您的当前位置:首页正文

不定积分表

2023-07-05 来源:易榕旅网


常 用 积 分 公 式

(一)含有axb的积分(a0) 1.

dx1=axbalnaxbC

2.(axb)dx=

1(axb)1C(1)

a(1)3.

x1dx(axbblnaxb)C =axba2x211dx=3(axb)22b(axb)b2lnaxbC 4.axba25.

dx1axb=x(axb)blnxC

6.

dx1aaxb=lnC 22x(axb)bxbx7.

1bx(lnaxb)C dx=(axb)2a2axb1b2x2)C 8.dx=3(axb2blnaxbaaxb(axb)29.

dx11axb=lnC

x(axb)2b(axb)b2x(二)含有axb的积分

23(axb)C 3a2(3ax2b)(axb)3C 11.xaxbdx=215a22(15a2x212abx8b2)(axb)3C 12.xaxbdx=3105a10.

axbdx=13.

2xdx=2(ax2b)axbC

3aaxb

14.

2x2(3a2x24abx8b2)axbC dx=315aaxbdx15.=xaxb16.

1lnbaxbbC(b0)axbb

2axbarctanC(b0)bbx2dxaxbadx= bx2bxaxbaxb17.

dxaxb dx=2axbbxxaxb18.

axbaxbadx= dxx2x2xaxb22(三)含有xa的积分 19.

dx1xarctanC =x2a2aa20.

x2n3dxdx=(x2a2)n2(n1)a2(x2a2)n12(n1)a2(x2a2)n1

21.

dx1xa=lnC

x2a22axa2(四)含有axb(a0)的积分

1arctandxab22.2=axb1ln2ab23.

axCb(b0)

axbC(b0)axbx12dxlnaxbC =ax2b2a

.x224axbdx=xbdx2aaax2b 25.dx1x2x(ax2b)=

2blnax2bC 26.

dx1adx2(ax2b)=bxxbax2b

27.dxaax2b1x3(ax2b)=2b2lnx22bx2C 28.

dxx(ax2b)2=2b(ax2b)1dx2bax2b

(五)含有ax2bxc(a0)的积分

22ax2arctanb29.dx4acb4acb2Cax2bxc=12axbb2ln4acCb24ac2axbb24ac30.

x12bdxax2bxcdx=2alnaxbxc2aax2bxc(六)含有x2a2(a0)的积分 31.

dxxx2a2=arshC1=ln(xx2a2a)C 32.

dxx(x2a2)3=a2x2a2C

33.

xx2a2dx=x2a2C

34.

x1(x2a2=)3dxx2a2C

(b24ac)(b24ac)

35.

x2a22xaln(xx2a2)C dx=22x2a2x236.

x2(x2a2)3dx=xx2a2ln(xx2a2)C

1x2a2aC 37.=ln22axxxadx38.

x2x2a2=C 222axxadx2239.

x2a22xaln(xx2a2)C xadx=22x342222223(2x5a)xaaln(xx2a2)C (xa)dx=88122(x2a2)3C 41.xxadx=340.42.x2xa42222xadx=(2xa)xaln(xx2a2)C

882243.

x2a2ax2a222C dx=xaalnxx44.

x2a2x2a2dx=ln(xx2a2)C 2xx(七)含有x2a2(a0)的积分 45.

dxx2a2=

xxarchC1=lnxx2a2C xa=46.

dx(xa)xx2a2223xa2xa22C

47.

dx=x2a2C

48.

x(xa)x2223dx=1xa22C

49.

x2a22xalnxx2a2C dx=22x2a2x2(x2a2)3dx=50.

xx2a2lnxx2a2C

51.

xx2dxx2a2dx=1aarccosC ax52.

x2a2=C 222axxa2253.

x2a22xalnxx2a2C xadx=22x34222222223(2x5a)xaalnxxaC (xa)dx=88122(x2a2)3C 55.xxadx=354.56.x2xa42222xadx=(2xa)xalnxx2a2C

882257.

ax2a2dx=x2a2aarccosC

xxx2a2x2a222=dxlnxxaC 2xx58.

(八)含有a2x2(a0)的积分 59.

dxa2x2=arcsinxC a60.

dx(ax)223=xa2ax22C

61.

xa2x2dx=a2x2C

1ax2262.

x(ax)x2223dx=C

63.

x2a2x2axarcsinC dx=22aa2x2x2(a2x2)3dx=64.

xa2x2arcsinxC a1aa2x2C 65.=ln22axxaxdx66.

x2a2x2=C 222axaxdx2267.

x2a2x2axarcsinC axdx=22ax34x2222223(5a2x)axaarcsinC (ax)dx=88a122(a2x2)3C 69.xaxdx=368.70.x2xa4x2222axdx=(2xa)axarcsinC

88a2271.

aa2x2a2x222C dx=axalnxx72.

a2x2a2x2x=dxarcsinC 2xxa(九)含有ax2bxc(a0)的积分 73.

dxax2bxc=1ln2axb2aax2bxcC a

74.

ax2bxcdx=2axbax2bxc 4a

xax2bxc24acb8a32ln2axb2aaxbxc C75.

dx=1ax2bxc a

dxcbxax22b2a3ln2axb2a2axbxc C76.

=12axbarcsinC

2ab4ac77.

2axbb24ac2axb2cbxaxdx=cbxaxarcsinC

324a8ab4acxcbxax2dx=1b2axbcbxax2arcsinC

32a2ab4ac78.

(十)含有xa或(xa)(bx)的积分 xbxb)C

79.

xaxadx=(xb)(ba)ln(xaxbxb80.

xaxaxadx=(xb)(ba)arcsinC bxbxbxdxxa=2arcsinCbx(xa)(bx)(ab)

81.

82.

2xab(ba)2xa(xa)(bx)dx=(xa)(bx)arcsinC

44bx (ab) (十一)含有三角函数的积分 83.sinxdx=cosxC

84.cosxdx=sinxC 85.tanxdx=lncosxC 86.cotxdx=lnsinxC 87.secxdx=lntan(x)C=lnsecxtanxC 4288.cscxdx=lntanxC=lncscxcotxC 289.secxdx=tanxC 90.cscxdx=cotxC 91.secxtanxdx=secxC 92.cscxcotxdx=cscxC

22x1sin2xC 24x1294.cosxdx=sin2xC

241n1n1n2nsinxdx 95.sinxdx=sinxcosxnn1n1n1n2ncosxdx 96.cosxdx=cosxsinxnndx1cosxn2dx97.=

sinnxn1sinn1xn1sinn2xdx1sinxn2dx98.= nn1n2cosxn1cosxn1cosx1m1m2nmncosm1xsinn1xcosxsinxdx 99.cosxsinxdx=

mnmn1n1cosm1xsinn1xcosmxsinn2xdx =mnmn93.sinxdx=

2100.sinaxcosbxdx=11cos(ab)xcos(ab)xC

2(ab)2(ab)

101.sinaxsinbxdx=11sin(ab)xsin(ab)xC

2(ab)2(ab)102.cosaxcosbxdx=

11sin(ab)xsin(ab)xC

2(ab)2(ab)atanxb2C22ab103.

2dx=absinxa2b2arctan(a2b2)

x22bbadx12104.=lnC22xabsinxbaatanbb2a22atan105.

(a2b2)

dx2ababx=arctan(tan)Cabcosxababab2(a2b2)

xdx1ab2106.=lnabcosxabbaxtan2tan107.

abbaCabba(a2b2)

dx1barctan(tanx)C =a2cos2xb2sin2xabadx1btanxa=lna2cos2xb2sin2x2abbtanxaC

108.

11sinaxxcosaxC a2a12222110.xsinaxdx=xcosax2xsinax3cosaxC

aaa11111.xcosaxdx=2cosaxxsinaxC

aa12222112.xcosaxdx=xsinax2xcosax3sinaxC

aaa(十二)含有反三角函数的积分(其中a0)

xx22113.arcsindx=xarcsinaxC

aa109.xsinaxdx=

xx2a2xx2ax2C 114.xarcsindx=()arcsina24a4xx3x12222115.xarcsindx=arcsin(x2a)axC

a3a92116.arccosdx=xarccosxaxa2x2C axx2a2xx2ax2C 117.xarccosdx=()arccosa24a4xx3x12222118.xarccosdx=arccos(x2a)axC

a3a92xxadxxarctanln(a2x2)C =aa2x12xa2120.xarctandx=(ax)arctanxC

a2a2119.arctanxx3xa2a3ln(a2x2)C 121.xarctandx=arctanxa3a662(十三)含有指数函数的积分

1xaC lna1axax123.edx=eC

a1axax124.xedx=2(ax1)eC

a1naxnn1axnax125.xedx=xexedx

aa122.adx=

x126.xadx=

nxxxx1aaxC 2lna(lna)1nxnn1xxaxadx lnalna1axeax(asinbxbcosbx)C 128.esinbxdx=22ab1axaxe(bsinbxacosbx)C 129.ecosbxdx=22ab127.xadx=

130.esinbxdx=

axn1eaxsinn1bx(asinbxnbcosbx) 222abnn(n1)b2axn2esinbxdx 2ab2n2131.ecosbxdx=

axn1axn1ecosbx(acosbxnbsinbx) 222abnn(n1)b2axn2ecosbxdx 222abn(十四)含有对数函数的积分 132.lnxdx=xlnxxC

dxxlnx=lnlnxC

1n11nx(lnx)C 134.xlnxdx=

n1n1133.

135.(lnx)dx=x(lnx)n(lnx)136.x(lnx)dx=

nnn1dx

mn1nmn1xm1(lnx)nx(lnx)dx m1m1(十五)含有双曲函数的积分 137.shxdx=chxC 138.chxdx=shxC 139.thxdx=lnchxC

x1sh2xC 24x12141.chxdx=sh2xC

24140.shxdx=2(十六)定积分 142.143.

cosnxdx=sinnxdx=0

cosmxsinnxdx=0

144.

0,mncosmxcosnxdx= ,mn

0,mn145.sinmxsinnxdx=

,mn0,mn146.sinmxsinnxdx=cosmxcosnxdx=

00,mn2147. In= In=

20sinxdx=cosnxdx

n20n1In2 nn1n342 (n为大于1的正奇数) In,I1=1 nn253n1n331In(n为正偶数),I0=

nn24222

因篇幅问题不能全部显示,请点此查看更多更全内容