您的当前位置:首页正文

指数分布定义

2023-07-03 来源:易榕旅网
指数分布 1简介 概率密度函数 公式 其中λ > 0是分布的一个参数,常被称为率参数(rate parameter)。即每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ Exponential(λ)。 累积分布函数 [1]

数学期望和方差 期望值:

比方说:如果你平均每个小时接到2次电话,那么你预期等待每一次电话的时间是半个小时。

方差:

2记号

若随机变量x服从参数为λ的指数分布,则记为 X~ e(λ).

3特性

无记忆性

指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布

当s,t≥0时有P(T>s+t|T>t)=P(T>s)

分位数

率参数λ的四分位数函数(Quartile function)是: F^-1(P;λ)= -LN(1-P)\\λ 第一四分位数:ln(4/3)\\λ 中位数: ln(2)\\λ 第三四分位数:ln(4)/λ

4分布

在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。

指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。

5应用

在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果。这种分布表现为均值越小,分布偏斜的越厉害。

指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。但是,由于指数分布具有缺乏“记忆”的特性.因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同,显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。

指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。

指数分布比幂分布趋近0的速度慢很多,所以有一条很长的尾巴。指数分布很多时候被认为是长尾分布。互联网网页链接的出度入度符合指数分布

指数分布的参数为λ,则指数分布的期望为1/λ,方差为(1/λ)的平方。

因篇幅问题不能全部显示,请点此查看更多更全内容