|c(3)11xx21xdx令t1x1t2

1xx

1t2dx

4t

(1t2)

2

dt1t2原式=(1t2)2t4t

(1t2)2

dt-4(t2

1t2

)dt(112

1t1t)dt

[1(1t)221t21

(1t)2]dt

11111t(t1t1)dt1t11tln|t1|ln|t1|11tc2t1tt21ln|1t|c1x211x2xln|x|c

(4)dxsinxtanx令ttanx2t

2则sinx

1t2

cosx1t21t2dx2

1t

2

dt原式=cosx

sinx(1cosx)dx

961-t22tdt

12(1

tt)dt12ln|t|1

4t2c1ln|tanx1x2|4tan222

c5)dx54sinx

令ttanx

2则sinx2t2

1t2,dx1t

2

dt原式=2

5t28t5

dt

215t28t5dt215dtt285t1251(t4dt5)292525t43arctan(3)c6)dx

sin4xcos4x

1(sin2xcos2x)22sin2xcos2xdx1dx112sin22x13dx414cos4x43cos4xdx13cos4xd(4x)97((令t4x则原式=1

cost3dt

令utant12则costu22

1u2,dt1u2du

u2

原式=u22

du

u222u22du(12u22)duu2arctanu2ctan2x2arctan(tan2x2)c第六章6.2牛顿-莱布尼兹公式1.计算下列定积分(1)1x0(3x4)dxexe1ee1202(31112x24x)02(5)20sinxdx(2)2321xdxcosx0234234x313416(6)914(xx)dx(3)e2dxexlnx(23

1

944lnlnxe23

x22x2)4

3eln2(7)4dx0(4)1exex1x02dx令x=txt2dx2tdt9822t1dt2(1)dt原式01t01t2limni1n2[2t2ln(1t)]42ln30211i(1)2nn1在区间[0,1](1x)2这是函数f(x)(8)0x1(x1)f(x)dx其中f(x)x(x1)2上的一个积分和,故原式原式10(x1)dx21xdx21111dx0(1x)21x0211122912(xx)x041422.利用定积分求极限(1)lim(3)limnn111222n2n2n1n2133(12n)nn4333112nlimnnnnni1lim*nni1nn31111lim222nn12n111nnnlimni1n1i1n21n这是函数f(x)x3(x[0,1]),由于f(x)在[0,1]上连续必可积,将[0,1]进行n等分,则xi1在0,1上的积分和21x11

dx原式01x2

这是f(x)1,取n1arctanx04(4)limsinnni,(i1,2,,n)nnn1411原式xdxx040413ii1i1nnsin2(n1)sinnnlimsinni11isinxdx0n(2)limnn11122(nn)2(n1)(n2)1cosx102112n111111(5)limnnlimnnnnn1222n2(1)(1)(1)nnnni1lim1nnni1991031422221xdx(1x)03336.3可积条件f(x)supf(x)f(x)1.证明:若f在区间上有界,则supf(x)infxxx,xf(x),若Mm,则f(x)为常数,等式显然成立。证明:记Msupf(x),minfxx设mM则mf(x)M,x故x,x,有f(x)f(x)Mm,x0,使得f(x0)m0(Mm),由上,下确界的定义知,分别存在x0)M及f(x022,)f(x0))f(x0)即(Mm)f(x0故0(Mm)f(x0f(x)f(x)Mm由上确界定义知supx,xf(x)supf(x)f(x)得supf(x)infxxx,x2.设f在[a,b]上可积,且f(x)0x[a,b],则证明:因为f(x)在[a,b]上可积,且f(x)0f(x)在[a,b]上可积M0,m0,0limni1nMimixi=limni1nMimiMimixilimni1nMimiS(T)s(T)0xi0limT02mf(x)在[a,b]上可积3.设f在[a,b]上可积,且f(x)m00x[a,b],则证明:因为f在[a,b]上可积,且f(x)m0则1在[a,b]上可积f(x)Mm0110S(T)s(T)limxinMmii1inmMilimini1miMinxi1000则limS(T)s(T)0T01在[a,b]上可积f(x)xn存在,则f在[a,b]上4.若有界函数f(x)在[a,b]上不连续点为xn(n1,2,),且limn可积anca,f(x)在[a,b]上的振幅为,证明:不妨设limn0,取0ana,,因为limn2所以存在N,当nN时,ana,b,从而f(x)在a,b上至多只有有限个间断点,则f(x)在a,b上可积,因此,存在a,b上的分割T*,使得则ixiT*2。把a,a与T*合并,就构造[a,b]的一个分割T,ixi0ixiixiTT*22T*(0为f(x)在[a,b]上的振幅)则f在[a,b]上可积5.若F在[a,b]上连续,f在[,]上可积,且af(t)b(t[,]),则F[f(t)]在[,]上可积。证明:因为F在[a,b]上连续,则F在[a,b]上可积,因为f(t)[,],则F[f(t)]在[,]上可积,因为f在[,]上可积,[,][a,b]则F[f(t)]在[,]上可积。6.4定积分的性质1011.设f(x)在[a,b]上可积,g(x)在[a,b]上有定义,且在[a,b]中除有限个点之外都有f(x)g(x),则g(x)在[a,b]上可积,且有f(x)dxg(x)dxaabb证明:设f与g的有限个不同的点记为x1,x2,xn对分割Ti1nng(i)xi(ixi)i1f(i)xinNNf()xf(i)xig(i)xi(ixi)iii1i1i1NT0时,g(xi)xif(xi)xi0i1i1Ng(xi)xif(xi)xii1bNNi1f(x)dxg(x)dxaab2.若f(x)在[a,b]上连续,且f(x)0,但不恒等于0,则f2(x)dx0ab证明:2由f(x)不恒等于0,x0[a,b]使得f(x0)0,从而f(x0)0,由f2(x)连续及连续函数的局部保号性知:x0的某邻域(x0,x0),使得x(x0,x0)有f2(x0)f(x)022由性质4.5知baf(x)dx2x0af(x)dxx02x0x0f(x)dx2bx0f2(x)dx0x0f2(x0)2dxf(x0)023.若f(x)在[a,b]上连续,证明:由推论6.3知baf2(x)dx0,证明f(x)0,x[a,b]至少存在一点[a,b],使得f2(x)dxf2()(ba)0abf2()0102f(x)04.若(t)在[0,a]上连续,f(x)在(,)上二阶可导,且f(x)0。则f1aa0(t)dt1aa0f[(t)]dt证明:由题知:f(x)为凸函数则x1,x2[0,a](0,1)有fx1(1)x2f(x1)(1)f(x2)令x1a10,1a,x20(t)dt则f11aaa0(t)dt1aaf(0)a0(t)dtf1aa0(t)dt1aa0f[(t)]dt5.设函数f(x)与fh(x)f(xh)在[a,b]上可积,则limh0bafh(x)f(x)dx0证明:bf(xh)dxtxhbhbhaahf(t)dtbahf(x)dxbf(x)dxbbbaf(xh)f(x)dxaf(xh)dxaf(x)dxbahbahf(x)dxbhbf(x)dxaf(x)dxahf(x)dx=bhf(x)dxahbaf(x)dx则limbh0afh(x)f(x)dx06.5微积分学基本定理·定积分计算1031.求下列导数dx2sin2tdt=sin22x⑴dxadx22sintdt⑵adx令(u)uasin2dt(ux2)原式=d(u)du*duux2dx*2x=sinu2ux2=2xsin2x2dx31dt⑶dxx21t2x3da112dtdt2adxx1t21tx3dx211dtdtadxa1t21t23x21x62x1x4dcosxsin(t2)dt⑷dxsinxcosxda22sin(t)dtsin(t)dtsinxadxsinxcosxdsin(t2)dtsin(t2)dtsin(sinx)2cosxsin(cosx)2sinxaadx2.设函数f(x)连续,求下列F(x)的导数⑴F(x)bxf(t)dtF(x)dbf(t)dtxdxdxf(t)dtdxbf(t)⑵F(x)lnxaf(x)dxF(x)dlnxdxaf(x)dx1xf(lnx)x2⑶F(x)0sintdt1a1t2dtdx2F(x)0sintdt1dxa1t2dtsin2t1xsin220tdt⑷F(x)cosx2sinxf(t)dtF(x)dacosx2dxsinxf(t)dtaf(t)dtf(sinx)cosx2xsinx2f(cosx2)

3.求下列极限x2⑴lim0costdtx0x由洛比达法则知xcost2dt原式=lim0x0x=limx0cosx21x2⑵limx01t20cosxedtx⑶lim0(arctant)2dtx1x2lim(arctanx)22xx21x2-105-xt220dt⑷limexx0e2t2dtex22lim2x0etdtxe2x2x2lim20etdtxex2lim2ex2x2xex20第七章7.1-106-1.(1)1313n11(3n2)(3n1)11()3n23n111()3n23(n1)2

n1n11(1313n213n2n21)3n21则该级数收敛,其和为311(2)(nn)3n12111111sn()(22)...(nn)232323111111(2...n)(2...n)2223331111(1n)(1n)1113322(1n)(1n)11223112333limsn则原级数收敛,其和为n22-107-(3)12n11n(n2)11()nn2n111(12234n31nn31)n3则原级数收敛,其和为4(4)(n1n22n22n2(2n1n1n)n1n1n2n12n3n)1n3nn31则原级数收敛,其和为1-2-108-12.(1)对nN,取pn,Un4n1111n1Un1...Unp(...).4n12n42n811,则发散8n14n11(2)因为lim0所以该级数发散n1ne(1)n(3)因为limnsinnnsin=limnn=0所以该级数发散1nnn13.(uv)不一定是发散的 如:u(1),v(1)nnnn(unvn)0是收敛的12unvnn,(unvn)n是发散的11unvn不一定是发散的,如:unvnn,unvnn2是收敛的nn12n1u(1),v(1),uv(-1)是发散的nnnn-109-11

4.(1)sn1...n

(1x)(1x)11(1)1xn

(1x)(1x)n



1x1

(1x)

1x

当1x0,即x1时,limsn

nx

(2)snlnx...(lnx)nlnx(1(lnx)n)

1lnx

lnx

当0lnx1,即1xe时,limsn

n1lnx5.sn(a1a2)(a2a3)...(anan1)a1an1limanliman1a

nn

n

limsnlim(a1an1)a1a

n

6.(1)sn(b2b1)(b3b2)...(bn1bn)bn1b1limsnlim(bn1b1)

n

n

111111

(2)sn()...()

b1b2bnbn1b1bn1111

limsnlim()nnbbn1b11

-110-11

7.(1)an,liman0,a1

an1na

11

原式()

ann1an1111

()a1

an1an1an

n12n1n1nn1(2)(1)(1)n(n1)n(n1)n11n11(1)(1)nn1n1n11(1)(1)nn1n1n11(1)(1)nn1nbn,limbnnn

(1)

111

原式()1

bn1b1n1bn

2n111

(3)2222

(n1)(n1)(n1)1(n1)1bnn21,limbn,b12

n

1111

原式()

bn1b12n1bn

-111-8.(1)un1...unp111np1..(1)n1n2np111np1..(1)n1n2np11111np1(...(1))n1n2n3n4np11n1n1n10,取N,当n>N及pun1...unp,级数收敛-112-(2)un1...unp

cos(n1)xcos(n2)x

...

n1

cos(np)xcos(np1)x

np

cos(n1)xcos(n2)x...cos(np)xcos(np1)x

n1

cos(n1)xcos(np1)x

n1

2n12n1

2

0,取N,当nN及p时

un1...unp级数收敛(3)un1...unp|sin(nk)x|nk

2k1

nk2k11limn0n2

0,NN当nN及p时

1

un1...unpn2p

sin(nk)x=nk

2k1

p



p

1

1p11

nkn2k122

-113-1

9.如级数

n11lim(nn1...np

)lim11nn1...limnnp0但1n

发散第十题略

7.21.(1)原式

1

2n1

11

2n12n

正项级数11

2n发散,故2n1

发散-114-1n

(2)原式=

1n2

1n

2

1nlimlim1n2n1nn

1n因为级数1n发散,故发散2

1n

2sin(3)lim

n

n

3n

2n()3

2nn

因为级数()收敛,故级数2sinn收敛33(4)lnnqnene2

11

nn

(lnn)2

11

因为级数n收敛,故级数收敛n

2n2(lnn)

q

11

(5)n

n

1aa

11当a>1时,因为级数n收敛,故级数收敛n

a1a

-115-1n1nn(6)limlimn1nn1nn11因为级数发散,故级数n发散nnnaa2axax2(7)limlimnx01x2n22xxxx(lna)aaalnaalnalimlimx0x02x2(lna)2111nn因为级数2收敛,故级数aa2收敛n1n1n3n

2.(1)原式=

n2n

3313limlimn1nnn2n2n2

3n

则级数发散n

n2

nn-116-(n1)2n2(2)lim3n1(n1)31nn2limnn23n133n故级数n23n收敛n1

n

(3)lim

2

(n1)!

nn

n

nn1n1

2nn!limn2n1

2

e

1n

故级数2n!

n

n收敛(n1)tan

4)lim

2n2

lim(n1)2n1

n

ntan

n2n2n2

n1

limn1n2n1

2故级数ntan

2

n1

收敛-117-(n(5)limnnn2n1limn1n2n12n

故级数n2n1收敛

(6)nlnn1n1

lnn11

lnn11lnn11ne1

1

lnn11lnn11ne1

故级数

1lnn1n

发散

21

n

2n1(7)limnnnlimn

3n1n

31n

1

9

12n1

故级数n

3n1

收敛

-118-bbb(8)limnnlimn

nnaaabb

故当b>a时n发散,b3.当x1时,级数nxn1n,故级数发散n当0x1时,limnxlimxnx1,故级数收敛nnxn(n1)x(n1)xx当x1时,limlimlimxx1n1nnnnxnn故原级数发散nn1nun1vn1un1un4.当n>N0时,从而unvnvn1vn...uN01vN01un1uN01vN01vn1改变有限项并不改变级数的敛散性由比较原则知:若级数vn收敛,则级数un也收敛;若级数un发散,则级数vn也发散-119-125.anbnanbn2,an2收敛,bn2收敛212故anbn2收敛,由比较原则知anbn收敛2a2nbna2n2anbnb2na2n2anbnb2n故级数a2nbn收敛0an11na21nn2ann21n2,a2n收敛故121an2ann2收敛,即n收敛6.unun11

2

unun11

2

unun1收敛,故unun1收敛-120-因为7.()1un1n1an!un1!aannn1limun1annu0,nn!收敛limannn!0n122)un1n!u=n1n1!2nnnnn1(n1)n!n!n1!n1!nnn1n1n1nlimun1nu0,nnnn!2收敛limnnnn!2=0-121-即(8.(1)f(x)1

x21,f(x)在(1,)上非负递减

故1

n21与1f(x)有相同的敛散性



11x21dx4故原级数收敛

(3)f(x)

1

xlnxln(lnx)

f'

(x)lnxln(lnx)ln(lnx)1xlnxln(lnx)2

0(x3)f(x)在3,非负递减

故原级数与

3f(x)有相同的敛散性

13

xlnxln(lnx)dx

13ln(lnx)

dln(lnx)令uln(lnx),3udu发散

故原级数发散

-122-x1x2

(2)f(x)2,f'(x)0(x1)2

x1x21f(x)在1,+上非负递减x

limx21xx1

x

12dx发散x1

故原级数发散(4)f(x)=f'(x)

1x(lnx)lnlnxp

q

q

q

q1

(lnx)plnlnxp(lnx)p1lnlnxq(lnx)p1lnlnxp

q

2

x(lnx)lnlnx

故f(x)在3,+上非负递减1)当p=1时

1dud(lnlnx)

3dx3ln(ln3)q

qq

uxlnxlnlnxlnlnx当q1收敛,q1时发散

1d(lnlnx)

2)p1,3dx3qqpp1

x(lnx)lnlnx(lnx)lnlnxdue(p1)uq

注意到,当p-1>0时,对任意的q,取t>1,有

1t

limu(p1)uq0ueu

从而积分收敛,进而原级数收敛

ln(ln3)

当p-1<0时,因为

(p1)ue

limut(p1)uqlimutquueuu

所以此时积分发散,进而原级数发散

1

-123-9略

ln110.(1)nlnx

lnnlnx1

故nlnx

发散2)略11略

12略

7.31.(1)lim(1)n1

n1

nn10

故原级数发散

(1)n1(2)1n

n因为1

n

发散,故原级数发散-124-(ncos2n(3)

3nn22n

limnn1n1n2nlimn2n2

故n

2

n收敛,则原级数绝对收敛

4)2n-1>n

(1)n1(2n1)2

1

n

21(1)n1n2收敛,故(2n1)2

绝对收敛sin25)limn

n21

n2n发散,故sin2

n发散

sin2n单调递减,limsin2nn=0

(1)n

sin2n

收敛-125-(因为(因为ln(n1)1

(n2)n1n11nln(n1)因为发散,故(1)发散,即不是绝对收敛(6)un

n1n1记f(x)=ln(x1)x1,f'(x)1ln(x1)

(x1)2

0(x2)所以x2时,f(x)单调递减函数limxf(x)=limln(x1)1

xx1=limxx1

0所以un(n2)为单调递减函数,且un0n由莱布尼茨判别法可得原级数条件收敛n(7)u2n100n3n1limn2n1002nun3n13故原级数绝对收敛n

8)un!x

nn

un

limn1xnuxn

n

n1e当xe时,原级数绝对收敛;

当xe时,un1un...u1>0,从而原级数发散

-126-((9)原式(1)n11na2(n1)limn11nna2(n1)a2当a1时,原级数绝对收敛当a1时,原级数条件收敛当a1时,原级数发散()f(x)=1ax

2.1a

x

(a0)则0f(x)1,又有f'(x)

axlna

(1ax)2当0a1时,f'(x)0当a1,时f'(x)0

故f(x)单调有界,即数列xn

x单调有界1n

(1)n

又因为n

收敛,由阿贝尔判别法知原级数收敛-127-(2)1

n

单调且lim1nn0

n

(1)k

cos2

n

kx(1)k

1cos2kx

k1k12nn

(1)k1cosk(2x)k1

2k12n

(1)k

cos2

kx1k1

2nn

(1)k

1

cosk(2x)

kk1

n

n

12

(1)

k

k(2x)

k1

cosk1

11122

sin2x2

(1)ncos2nx部分和有界,所以原级数收敛3.由比较原则的极限形式可知,bn收敛

第八章8.1-128-即8.1函数列的一致收敛性1.(1).limfn(x)limxenxn

n

0

令h(x)xenx

enx,h'(x)e2nx(1nx)

当0x11

n,h'(x)0;当nx1,h'(x)0

h(x)在x1e1n处取得最大值,Sup|xenx

x[0,1]0|

n

limn

Supx[0,1]|fn(x)0|0

函数列一致收敛(2).limnfn(x)lim

nnenxlim1nxenx

0

Supx[0,1]|fn(x)0|Supx[0,1]nenxn

limn

Supx[0,1]|fn(x)0|

函数列不一致收敛3).略

(4).x0,limfxnn(x)0;x0,limnfn(x)limnn0fn(x)0(i)D[0,)01,对NN*,nN,x02n,|fn(x)0|20{fn(x)}不一致收敛ii)D[0,1000]|fx)0||x10001000n(n|nn对0,N[1000],当nN,对x[0,1000]都有|fn(x)|{fn(x)}一致收敛2.证明:对0,NN*,当nN,|an0|an对nN*,|fn(x)f(x)|an(xD)

对0,NN*,当nN,对一切xD,|fn(x)f(x)|an即{fn(x)}在D上一致收敛

-129-((2xnxn1,f'n(x)xnxn(xn)21limfn(x)1,limf'n(x)lim0nnn2(nx)xbbb|fn(x)1|||||nxnbnnn11|f'n(x)0|n(xn)2nb1对0,Nmax{[],[]},当nN,对x[0,b],有|fn(x)1|,|f'n(x)0|3.().(i)fn(x)=1{fn(x)},{f'n(x)}一致收敛(ii){fn(x)}满足定理8.4,8.5,8.6的条件,那么结论也成立xn(2).(i)fn(x)xnxn11limfn(x)x,|fn(x)x|nnnn1对0,N[],当nN,对x[0,1],|fn(x)x|{fn(x)}一致收敛f'n(x)1xn1limf'n(x)f'(x){n0,x11,x[0,1)|f'n(x)f'(x)|{n1x0,x1,x[0,1)1111取x1[0,1),则|fn'(1)f'(1)|(1)n1nnnn111lim|f'n(1)f'(1)|nnne1111对0=,NN*,当nN,|f'n(1)f'(1)|3enn3e{f'n(x)}不一致收敛(ii){fn(x)}满足8.4,8.5的条件,那么结论也成立;而{f'n(x)}不一致收敛,则定理8.6不成立4.证明:假设{fn(x)}一致收敛于连续函数f(x)则0,NN*,当nN,x[a,b],|fn(x)f(x)|对上述,0,当|xx0|,|f(x)f(x0)

3

3

|fn(x)fn(x0)||fn(x)f(x)||f(x)f(x0)||f(x0)fn(x0)|{fn(x)}中每个函数在(a,b)上都连续,与已知矛盾

-130-111.()1(1)n

的部分和有界,{

xn}对x[0,],xn

随n的增大而单调lim1nxn0,limnSup11x(0,)|xn|0,xn

0

由狄利克雷判别法知(1)n

n

一致收敛n1x(2).1+n4

x4

2n2

x2

,|x211+n4x4|

2n2

1

x2

2n2收敛,由M判别法44

一致收敛n11+nx

(3).|cosnxn5x2|1n5x21

n

2

1

cosnxn2收敛,由M判别法一致收敛n1n5x2n

(4).sinkx1,{sinx}对x[0,),随n的增大而减小k1

sinxnx2

limsinxnnx0,limnSupsinxsinxx(0,)|nx0|0,nx0

由狄利克雷判别法知sinxsinnxn1

nx一致收敛x2ex(1exn)x2ex

(5).Sn1ex,limnSn1ex

x2exx2e(n1)xe(n1)

SupxD|Sn1ex|SupxD|1ex|

1e1

x2limnSup|Sex

xDn1ex

|0

x2enx一致收敛

n1

(6).(1)n1

的部分和有界,{x2(1x2)n}对x[0,),随n的增大而减小

limx2n(1x2)n0,limnSupx2x(,)|(1x2)n|0

x2(1)n1由狄利克雷判别法知n1

(1x2)n

一致收敛

2.证明:设un(x)的部分和函数列为{Sn(x)S(x)|n1

M0,对xD,|g(x)|M

n

n

|g(x)uk(x)g(x)S(x)||g(x)||uk(x)S(x)||g(x)||Sn(x)S(x)|Mk1

k1

g(x)un(x)一致收敛

n1

-131-3.证明:对0,NN*,当nN,对pN*|vn1(x)vn2(x)...vnp(x)||un1(x)...unp(x)||un1(x)|...|unp(x)|vn1(x)...vnp(x)|vn1(x)vn2(x)...vnp(x)|un(x)一致收敛cosnx11cosnx|3,3一致收敛,则一致收敛且每一项都在R上连续,那么必可积.nnnnn2n2

xxcosntxcosntsinnxS(t)dtdtdt000nn2nn1nnn1n1n(2)略4.().|15.

nn661



enxn3x3n2x3(ln2)3n2

661nn

收敛,则在[ln2,ln3]上一致收敛,且每一项在[ln2,ln3]上连续,则必可积(ln2)3n2enx

enx

ln3

ln2

nedt

nt

n1

n1

ln3

ln2

nedt(

nt

n1

111)2n3n2

6.略

sinnx11sinnx

7.证明:|3|3,3收敛,则3一致收敛

nnnnsinnx

且每一项3在[,]上连续,则和函数也连续.

n

cosnx11

|u'n(x)|||,收敛,则u'(x)一致收敛,且每一项u'n(x)在[,]连续222

nnn

cosnx

则f'(x)(u'n(x))'u'n(x)2

nn1n1n1由定理8.2知f'(x)连续

8.证明:().对每一个确定的x1(0,+),un(x)nenxlimnnenxex1,则un(x)收敛

nn0111

0,NN*,总存在n0N,p0n0,x0,|(n01)e(n01)x0...(n0p)e(n0p)x0|(n..0p)x

e2n0e不一致收敛

9.vn(x)enx,对于固定的n来说,vn(x)

11

单调,|v(x)|1nnx0ee

由阿贝尔判别法知anenx在[0,)上一致收敛

n1

-132-第九章9.19.1节课后习题答案(1)令ann1

则lim

an1

1故收敛半径为1nan

当X=1时,n

1n1发散,故收敛域为(-1,1)当X=1时,n1发散11na,所以,故收敛半径为R=2limn

nn2n2

1n1当X=2时,2收敛当X=-2时1收敛。故收敛域为2,22nn

(2)令an

(3)令an

n1

n2

则lim

an1

1故收敛半径为1nan

X=-1时当X=1时

1n收敛n2

1n2收敛,故收敛域为1,1则-1a1

则limn11故收敛半径为1nnan

当X=0时

1n收敛n

n

当X=2时

1

发散,故收敛域为0,2n

故收敛半径为a3n2(5)令an则limn13nann则-1

3

11即-42

n

43n21242

当X=-时,收敛X=-时发散,故收敛域为,

3n3333x2x2n

(6)n!nn!nn



n

令ann!1nn因为该级数为差项级数故an1x2n1x2lim1故exe故R=e2nnanxe-133-e

X=e时,n!发散故收敛域为e,en

2(1)令ann

n

lim

an1

1R=1X=1时发散,故x1,1nan

n1

令fx

nx

n1n1

n

xnx

n1

xgx

g(x)nxn1

n1

x1,1x1,1

x

0

gtxn

x

1x2

x1x

所以g(x)

11x2故fxx1,1x2n3

12n3x21,则R=1(2)因为幂级数为差项级数,故lim2n1nnx12n1

n1

当=1时,幂级数收敛,故x1,1

x2n1'2n2

令fx1则fx1xx

2n1n0n0n0

n

n

n

1

1x2

x1,1故fx

n

x

0

f'tdt

1

dtarctanx01t2

x

x1,1x2n1

1arctanx

2n1n0

(3)因为x1,1n1x2n2幂级数为差项级数,故lim

n

nx

2n

x21故R=1

当x1时幂级数发散,故x1,1fxnx

n1

2n

xx

2nx2n1gx2n12

(gx2nx

n1

2n1

)

x1,1x1,1又

gtdtx

0

n1

x

2n

x2

1x2

gx

2x

1x

22

xx2

故fxgx

21x2

2

x1,1nx

2n

x2

1x22

x1,1-134-3(反证法)假设fx

ax

nn0

n

fx为奇函数若ax

n

n

有偶数幂,fxa2kxa2k1x2k1

2k

k0

k0

xR,R则xR,Rfxfx0

即fxfx2

2k

ax2k0k0

由X的任意性可知a2k0

故仅出现奇次幂,证毕。9.21、(1)

ln1x1n0

n1

xn

n

n1

x1,12n1nn

xx

ln1xln1x11nn

n0

n0

故收敛域1,1x1,1(2)fxax

lnaxnfn0nlnan

fxf0f0xf0xx1lnaxx

n!n!n!n0

n

n

'

\"

2

令an

n

lna

n!

则lim

an1lna

lim0

nann1n

R

故收敛域为,(3)

1x1313532n1nn1

1x2x31x

224246242n1x

n

2n1!!x2nx21341356132n12nn

1xx1x1224246242n2n!!n01x2

1

-135-

x1x2

1n0

n

2n1!!x2n1

2n!!

则1n12n1!!x2n32n2!!limn1n2n1!!x2n12n!!x121x12x1时收敛,故收敛域为1,1242n22112x2x2xn2xn2x11(4)cosx1cos2x1112n!2n!2222!4!2!2

n

12x2n

n02n!21n1

2x2n2

2

lim2n2!2

xn

2n1n2x2n12n201故R收敛域为,2n!2

(5)略(6)ln1x



1nxn1

x1,1n0

n1

fx1xln1x1x1nnnxn1n0

n11n11n2

n0

n1xn0

n1

x

n1

x11

xn1

故收敛域为1,1n1

nn1x

7)e

xn

(x,1

1xn

x1,1n0n!

xn0

ex1xxnn11n1n

n0n!xn011n02!n!xn0k1k!xx1,1故收敛域为1,1n

(8)e

x



1xn

x,n0

n!n1xex

n

11111n

11n1n

n!n1!

x1xnn2n!x,故收敛域为,-136-2(11x1

)1x11nx1nx0,2n0

故1x1nx1n收敛域为0,2n0

n1(2)lnx1x1n收敛域为0,2n1n3sinxsinx44sin

x4cos4cos

x4sin

42n1

23

2sinx4cos

x42x1n4

nx2nn02n1!1n02n!

(1)构造幂级数xn

4n

x,n02n!

xn

n

2令fx2x2xe2

nx,n02n!n0

n!

1n

1

1

nf1e2

n0

2n!

1n

1

1

ne2

n0

2n!(2)令xn

n1

an

1lim

an11

n03

3n1

na

R3n3

xn11n

x3,3n0

3n1

33x

n03

=1113

1n

1x3x

n0

3n1

13114

3

-137-(1)ln1



11111233xx2x3xx

111121limxx2ln1limxx3x2x23x3xnxx1111

limxxn23xx2

(2)arcsinxx

13

xx36

sinxxx11xxx3x3x3x3xarcsinx16lim6limlimx0x0x0x3x3x3x3x36第10章1略2(1)Tnx是以2为周期的光滑函数,故可展开为Fourer级数a0ambm

1

1

TxdxA

n

0

Am0

mnmnmnmn

Txcosmxdx{

n

1



Bm

Tnxsinmxdx{0

a0A0

Tnx的Foure为TnxamcosmxbmsinmxAkcoskxBksinkx

2m12k1

故Fourer级数为本身3因为n0,1,2时am

01

fxcosnxdx



1

0

fxcosnxdx

fxcosnxdx0n01

其中所以fxcosnxdxftcosntdt1fxcosnxdx0an

11

0

n1

1fxcosnxdx

从而a2n0同理可求-138-bn

1

1

0

n1

1fxsinnxdx

n1,2故b2n0

因此fx在,内傅里叶级数的特点是a00,a2nb2n0n1,2·因为n0,1,2时bn

1

1

fxsinnxdxfxsinnxdxfxsinnxdxfxsinnxdx

0

0

0

1

1

0

1



0

ftsintdt

1



0

fxsinnxdx

11fxsinnxdx1

n

0

所以b2n10同理可得a2n10n1,2即因此fx在,内傅里叶级数的特点是a2n1b2n10n1,24图略fx{xx0xx0

a0



1

0

xdx



1

0

xdxan

102n

xcosnxdx0xcosxdx211

n

10

bnxsinnxdxxsinxdx0021n1

cosnx所以在,内fx22n1n



5令a0fxancosnxbnsinx2n1则an

fxcosnx

1

1sinnx1'fxfxsinnxdxnn

1cosnx'1\"

fxfxcosnxdxnnn

因为f

\"

x在,上连续,所以M0stx,都有f'x,f\"xM

'

f\"xcosnxdx2M因为cosnxf'x2fx2M

所以an

AA

(A是某常数)同理bnn2n2

2A

n2

对于n,x,有ancosnxbnsinnxanbn

-139-因为2A

n2收敛,由M判别法可知fx的傅里叶级数在,上必一致收敛6a020sinxdx4余弦级数a210sinxcosxdx0a1n0sinxcosxdx{041nn21x2

1sin4

nm21

cos2nx

m14正弦级数a00bn

1

sinxsinxdx2



0

sinnxsinxdx

7a2

2x202x

0dx2x2

00余弦级数a202xcosnxdx121nnsinnx0nxsinxncosnx

0

4{n20

fx

4

1

2

x

cos2n1xn12n1

正弦级数b1

10

1

nfxsinnxdxx2sinnxdx2x

sinnxdx

fx

bnsinnx

n1

8余弦级数a2a2a0a0fxdx2

2a

a0xdxaaaxdx

2

a2aa0fxcosnnaxdxbn0fxa0n2ancosxn1a

正弦级数b1anfxbnnaafxsinaxdx

nsin

n1a

x-140-

因篇幅问题不能全部显示,请点此查看更多更全内容