关键词: 电压互感器 变电站 小电流接地
[摘 要]变电站的10KV小电流接地系统中母线装设的电压互感器,数十年来其一,二次绕组的接线
方式发生了数次变化。其主要原因是在满足二次电压回路设备在正常运行和系统发生单相接地及事故时的电压采样要求外,并应具备在上述情况下防止铁磁谐振,避免电压互感器被烧毁的功能。本文就电压互感器接线方式的变迁,阐述了笔者的一些粗浅意见。 [关键词]小电流接地系统 电压互感器 接线变迁 0 前言
10KV电力系统是小电流接地系统,当系统中发生单相接地时,不会产生很大的短路电流。为了不造成对外停电,所以允许带接地运行一段时间,但是为了防止其他两相对地电压升高以及容易产生的铁磁谐振过电压而导致电压互感器或其他设备损坏,因此必须尽快找到接地点并消除接地。在系统正常运行或发生故障时,为了满足对母线和馈线的测量,计量以及保护装置的电压采样需求,10KV母线上必须装设能够正确反映母线电压的电压互感器。随着电力技术的进步和设备的更新,电压互感器的接线在满足二次测控保护装置的要求及防止发生铁磁谐振事故的情况下,其接线方式不断地发生了一些改变。 1 前期的三台单相电压互感器或三相五柱式电压互感器接线方式
三台单相电压互感器或三相五柱式电压互感器接线方式如图1a。相应的相量图如图1b所示。
这种电压互感器一次绕组和主二次绕组接成星形,其中性点直接接地,辅助二次绕组接成有零序电压输出的开口三角形。在中性点非直接接地的电力网中,这种接线方式的电压互感器二次电压回路可以为继电保
护和测量仪表提供线电压和相电压;而需要输入零序电压的接地保护及信号等装置,则接入开口三角形输出两端。当电网绝缘良好正常运行时,一,二次电压回路的三相电压均是对称的,并互差120度,开口三角形两端输出为三相电压的矢量和,即为零。
在系统发生单相接地时,一,二次电压回路的电压相量关系就发生了变化。假如C相接地,则它们原来的对称关系被破坏,此时本相一次绕组电压为零,A,B相一次绕组的电压上升为线电压,则二次A,B相的电压也升高√3倍,而开口三角形两端电压为三倍U0电压(100V),所以此种接线的电压互感器开口三角形不能采用短接的方式以消除铁磁谐振。否则将烧毁电压互感器。采用此种接线的电压互感器可以采用在开口三角形绕组两端接入防谐振装置或一白炽灯以减少谐振。其相量关系如图1c所示。
10KV系统还常采用三相三柱式电压互感器的星形接线方式。必须指出此种接线方式的一次绕组中性点不允许直接接地。因为当系统发生单相接地时,由于零序磁通没有通路而使电压互感器会发热烧毁。所以当系统发生单相接地时,二次电压回路的电压仍然为对称的相电压,不能反映系统单相接地时一次回路电压的升高,即不能接供绝缘检查电压表,无法检查电网的绝缘状况。 2 三相四元件的分体式防谐振电压互感器的接线方式
分布极为广泛的10 KV电力系统常常因为单相接地时而发生铁磁谐振。为了减少或杜绝铁磁谐振,随后,我市系统内广泛采用了分体式防谐振电压互感器的接线方式,如图2a,即采用在三相一次绕组中性点与地之间增加一零序电压互感器的四元件接线,其接地时的相量如图2b。三只接于相电压的互感器按常用的互感器选取,其中剩余绕组电压为0.1/3KV,三个剩余绕组接成闭合三角形以消除三次谐波和吸收谐振能量而消除谐振。中性点电压互感器变比为10/√3/0.1/√3/0.1KV。0.1KV绕组引出零序电压.
其正常运行和接地时的相量如图2b。正常运行时,母线电压互感器一次绕组中性点N电压为零,与地同一电位,三相一次绕组均承受相电压,零序电压互感器一,二次绕组电压均为零。所以二次各相电压均为相电压,并互差120度,其相量按对称星形排列,开口三角形为互差120度的三相电压矢量和,所以无电压输出。假如C相接地,由图中接线和极性可以看出:C相电压互感器YHC与零序电压互感器YHN是一并联关系。如各相电压互感器的阻抗很大很大(理想情况),则可以认为各相电压互感器仍然承受对称的相电压。二次绕组A,B,C相的电压与零序电压互感器的电压补偿绕组YHn二次电压相加,其中A,B相
对地电压分别升高√3倍,C相电压为零,三相母线绝缘监察表计的测值能正确反映一次系统电压状况。而开口三角形两端电压为零,所以往往采用将其两端短接来消除铁磁谐振。
而实际情况并非完全如此,各相电压互感器的阻抗并不是很大的理想情况,在一次线路发生接地后,中性点N发生位移,其相量见图2b。如各相电压互感器和零序电压互感器阻抗相同,则C相电压互感器和零序电压互感器一次绕组电压约为0.75倍额定相电压,A,B相互感器绕组的电压上升为1.15倍相电压,仍远低于未安装零序电压互感器时的√3倍相电压,电压互感器的铁芯不易达到饱和状态,其感抗也减少不多,有效地防止了铁磁谐振的发生。而二次A,B,C相对地N600的电压分别为本相电压与零序YHn二次电压相量相加,其中A,B相电压升高√3倍,C相电压为零,能够正确反映单相接地时相电压的变化情况。要注意的是:开口三角形两端是有电压的,不短接时两端电压约为25V,所以此种接线的电压互感器将开口三角形采用直接短接的方式以消除铁磁谐振,较长时间在系统接地运行时,仍然有可能使二次辅助绕组长时间流过大电流而烧毁。为了安全可靠,不烧毁设备,建议仍然采用在开口三角形绕组两端接入防谐振装置或一白炽灯以减少谐振。
3 组合式四元件防谐振电压互感器的接线方式
由于厂家生产出了新的组合式防谐振电压互感器,随之在系统中也得到了不少采用。组合式防谐振电压互感器是将全绝缘的三相电压互感器和中性点电压互感器组装成一体,而且没有二次辅助绕组短接成闭口三角形的问题。该产品在设计和制造上就保证了具有防止铁磁谐振性能。其优点是安装尺寸小,二次接线清楚明了,便于安装和接线,不易发生错误。其具体接线见图3a,正常运行和接地时的相量如图3b。
正常运行时,母线电压互感器一次绕组中性点N电压为零,与地同一电位,三相一次绕组均承受相电压,零序电压互感器一,二次绕组电压为零。所以二次各相电压均为相电压,并互差120度,其相量按对称星形排列,零序二次绕组YHn与YHjy(串联)无电压输出。假如C相接地,由图中接线和极性可以看出:C相电压互感器YHC与零序电压互感器YHN是一并联关系。在一次线路发生接地后,中性点N发生位移,C相电压互感器和零序电压互感器一次绕组电压约为0.75倍额定相电压,A,B相电压互感器绕组的电压仅仅上升为1.15倍相电压,有效地防止了铁磁谐振的发生。而二次A,B,C相对地N600的电压分别为本
相电压与零序二次电压相量相减,其中A,B相电压升高√3倍,C相电压为零,能够正确反映单相接地时的电压变化情况,绝缘监察仪表能够正确指示接地相。要注意的是:要求接入零序电压的电压负载(如XJJ)只能接到YML和YMn‟之间(接地时电压为100V)。公共接地的YMn小母线与YMn‟小母线不是等同的。尽管正常运行时,两者之间并无电位差。在发生接地故障时,两者之间就有电压存在,所以YMn和YMn‟不能连接起来,YMn‟也不允许接地,这是值得大家特别注意的。
4 增加计量绕组的四元件防谐振电压互感器的接线方式
由于对电能计量精度要求的提高,目前采用的电压互感器常在二次回路增加一组高准确等级的专用计量绕组,以对计量设备单独供电。专用计量绕组的中性点,以前我们都是直接接中性线N600。其原理接线见图4a。有的运行单位的同志提出异议,认为在发生单相接地时,专用计量绕组三相中性点因无补偿绕组YHn的电压接入。所以没有正确反映实际的一次电压。对此问题,笔者认为:一是因为10KV系统采用的是二元件计量表计,接入的是二次相间电压,即计量表计的二个元件分别接入Uab,Ubc电压,并未接入零线N。在发生单相接地时,相间电压的对称关系并未被破坏;再者发生单相接地时允许运行时间也不太久,应该对计量表计和接入的其他相电压设备没有多大影响。当然,可以按严格要求,专用计量绕组中性点还是应按图4b接线。
5 电压互感器二次回路击穿保险器配置的问题
电压互感器二次回路的中性点,以前都在各自的配电装置处直接接地。其作用是防止一次回路绝缘下降,使二次回路蹿入高电压时,保证工作人员人身安全。由于二次电压的不平衡以及一次回路故障时短路电流的影响,会使零线N在主控制室与配电装置(电压互感器)之间存在电位差,给计量装置带来附加误差和使零序方向电压保护装置误动作。所以有关规程规定,要求同一变电站内的几组电压互感器的零线N都在主控制室电压装置屏上并接后一点接地。为了检修电压互感器时的人身安全,可以在配电装置处装设击穿保险器。
然而,又出现一些新的问题:击穿保险器种类繁多,质量参差不齐。击穿保险器本身击穿电压离散值就教大。设计中怎样选择击穿保险器,一无规程规定,又无经验可资借鉴。所以在设计或生产制造选择时,受人为因素影响很大,很难确定是否选用正确。在现场使用过程中又不易判断是否完好,当击穿保险器击穿后不能恢复或时间稍长时,就有可能烧坏电压互感器,或相当于电压互感器回路就有两点或多点接地,且不易被发现。因此市公司生技部发文规定:凡是四星形接线的PT二次回路,在中性点PT的二次回路的首端与星形中性点连接处与地之间接的放电间隙(击穿保险器)一律拆除。现在采用的电压互感器有三个二次电压绕组,每个绕组的N回路都装设有击穿保险器,如图5所示。在新规定中,并未提到是否取消其它二次电压绕组中的击穿保险器。笔者认为上述提及的所有击穿保险器都应该取消。其理由在于杜绝其他击穿保险器损坏后造成两点接地(尽管不会烧毁电压互感器),显然,这是规程所不允许的。当然,在电压互感器一次未停电而必须要在配电装置处二次回路工作时,一定要做好安全预防措施。 6 改进的三相四元件的分体式防谐振电压互感器的接线方式
由于三相四元件的分体式防谐振电压互感器的接线方式也存在电压互感器可能被烧毁的问题,不少单位和生产厂家也在不断进行完善。其中大连第一互感器有限责任公司对此进行了较好的优化改进:其原理接线如图6所示。其接线已取消了开口三角形两端的短接,避免因电容放电电流使开口三角形绕组烧毁的隐患;使测量零序电压准确;消除主电压互感器采用开口三角形绕组开路方案的固有的在正常运行时其三相电压不平衡及零序电压超标现象;有效地抑制超低频率振荡电流,消除熔断器频繁熔断现象。
采用改进后的三相四元件的分体式防谐振电压互感器的接线方式,一定要注意三相主电压互感器必须选择全绝缘按相电压设计的电压互感器,零序电压互感器可以是全绝缘的,也可以是半绝缘结构的电压互感器。同时,无须附加任何其他消谐措施;二次侧任何绕组不允许有两点接地,否则会烧毁电压互感器。对于电压二次回路各绕组一定要注意连接极性和接线的正确,才能保证输出电压的正确。
7 结束语
目前常采用的电压互感器接线方式主要有两种:分体式三相四元件电压互感器接线或一体化电压互感器接线,都具有防铁磁谐振功能。如在采用时,两者的容量和防铁磁谐振功能都能够满足要求的话,笔者认为采用一体化的电压互感器就更有优点一些。体积小,占地少,价格稍稍便宜。安装及接线简单方便,二次接线已在工厂完成,在现场安装及检修时接线和极性不会出错。
交流异步电机软起动及优化节能控制技术全面分析与研究
发布日期:2009-7-6 12:11:06 (阅166次) 关键词: 软起动 节能运行 异步电动机
摘 要:本文对交流异步电动机的软起动和优化节能运行问题作了全面的分析和研究,提出了异步电动机起动和运行的综合控制方案。并研制成功了智能马达优化控制器(IMOC)。
关键词:异步电动机 软起动 节能运行 智能马达优化控制器。 1 前 言
目前在工矿企业中使用着大量的交流异步电动机(包括380V/660V低压电动机和3KV/6KV中压电动机),有相当多的异步电动机及其拖动系统还处于非经济运行的状态,白白地浪费掉大量的电能。究其原因,大致是由以下几种情况造成的:
①由于大部分电机采用直接起动方式,除了造成对电网及拖动系统的冲击和事故之外,8~10倍的起动电流造成巨大的能量损耗。
②在进行电动机容量选配时,往往片面追求大的安全余量,且层层加码,结果使电动机容量过大,造成“大马拉小车”的现象,导致电动机偏离最佳工况点,运行效率和功率因数降低。
③从电动机拖动的生产机械自身的运行经济性考虑,往往要求电力拖动系统具有变压、变速调节能力,若用定速定压拖动,势必造成大量的额外电能损失。
电动机的非经济运行情况,早已引起国家有关部门的重视,并分别于1990年和1995年制定和修定了一个强制性的国家标准:《三相异步电动机经济运行》(GB12497-1995)。希望依此来规范三相异步电动机的经济运行,国标的发布对低压电动机的经济运行起了很大的促进作用,但对中压电动机则收效甚微。其原因是:
(1)中压电动机一般容量较大,一旦发生故障,其影响也大,因此对节电措施的可靠性的要求就更高;
(2)中压电动机节电措施受电力电子功率器件耐压水平的限制,节电产品的开发在技术上难度更大一些。
到目前为上,国内尚无成型的中压电动机软起动和节电运行的产品面市。
2 异步电动机的软起动
由于工业生产机械的不断更新和发展,对电动机的起动性能提出了越来越高的要求,归纳起来有以下几个方面:
①要求电动机有足够大的,并且能平稳提升的起动转矩和符合要求的机械特性曲线;
②尽可能小的起动电流;
③起动设备尽可能简单、经济、可靠,起动操作方便;
④起动过程中的功率消耗应尽可能的少。根据以上相互矛盾的要求和电网的实际情况,通常采用的起动方式有两种:一种是在额定电压下的直接起动方式,另一种是降压起动方式。
2.1 直接起动的危害
直接起动是最简单的起动方式,起动时通过闸刀或接触器将电动机直接接到电网上。直接起动的优点是起动设备简单,起动速度快。但是直接起动的危害很大;
①电网冲击:过大的起动电流(空载起动电流可达额定电流的4~7倍,带载起动时可达8~10倍或更大),会造成电网电压下降,影响其他用电设备的正常运行,还可能使欠压保护动作,造成设备的有害跳闸。同时过大的起动电流会使电机绕组发热,从而加速绝缘老化,影响电机寿命。
②机械冲击:过大的冲击转矩往往造成电动机转子笼条、端环断裂和定子端部绕组绝缘磨损,导致击穿烧机;转轴扭曲,联轴节、传动齿轮损伤和皮带撕裂等。
③对生产机械造成冲击:起动过程中的压力突变往往造成泵系统管道、阀门的损伤,缩短使用寿命;影响传动精度,甚至影响正常的过程控制。
所有这些都给设备的安全可靠运行带来威胁,同时也造成过大的起动能量损耗,尤其当频繁起停时更是如此。因此对电动机直接起动有以下限制条件:
①生产机械是否允许拖动电动机直接起动,这是先决条件;
②电动机的容量应不大于供电变压器容量的10~15%;
③起动过程中的电压降△U应不大于额定电压的15%。对于中、大功率的电动机一般都不允许直接起动,而要求采用一定的起动设备,方可完成正常的起动工作。
2.2 老式降压起动方式的适用场合及性能比较:
降压起动的目的是减小起动电流,但它同时也使起动转矩下降了。对于重载起动,带有大的峰值负载的生产机械,就不能用这种方式起动。传统的降压起动有以下几种方法:
(1)星形/三角形转换器:这种方法适用于正常运行时定子绕组采用△接法的电动机。定子有六个接头引出,接到转换开关上,起动时采用星形接法,起动完毕后再切换成△接法。起动电压为220V,运行电压为380V。这种起动设备的优点是起动设备简单,起动过程中消耗能量少。缺点是有二次电流冲击,设备故障率高,需要经常维护,所以不宜使用在频繁起动的设备上。在转换过程中,由于瞬变电势和电动机剩磁产生的电势往往与电源电压有相位差,严重时会产生电压相加,引起过大的冲击电流和电磁转矩,因此大大地限制了它的使 用。由于起动电压为运行电压的
,故其起动转矩为额定转矩的1/3,只能用在空载或轻
载(负载率小于1/3)起动的设备。在电动机轻载或空载运行时,也可利用该起动设备作降压运行,以提高电动机的功率因数和效率。
(2)自耦变压器降压起动:三相自耦变压器(也称补偿器)高压边接电网,低压边接电动机,一般有几个分接头,可选择不同的电压比,相对于不同起动转矩的负载。在电动机起动后再将其切除。其优点是起动电压可以选择,如0.65、0.8或0.9UN,以适应不同负载的要求。缺点是体积大,重量重,且要消耗较多有色金属,故障率高,维修费用高。
(3) 磁控软起动器:磁控软起动器是利用控磁限幅调压的原理,在电动机起动过程中电压可由一个较低的值平滑地上升到全压,使电动机轴上的转矩匀速增加,起动特性变软,并可
实现软停车。但其起控电压在200V左右,用户不可调整,会有较大的电流冲击,且体积较大。
(4) 对于高压电机,可在定子线路中串联电抗器或水电阻实现降压起动,待起动完成后再将其切除。但电抗器成本高,水电阻损耗又大。
(5) 对于绕线式异步电动机,可在转子绕组串接频敏变阻器或水电阻实现起动,待起动完成后再将其切除。但频敏变阻器成本高,而水电阻损耗又大。其他还有延边三角形起动,定子串电阻起动等方法。
值得指出的是:尽管各种老式降压起动方法各有其优缺点,但它们有一个共同的优点:就是没有谐波污染。
2.3 新型的电子式软起动器
随着电力电子技术和微机控制技术的发展,国内外相继开发出一系列电子式起动控制设备,用于异步电动机的起动控制,以取代传统的降压起动设备。新型的电子式软起动器的主回路一般都采用晶闸管调压电路,调压电路由六只晶闸管两两反向并联组成,串接于电动机的三相供电线路上。当起动器的微机控制系统接到起动指令后,便进行有关的计算,输出晶闸管的触发信号,通过控制晶闸管的异通角β,使起动器按所设计的模式调节输出电压,以控制电动机的起动过程。当起动过程完成后,一般起动器将旁路接触器吸合,短路掉所有的晶闸管,使电动机直接投入电网运行,以避免不必要的电能损耗。
所谓“软起动”,实际上就是按照预先设定的控制模式进行的降压起动过程。目前的软起
动器一般有以下几种起动方式:
(1) 限流软起动:限流起动顾名思义就是在电动机的起动过程中限制其起动电流不超过某一设定值(Im)的软起动方式。主要用在轻载起动的负载的降压起动,其输出电压从零开始迅速增长,直到其输出电流达到预先设定的电流限值Im,然后在保持输出电流I 这种起动方式的优点是起动电流小,且可按需要调整,(起动电流的限值Im必须根据电动机的起动转矩来设定,Im设置过小,将会使起动失败或烧毁电机。)对电网电压影响 小。其缺点是在起动时难以知道起动压降,不能充分利用压降空间,损失起动转矩,起 动时间相对较长。 (2) 电压钭坡起动:输出电压由小到大钭坡线性上升,将传统的降压起动变有级为无级,主要用在重载起动。它的缺点是起动转矩小,且转矩特性呈抛物线型上升对起动不利,且起动时间长,对电机不利。改进的方法是采用双钭坡起动:输出电压先迅速升至U1,U1为电动机起动所需的最小转矩所对应的电压值,然后按设定的速率逐渐升压,直至达到额定电压。初始电压及电压上升率可根据负载特性调整。这种起动方式的特点是起动电流相对较大,但起动时间相对较短,适用于重载起动的电机。 (3) 转矩控制起动:主要用在重载起动,它是按电动机的起动转矩线性上升的规律控制输出电压,它的优点是起动平滑、柔性好,对拖动系统有利,同时减少对电网的冲击,是最优的重载起动方式。它的缺点是起动时间较长。 (4) 转矩加突跳控制起动与转矩控制起动一样也是用在重载起动的场合。所不同的是在起动的瞬间用突跳转矩,克服拖动系统的静转矩,然后转矩平滑上升,可缩短起动时间。但是,突跳会给电网发送尖脉冲,干扰其它负荷,使用时应特别注意。 (5) 电压控制起动是用在轻载起动的场合,在保证起动压降的前提下使电动机获得最大的起动转矩,尽可能地 缩短起动时间,是最优的轻载软起动方式。 停车方式有三种:一是自由停车,二是软停车,三是制动停车。软起动器带来的最大好处是软停车和制动 停车,软停车消除了拖动系统的反惯性冲击,对于水泵 就是“水锤”效应;制动停车则在一定场合代替了反接 制动停车功能。 2.4 软起动器与传统降压起动器的比较软起动器与传统降压起动器的性能。 2.5 软起动器的适用场合 (1) 生产设备精密,不允许起动冲击,否则会造成生产设备和产品不良后果的场合; (2) 电动机功率较大,若直接起动,要求主变压器容量加大的场合; (3) 对电网电压波动要求严格,对压降要求≤10% UN的供电系统; (4) 对起动转矩要求不高,可进行空载或轻载起动的设备。 严格地讲,起动转矩应当小于额定转矩50%的拖动系统,才适合使用软起动器解决起动冲击问题。对于需重载或满载起动的设备,若采用软起动器起动,不但达不到减小起动电流的目的,反而会要求增加软起动器晶闸管的容量,增加成本;若操作不当,还有可能烧毁晶闸管。此时只能采用变频软起动。因为软起动器调压不调频,转差功率始终存在,难免过大的起动电流;而变频器采用调频调压方式,可实现无过流软起动,且可提供1.2~2倍额定转矩的起动转矩,特别适用于重载起动的设备。但是变频器的价格就要比软起动器的价格高得多了。 3 异步电动机经济运行和优化节电控制技术 3.1 异步电动机降压节电技术概述 对于满载或重载运行的电动机,降低其端电压将会造成严重后果,随着端电压的降低,电动机的磁通和电动势随之减小,铁耗无疑将下降。但与此同时,随电压平方变化的电动机转矩也迅速下降而小于负载转矩,电动机只能依靠增大转差率,提高电磁转矩以达到与负载转矩相平衡的状态。转差率的增大,引起转子电流增大,同时引起定子和转子电压间的相角增大,导致定子电流增大,从而使定子和转子铜耗增加值大大超过铁耗的下降值,这时电动机绕组温升将会增高,效率将会下降,甚至发生电动机烧毁事故。因而,一般规程都规定了电动机正常运行时电压变化范围不得超过额定电压的95%~110%。 然而对于轻载运行的电动机,情况就截然不同,使供电电压适当降低,在经济上是有利的。这是因为在轻载运行时,电动机的实际转差率大大小于额定值,转子电流并不大,在降压运行时,转子电流增加的数值有限。而另一方面,却由于电压的降低,使空载电流和铁损大幅减少。在这种情况下,电动机的总损耗就可降低,定子温升,运行效率和功率因数同时得到改善。由此可见,电动机的运行经济性与电动机负载率同运行电压是否合理匹配关系极大。理论分析表明电动机的力能指标(运行效率与功率因数)与其端电压之间存在如下的数量关系[2]: ……………………………………(1) …………………………………………………(2) SN和S—电动机额定工况和降压运行的转差率; 和 —电动机额定工况和降压运行的功率因数; ηN和η—电动机额定工况和降压运行的效率; KU—电动机的调压系数,KU=U/UN; UN和U—电动机额定电压和降压运行时的实际电压; K1—电动机的空载电流系数,K1=Io/IN; IN和Io一电动机的额定电流和空载电流。 从式(2)不难看出:并不是所有的降压行为都能达到节电的目的,只有当电压降低程度大于转差率及功率因数上升程度时,才能使运行效率提高。实际上,电动机效率随电压降低而变化的关系呈马鞍形曲线,对应于每一个输出功率(或负载系数),必然存在一个最佳调压系数Kum,当Ku=Kum时,电动机的损耗最低,效率最高。Kum称为电动机的最佳电压调节系数。不同负载下最佳电压调节系数Kum可按电动机的负载系数β由下式确定[1]: ……………………………………………………(3) 式中: —电动机额定负载时的有功损耗(kW); Po—电动机的空载损耗(kW); K—计算系数,K=(Po-Pfw)/ΣPN; Pfw—电动机的机械损耗(kW); β—电动机的负载系数,β=P2/PN·100% P2—电动机的输出功率; PN—电动机的额定功率。 文献[1]给出了轻载电动机采用降压节电措施后,节约电能的计算公式为:节约的有功功率 节约的无功功率: ………………………………………(4) 节约的电能: …………………………………………(5) …………………………………………………(6) 式中:QN—电动机带额定负载时的无功功率(Kvar); Qo—电动机的空载无功功率(Kvar); KQ—无功经济当量,当电动机直连电机母线KQ=0.02~0.04,二次变压取KQ=0.05~0.07,三次变压取KQ=0.08~0.10; Tec—电动机年运行时间(h)。 3.2 优化节电的控制依据 (1) 功率因数( )控制法: 最早出现的异步电机优化节电器为№La 机运行中的 功率因数控制器,其原理是通过检测电动 值,与预先设定的基准值比较,当实际值低于设定值时,说明电动机为 ,直到实际的 测量值达到设定值为止, 轻载,通过降低电动机的端电压来提高 实现了节电; 数值高表明是重载,则升高电机端电压,以保证轴上的输出功率。这 是一种间接节电法:控制对象是电动机的功率因数,而目的是节电。由于交流异步电机的最佳功率因数在全工作范围内呈曲线变化;不同制造厂生产的同一规格的异步电机的功率因数呈一定的离散性;同一台电机在其新旧寿命期,在同一工况下的功率因数也呈现一定的离散性,这就给设计和调整带来一定的困难。故这种方法是不能达到最佳节电效果的,并且理论与实践都已证明,过高的功率因数值对于异步电机来说,并不节电。 (2)最小输入功率法: 交流异步电机工作时,从电网输入的电功率P1,一部分转换成电机轴上的机械功率P2输出,另一部分则是自身的损耗PS,包括铁耗与铜耗两部分。共中铁耗与输入电压的平方成正比,而铜耗则与其电流的平方成正比,只有在铜耗等于铁耗时,电机的效率最高,损耗PS最小。最小输入功率法的原理就是在电机工作的任一负载点上,在保证轴上机械功率输出的前提下,通过降低电机的端电压而减小电机自身的损耗,从而达到节能的目的。虽然降压可以降低铁耗,而当电压降到一定程度之后,若继续下降,则电流又要增加,因而又增加了铜耗。通过微机自动寻优,让铁耗和铜耗都维持在最低的水平,也即电压与电流的乘积——输入的电功率达到最小值,实现最优节电目的。 (3)突加负载控制 当电动机轴上的负载急剧上升时,又要能在极短的时间内(<100ms)将电压提升到额定值,保证轴上有足够的功率输出,否则电机就会发生堵转现象。所以微处理器在进行输入功率优化控制的同时,又监视负载功率的变化率,一旦负载功率的变化率超过预先设定的阈值时,即判定为突加负载,立即提升电机端电压,保证电机对负载变化的快速响应能力。 3.3 优化节电的适用对象 对于电机转速无严格要求,及不需要调速运行的场合,特别是对于经常大幅度变动的负载,或者长时间处于轻载或空载的电动机,例如轧钢机、锻压机、抽油机等负载,使用优化节电技术,可以收到明显的节电效果。其节电量视电动机的负载系数及轻载运行的时间长短而定。 3.4 降压起动优化节电计算实例 为一台轻载运行的Y1600—10/1730型6000V电动机配置一套优化控制系统,着重计算其起动性能参数和节电效果。 Y1600—10/1730型电动机的原始数据:额定功率PN=1600kW,额定电压UN=6.0kV,额定电流IN=185A,额定转速nN=595r/min;最大转矩倍数=最大转矩/额定转矩=2.22,起动电流倍数=堵转电流/额定电流=5.53,起动转矩倍数=堵转转矩/额定转矩=0.824,额定效率ηN=94.49%,额定功率因数 。电动机额定负载时的有功损耗ΣPN=93.3kW, 电动机的空载损耗Po=29.6kW,电动机的空载电流Io=46.25A,电动机带额定负载时的无功功率QN=918Kvar,电动机的空载无功功率Qo=480.6Kvar。 (1) 轻载运行降压节电效果计算 (1)不同负载系数下,电动机的最佳调压系数Kum的计算按式(3)进行,计算结果示于表2。 (2)当U=UN时,不同负载系数下,电动机的综合功率损耗ΣPc的计算按(7)式进行[1] ,计算结果示于表2 ………………(7) (3)按最佳电压调节系数进行调压后节省的电量计算按式(4)、式(5)和式(6)进行,计算结果示于表2。 表2 按最佳调压系数进行降压后节省的电量计算值 电动机负载系数B 0.1 0.2 0.53 17.0 0.3 0.4 0.5 0.6 最佳电压调节系数Kum 0.374 0.647 0.747 0.836 0.916 11.0 6.4 3.0 97.6 8.86 0.86 47.2 3.7 节省的有功功率△P(KW) 24.2 节省的无功功率△Q(Kvar) 386.5 300.8 224.8 157.0 24.5 15.8 节省的综合有功功率△P+Kq△Q(Kvar) 47.4 35.05 U=UN时电机综合功率损耗ΣPC(KW) 59.34 62.04 66.53 72.83 80.93 90.82 4% 节电率(%) 79% 56.4% 36.8% 21.7% 11% (2) 降压起动时电动机起动特性估算 由电动机的原始数据得知,电动机直接起动时,起动参数如下:起动电流IK=5.53IN,起动转矩Mk=0.824MN。 ① 采用降压起动时,调压系数Ku的确定: ……………………………………………(8) 式中:Un——电动机电压,V; UN——电动机额定电压,UN=6.0KV MN——生产机械要求的最小起动转矩,当采用轻载起动方式时,MN≥0.2MN。 代入有关数据,得 ② 采用降压起动时,起动参数计算 。 起动电流In=KU·IK=2.72IN 起动电压Un=KU·UN=0.493UN=2960V 起动转矩 ③ 降压起动的节电效果计算 直接起动时从电网吸收的无功功率计算[1] 代入相关数据,得 …………………………………(9) 降压起动时从电网吸收的无功功率计算[1] 代入相关数据,得 …………………………………(10) 节约的无功功率 &nbs 功功率 △Pn=KQ·△Qn=0.06×8052.1=483.1kW 电网传输△Q所消耗的有 降压起动的无功节电率 4 异步电动机的调压调速 异步电动机的调压调速属低效调速方式,因为在调速过程中始终存在转差损耗,因此调压调速有很大的限制,不是任何一台普通的笼型电机加上一套晶闸管调压装置,就可以实现调压调速的。 首先必须改变电动机的外特性,新的外特性必须使电动机有一个宽广的稳定的调速范围。一般要采用高转差率电机,交流力矩电机或在绕线式电机的转子绕组中串接电阻的方法,并且要加上转速闭环控制,才能进行稳定的调速。 其次是要将调速过程中由于转差功率引起的转子的温升很好地导出机外,才能实现长期稳定工作。这里可采取旋转热管结构,也可采取特殊风道冷却结构,都是行之有效的方法。 在电力电子技术高度发展的今天,变频调速装置的价格已不再昂贵的情况下,再考虑调压调速,似乎已无多大的现实意义了。 5 智能马达优化控制器(IMOC系列) 在对交流异步电动机的软起动和优化节电技术的长期深入研究的基础上,研制成功了智能马达优化控制器(IMOC系列),适配电机功率从5.5KW-110KW。 该控制器采用了16位马达控制专用单片微处理器Intel 80C 196MC,具有完善的检测控制功能;主功率器件则采用具有世界高技术水平的专利产品——集成移相调控晶闸管模块,该模块突破以往晶闸管模块的概念,将复杂的移相控制电路与晶闸管管芯创造性地集成为一体,组成一个完整的电力移相调控的开环系统。用它组成的控制器,不但使体积大大缩小,而且增加了设备的可靠性和抗干扰的能力。 在技术上更是集众家之长,并大大突破国内外同类产品的功能,除了起动保护,优化节电外,还增加了风机,水泵类负载的调速功能;抽油机间歇工作节电功能,无功功率就地补偿功能。尤其是完善的保护功能:有过电流、过电压、过负载、短路、接地、缺相、相间不平衡及功率模块超温和电机超温保护等功能。是电机安全经济运行的保护神。该控制器具有以下功能特点: (1)16位微电脑智能化控制,键盘设定,数码显示,操作简单直观。 (2)软起动,软停车功能,有效减小起动冲击。 (3)优化马达运行方式,节电、改善功率因数。 (4)风机、水泵类负载的调压调速闭环控制功能。 (5)具有泵控制功能,可避免或减小液流喘振和“水锤”效应。 (6)具有相平衡和电源电压自动补偿功能。 (7)具有完善的保护、报警功能。 (8)起动方式、起动电压、起动电流、额定电流及负载类型等参数均可设定。 (9)具有远方控制及联网通讯功能。 (10)自诊断功能。 经过在不同工业现场的长期使用,取得了可观的经济效益。 6 结 论 (1)电子式软起动器结构简单,较之传统的△/Y起动器,自耦变压器起动器具有无触点、无噪音、重量轻、体积小,起动电流及起动时间可控制,起动过程平滑等优点,并且维护工作量小。当电动机空载或轻载时,节能效果显著,特别适用于短时满载,长时间空载的负载。 (2)对于高转差电机,实心转子电机,力矩电机等,尤其是在带风机、水泵类负载时,有较好的调速性能,但不适用于普通的笼型电机调速。 (3)采用智能控制器,具有完善的电机保护功能,保护整定值设置方便,保护性能可靠。 (4)其最大缺点是由于采用晶闸管移相控制,故对电网及电机均存在谐波干扰。 试简述单相异步电动机的工作原理? 作者:佚名 发布日期:2008-1-23 18:43:58 (阅2696次) 关键词: 电动机 工作 异步电动机 因单相电源无法产生旋转磁场,故一般单相异步电动机采用移相的方式(电容或阻尼)来产生旋转 磁场。在旋转磁场的作用下,转子感应出电流并与旋转磁场相互作用产生旋转转矩,带动转子转动。 异步电动机软启动分析 作者:冶福军 发布日期:2009-4-27 11:17:49 (阅331次) 关键词: 软启动 晶闸管 异步电动机 【摘要】近三十多年来,国外对晶闸管三相交流调压电路进行了广泛的研究,在工业应用领域得到 广泛应用,在某些领域应用显示出独特的技术优势。文章对异步电动机软启动做了分析。 【关键词】异步电动机;软启动;晶闸管 电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。而交流电动机,特别是三相鼠笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业生产中得到了极广泛的应用,也正在发挥着越来越重要的作用。 一、软启动的现状 交流电动机和直流电动机相比存在许多优点,但当异步电机在起动过程中又有许多弊病。所谓起动过程是在交流传动系统中,当异步电动机投入电网时,其转速由零开始上升,转速升到稳定转速的全过程。如不采用任何起动装置的情况下,直接加额定电压到定子绕组起动电动机时,电机的起动电流可达额定电流的4~8倍,其转速也在很短时间内由零上升到额定转速。同时三相感应电动机起动时的转矩冲击较大,一般可达额定转矩的两倍以上。起动时过高的电流一方面会造成严重的电网冲击,给电网造成过大的电压降落,降低电网电能质量并影响其他设备的正常运行。而过大的转矩冲击又将造成机械应力冲击,影响电动机本身及其拖动设备的使用寿命。因此,通常总是力求在较小的起动起动电流下得到足够大的起动转矩,为此就要选择合适的起动方法。在选择起动方法时可以根据具体情况具体要求来选择。 对三相鼠笼式异步电动机的起动电流的限制,通常有定子串接电抗器起动、Y-△起动、自藕变压器将压起动、延边三角形起动。而对绕线式交流电动机,常采用转子串接频敏变阻器起动、转子串电阻分级起动。但这些传统的起动方法都存在一些问题。 1.定子串接电阻起动:由于外串了电阻,在电阻上有较大的有功损耗,特别对中型、大型异步电动机更不经济,因此在降低了起动电流的同时、却付出了较大的代价— 起动转矩降低得更多,一般只能用于空载和轻载。 2.Y--△起动:丫一△起动方法虽然简单,只需一个Y一△转换开关。但是Y--△起动的电动机定子绕组六个出线端都要引出来,对于高电压的电动机有一定的困难,一般只用于△接法380v电动机。 3.自祸变压器将压起动:自祸变压器将压起动,比起定子串接电抗器起动,当限定的起动电流相同时,起动转矩损失的较少;比起卜△起动,有几种抽头供选用比较灵活,并且巩/峨较大时,可以拖动较大些的 负载起动。但是自祸变压器体积大,价格高,也不能拖动重负载起动。 4.延边三角形起动:采用延边三角形起动鼠笼式异步电动机,除了简单的绕组接线切换装置之外,不需要其他专用起动设备。但是,电动机的定子绕组不但为△接,有抽头,而且需要专门设计,制成后抽头又不能随意变动。 随着电力技术 (尤其是集成电路、微处理器以及新一代电力电子器件)的不断发展,异步电动机起动过程中的起动电流过高,起动转矩过小等问题得到了很好的解决。 从20世纪70年代开始推广利用晶闸管交流调压技术制作的软起动器,以及 采用微控制器代替模拟控制电路,发展成为现代的电子软起动器。 二、软启动的特点 电子软起动器相对于传统的起动方式,其突出的优点体现在: 1.电力半导体开关是无电弧开关和电流连续的调节,所以电子软起动器是无级调节的,能够连续稳定调节电机的起动,而传统起动的调节是分档的,即属于有级调节范围。 2.冲击转矩和冲击电流小。软起动器在起动电机时,是通过逐渐增大晶闸管的导通角,使电机起动电流限制在设定值以内,因而冲击电流小 ,也可控制转矩平滑上升,保护传动机械、设备和人员。 3.软起动器可以引入电流闭环控制,使电机在起动过程中保持恒流,确保电机平稳起动。 4.根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流,节省电能。 5.由于采用微机控制,可在起动前对主回路进行故障诊断,且数字化的控制具有较稳定的静态特性,不易受温度、电源电压及时间变化等因素的影响,因此提高了系统的可靠性,有助于系统维护. 同时,软起动器还能实现直接计算机通讯控制,为自动化控制打下良好的基础。 三、软起动的发展方向 1.短期展望:软起动将仍然以各种形式的降压(限流)软起动为它的主要形式。从理论上说,性能价格比高的产品将占有更大的市场份额.但是,在各种应用场合,人们对于各种性能的侧重面不同,使各类起动产品 (包括传统的星三角起动)都可能会赢得自己的市场。 2.长期展望:变频软起动将成为软起动的主流。各种形式的降压软起动将与星三角起动等技术一起归并为传统的起动技术。随着变频器价格的逐渐下降,可靠性的进一步提高,未来成为主流产品的软起动装置将是带有软切换功能的廉价的变频器。 浅谈三线圈变压器差动保护的正确接线方法 发布日期:2009-7-6 10:59:41 (阅229次) 关键词: 变压器 差动保护 差动保护是变压器的主保护,其接线正确与否,将对安全运行造成较大的影响。随着农业用电的 不断发展。目前大多数的县先后新建了110千伏或更高的电压等级变电所,随之而来的是较大容量的三线圈变压器的出现,但由于一些县供电单位的继电保护人员,不能熟练掌握新出现的三线圈变压器差动保护的接线方法,以致经常发生错误接线,导致保护误动。本文旨在对三线圈变压器差动保护的接线方法进行讨论,以供参考。 一般的说,差动保护的错接线,主要表现为电流互感器回路的接线错误,故下面就着重讨论这个问题,我们知道,在进行差动保护电流互感器回路接线时,一个重要的一切就是确定电流互感器二次侧的极性。但二次侧极性是对应一次侧极性而言的,因此要确定二次侧极性就必须先假定一次侧极性。如何假定一次侧极性,各地有不同的习惯做法。而能否恰到好处地假定一次侧极性,将对电流互感器回路的接线方法带来一定的影响。 一种习惯做法是,在确定电流互感器极性时,三侧均取主电源侧为正。如变压器高压侧视母线侧为主电源侧,取母线侧为正,而中、低压侧则以变压器测为主电源侧,均取变压器测为正,然后再根据以上的假定,来确定对应的二次侧极性。这样一来,差动保护电流互感器回路就应按以下方式连接(本文讨论的三线圈变压器的接线组别均为常见的Y/Y/△一12一11接线): 图1画出了当三侧均取主电源侧为正时的差动保护电流互感器四路接线原理图。图中箭头所示的方向,为电流的正方向。,电流互感器一次侧电流所表示的方向,即为正常运行情况下变压器负荷电流的方向。另外,图中注有“☆”者为电流互感器一次侧的正极性端,注有“*”者为电流互感器二次侧的正极性端。为便于讨论,下面将分高、中、低三侧分别进行介绍: 1、从图1可知,高压侧差动保护电流互感器回路的连接顺序是a+→b-→b+→c-→c+→a-,并为正极性出线。为便于记忆,我们说以上电流互感器二次侧连接方式,对应于变压器高压线圈的接线来说,相当于Y/△一11接线组别。 如我们取高压侧一次 A相电流的反向值-IAl为基准向量,并根据图 1所示的电流流向, 即可画出如图2所示的高压侧差动保护回路电流向量图。 其中:I`a1、I`b1、I`C1为电流互感器回路相电流 Ia1、Ib1、IC1为电流互欧器回路线电流。 2、见图1中压侧差动保护电流互感器回路的接线可知,其连接顺序是a-→b+→b-→c+→c-→a+,并为负极性出线。以上电流互感器二次侧连接方式对应于变压器高压线圈的接线来说,相当于Y/△一5接线。 同样如果我们取高压侧一次A根电流的反向值-IA1为基准向量(以下均同),并根据图1所示的电流流向,即可画出如图3所示的中压侧差动保护回路电流向量图。比较图3和图2可知,此时中压侧电流互感器回路二次侧线电流(即差动回路电流,以下同。)和高压侧电流互感器四路二次侧线电流,两者正好是反向的。这对我们假设一次电流为正常运行情况下的负荷电流的情况来说,出现差动回路电流相抵消的结果,说明以上差动保护电流互感器四路的接线是完全正确的。 信息请登陆:输配电设备网 其中。I`a2、I`b2、I`c2为中压侧电流互感器回路相电流; Ia2、Ib2、Ic2为中压侧电流互感器回路线电流。 常见的错误接线多发生在中压侧,造成接线错误的主要原因是,为了取得一个反向电流(对应高压侧而言),误认为在进行中压侧电流互感器接线时,只要采用将高压侧的接线方式改为负极性出线即可,于是就出现了如图4所示的错误接线情况。通过对上图分的析可知,此时中压侧电流互感器二次侧连接方式,对 应于变压器高压线圈的接线来说,相当于Y/△-11接线而不是Y/△一 5接线。 通过对图4接线的向量分析也可看出(如图5所示),此时在正常运行情况下,中压侧电流互感器回路二次测线电流和高压侧电流互感器回路二次测线电流,两者夹角为60O,故以上接线是错误的。 3、从图1还可见,低压侧差动保护电流互感器四路的连接方式为负极性出线的星形接线,故对应于变压器高压线圈的接线来说,相当于Y/Y- 6接线。图6画出了以上接线的电流向量图,可见,其在正常运行情况下,差动保护回路低压侧电流和高压侧电流也是反向的。 其中:I`a3、I`b3、I`c3为低压侧电流互感器回路相电流 Ia3、Ib3、Ic3为低压侧电流互感器回路线电流。 上面介绍了差动保护电流互感器回路接线的一种施工方法,因此只要我们按以上所述的原则进行接线,就可也保证差动保护电流回路的接线正确。但另一方面我们应该指出的是,由于在假定电流互感器一次侧极性时,采用了以主电源侧为正的施工方法,使得中压和低压侧差动保护电流互感器回路的接线均系非常见的正常连接方式,因此施工人员不易记忆掌握,容易发生差错。 下面将介绍另一种习惯做法,也就是我们所要推荐的一种施工方法。这种施工方法的特点是,在确定电流互感器一次侧极性时,不是以主电源侧为正而是三侧均政母线侧为正。这样一来,便可使差动保护的电流回路接线变得简单和易于掌握了。 当三侧均取母线侧为正时变压器差动保护电流互感器回路的接线原理图如图7所示。应该指出的是,假设电流互感器一次侧的极性,仅仅是为了能确定对应的二次侧的极性,而和如何假定一次侧电流的流向是无关的。所以我们在图7中所表示的一次电流的流向,仍为正常运行情况下的负荷电流的正方向。 为便于讨论,下面也分高、中、低三侧分别进行介绍。 1、高压侧电流互感器一次侧取母线侧为正,这和前面“1”条中所述的取电源侧(即路为母线侧)为正的情况是完全一样的,故就差动保护电流互感器的连接顺序和差动保护回电流向量图(见图2)来说,两者也是完全相同的;这里不再赘述了。 2、见图7中压侧差动保护电流互感器回路的接线可知,当电流互感器一次机时极性取母线侧为正后,其连接顺序是。a+→b→b+→c→c+→a-.,并为正极性出线。显然,这是一种常见的接线方式.其和高压侧差动保护电流互感器回路的接线顺序完全相同,它对应于变压器高压线圈的接线来说,也相当于Y/△一11接线。但是让我们来比较一下图7和图1所示中压侧差动保护电流互感器回路接线原理图,可发现两者的实际接线情况是完全一样的,所不同的只是电流互感的标定极性不同。同时再比较一下两者的电流分布情况还可知,由于我们在假定电流正方向时采用的是同一个原则,所以,以上两种情况的电流的实际流向也是完全相同,因此它们的差动回路电流向量分析的结。“ 果也是完全一致的(见图3”),故这里不再重复叙述了。 3、低压侧电流互感器的一次侧极性也同样供母线侧为正后,则从图7所示的接线原理图低压侧部份可知,其为正极性出线的星形连接,它对应于变压器高压线圈的接线来说,相当于Y-Y/12接线,可见,也是一种常见的接线方式。„把图7和图1作一比较,同样也可以发现低压侧的实际接线情况也是完全一样的,其电流互感器回路电流的实际流向也是相同的(电流向量分析结果同图6)。 通过以上分析可知,前面所介绍的两种不同的施工做法,其最后结果是完全一样的。向量分析方法也是相同的。所不同的只是由于标定极性的做法不同,。使得端子的极性名称发生了变化,从而出现了不同名称的接线方式。这样一来,显然后一种施工方法要比前一种为佳。因为后一种施工方法使得所出现的电 流互感器回路的接线方式的名称,变得是常见的和易于被记忆掌握的接线方式了,因此也就不容易发生差错。所以我们要推荐后一种施工方法。这一种施工方法和前一种施工方法相比较,其具有以下特点: 1、变压器三侧差动保护电流互感器回路的接线,均系正常的连接顺序,其对应一次线圈的接线来说,均为常见的典型接线组别。 2、变压器高、中压倒电流互感器回路的接线方式相同。 3、均为正极性出线。 变压器差动保护电流互感器接线方式分析 发布日期:2009-7-3 15:01:07 (阅485次) 关键词: 差动保护 接线方式 电流互感器 差动保护是变压器的主要保护,它的工作情况的好坏对变压器的正常运行关系极大。要想使变压 器在正常运行或在变压器外部故障时,差动保护可靠不动,就要设法使变压器的电源侧和负荷侧的CT二次线电流相位相差 ,及电流产生的动作安匝相等。只要满足这两个条件变压器的差动保护在变压器 ,现介绍以下几种接线方 内部正常时就不会动作。为使变压器电源侧和负荷侧CT二次电流相位差 式: 第一种接线方式:以我县110kV变电站1#主变为例。它的容量为2万千伏安。接线组别为丫O/丫O/A—12—11。ll 0kV侧为电源侧,压侧和低压侧为负荷侧,其接线图如下所示因为变压器的接线组别为丫o/丫O/A—12—11其低压测线电流Ia、Ib、Ic分别超前高压侧线电流 高压侧CT二次相 。就设 电流在减极性时与一次电流同相位。要想使变压器电源侧和负荷侧CT二次线电流相位相差 法使变压器低压侧的CT二次线电流落后于相电流 尾;b相的头连a相 ,这样低压侧CT的连接顺序是a相的头连C相的 第二种接线方式:我们把CT的接线组别同样用钟表的12个钟头来表示,那么第一种接线方式,高压侧的CT为6点接线,中压侧为12点接线.低压侧为1点接线。第二种接线方式就是把高压侧的CT接成12点,中压侧接成6点.低压侧接成7点。 第三种接线方式:把高压侧的CT二次接成11点,中压倒为5点,低压侧接成6点。 第四种接线方式,把高压侧的CT二次接成5点,中压侧为11点,低压侧为12点。 变压器差动保护的接线方式有四种,选CT变比时每侧就有两种;一种是星型接线,一种是三角型接线。如果用第一种接线方式接,对三卷变压器来说,高中低三侧CT中有两侧的CT接成星型,只有一侧接成三角型。接线较为简单。在特定条件下,采用此种接线方式能解决差流回路中无法解决的不平衡电流。当然无论采用那种接线方式,效果都一样,但因各地区的技术水平不一,为使差动保护不致因CT接线错误造成保护跨动,最好选其中一种接线做为典设。 第二种接线方式:我们把CT的接线组别同样用钟表的12个钟头来表示,那么第一种接线方式,高压侧的CT为6点接线,中压侧为12点接线.低压侧为1点接线。第二种接线方式就是把高压侧的CT接成12点,中压侧接成6点.低压侧接成7点。 第三种接线方式:把高压侧的CT二次接成11点,中压倒为5点,低压侧接成6点。 第四种接线方式,把高压侧的CT二次接成5点,中压侧为11点,低压侧为12点。 变压器差动保护的接线方式有四种,选CT变比时每侧就有两种;一种是星型接线,一种是三角型接线。如果用第一种接线方式接,对三卷变压器来说,高中低三侧CT中有两侧的CT接成星型,只有一侧接成三角型。接线较为简单。在特定条件下,采用此种接线方式能解决差流回路中无法解决的不平衡电流。当然无论采用那种接线方式,效果都一样,但因各地区的技术水平不一,为使差动保护不致因CT接线错误造成保护跨动,最好选其中一种接线做为典设。 变压器差动保护工作原理和的不平衡电流产生原因 发布日期:2009-7-1 11:01:23 (阅397次) 关键词: 励磁涌流 变压器 差动保护 本文简要阐述变压器差动保护工作原理,分析差动保护不平衡电流产生的原因,针对不同原因,对 症下药。提出相应有效的防范措施,提高差动保护动作的选择性、速动性、灵敏性、可靠性,从而保证变压器的安全稳定运行。查看更多精彩资讯 [关键词]差动保护 电流互感器不平衡电流 励磁涌流 1前言 变压器差动保护是按照循环电流原理构成的。双绕组变压器,在其两侧装设电流互感器。当两侧电流互感器的同极性在同一方向,则将两侧电流互感器不同极性的二次端子相连接(如果同极性端子均置于靠近母线一侧,二次侧为同极相连),差动继电器的工作线圈并联在电流互感器的二次端子上。在正常运行或外部故障时,两侧的二次电流大小相等,方向相反,在继电器中电流等于零,因此差动保护不动作。然而,由于变压器实际运行中引起的种种不平衡电流,使得差动继电器的动作电流增大,从而降低了保护的灵敏度。 2产生的原因 不平衡电流的产生有稳态和暂态二方面。稳态不平衡电流产生的原因:(1)变压器高低压侧绕组接线方式不同;(2)变压器各侧电流互感器的型号和变比不相同;(3)带负荷调分接头引起变压器变比的改变。暂态不平衡电流主要是由于变压器空载投入电源或外部故障切除,电压恢复时产生的励磁涌流。 3影响和防范措施 下面就以上几种变压器差动保护的不平衡电流产生原因和防范措施进行阐述。 3.1变压器高低压侧绕组接线方式不同的影响和防范措施: 3.1.1变压器接线组别对差动保护的影响 对于Y,y0接线的变压器,由于一、二次绕组对应相的电压同相位,故一、二次两侧对应相的相位几乎完全相同。而常用的Y,d11接线的变压器,由于三角形侧的线电压,在相位上相差30°,故其相应相的电流相位关系也相差30°,即三角形侧电流比星形侧的同一相电流,在相位上超前30°,因此即使变压器两侧电流互感器二次电流的数值相等,在差动保护回路中也会出现不平衡电流。 3.1.2变压器接线组别影响的防范措施 为了消除由于变压器Y,d11接线而引起的不平衡电流的影响,可采用相位补偿法,即将变压器星形侧的电流互感器二次侧接成三角形,而将变压器三角形侧的电流互感器二次侧接成星形,从而把电流互感器二次电流的相位校正过来。相位补偿后,为了使每相两差动臂的电流数值近似相等,在选择电流互感器的变比nTA时,应考虑电流互感器的接线系数KC后,即差动臂的电流为KCI1/nTA。其中,I1为一次电流,电流互感器按星形接线时则KC=1,按三角形接线时KC=√3,如电流互感器的二次电流为5A时,则两侧电流互感器的变比按以下两式选择。 变压器星形侧的电流互感器变比为: nTA(Y)=√3In(Y)/5 变压器三角形侧的电流互感器变比为: nTA(△)=In(△)/5 式中In(Y)变压器绕组接成星形侧的额定电流; In(△)变压器绕组接成三角形侧的额定电流。 实际上选择电流互感器时,是根据电流互感器定型产品变比确定一个接近并稍大于计算值的标准变比(下表所列为我厂一台15MVA38.5kV/6.3kV主变的计算)。 3.2变压器各侧电流互感器型号和变比的影响和防范措施 变压器两侧额定电压不同,装设在两侧的电流互感器型号就不相同,致使他们的饱和特性和励磁电流(归算到同一侧)也不相同。因而在外部短路时将引起较大的不平衡电流,对此只有采用适当增大保护动作电流的办法予以考虑。由于电流互感器都是标准化的定型产品,所以实际选用的变比,一般均与计算变比不完全一致,而且各变压器的变比也不可能完全相同,因此在差动保护回路又会引起不平衡电流。这种由于变比选择不完全合适而引起的不平衡电流,可利用磁平衡原理在差动继电器中设置平衡线圈加以消除,一般平衡线圈接于保护臂电流小的一侧,因为平衡线圈和差动线圈共同绕在继电器的中间磁柱上,适当选择平衡线圈的匝数,使它产生的磁势与差流在差动线圈中产生的磁势相抵消,这样,在二次绕阻就不会感应电势了,其差动继电器的执行元件也就无电流。但接线时要注意极性,应使小电流侧在平衡线圈与差流在差动线圈产生的磁势相反。 3.3带负荷调压在运行中改变分接头的影响和防范措施 电力系统中,通常利用调节变压器分接头的方法来维持一定的电压水平(由于分接头的改变,使变压器的变比也跟着改变)。但差动保护中电流互感器变比的选择,差动继电器平衡线圈的确定,都只能根据一定的变压器变比计算和调整,使差动回路达到平衡。当变压器分接头改变时,就破坏了平衡,并出现了新的不平衡电流,这一不平衡电流与一次电流成正比,其数值为 Ibp=±△UID.max/nTA 式中±△U――调压分接头相对于额定抽头位置的最大变化范围 ID.max――通过调压侧的最大外部故障电流。 为了避免不平衡电流的影响,在整定保护的动作电流时应给予相应的考虑,即提高保护的动作整定值。 3.4变压器励磁涌流的影响和防范措施 3.4.1变压器的励磁涌流对差动保护的影响 变压器的高、低压侧是通过电磁联系的,故仅在电源的一侧存在励磁电流,它通过电流互感器构成差回路中不平衡电流的一部分。在正常运行情况下,其值很小,一般不超过变压器额定电流的3%~5%。当外部短路故障时,由于电源侧母线电压降低,励磁电流更小,因此这些情况下的不平衡电流对差动保护的影响一般可以不必考虑。在变压器空载投入电源或外部故障切除后电压恢复过程中,由于变压器铁芯中的磁通急剧增大,使铁芯瞬间饱和,这时出现数值很大的冲击励磁电流(可达5~10倍的额定电流),通常称为励磁涌流。励磁涌流的波形如下图: 由图可知,励磁涌流IE中含有大量的非周期分量与高次谐波,因此励磁涌流已不是正弦波,而是尖顶波,且在最初瞬间完全偏于时间轴的一侧。励磁涌流的大小和衰减速度,与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向、电源容量、变压器的容量及铁芯材料等因素有关。对于单相的双绕阻变压器,在其它条件相同的情况下,当电压瞬时值为零时合闸,励磁电流最大;如果在电压瞬时值最大时合闸,则不会出现励磁涌流,而只有正常的励磁电流。对于三相变压器,无论任何瞬间合闸,至少有两相会出现不同程度的励磁涌流。在起始瞬间,励磁涌流衰减的速度很快,对于一般的中小型变压器,经0.5~1S后其值不超过额定流的0.25~0.5倍;大型电力变压器励磁涌流的衰减速度较慢,衰减到上述值时约2~3S。这就是说, 变压器容量越大衰减越慢,完全衰减要经过几十秒的时间。根据试验和理论分析结果得知,励磁涌流中含有大量的高次谐波分量,其中二次谐波分量所占比例最大,约为60%以上。四次以上谐波分量很小,在最初几个周期内,励磁涌流的波形是间断的(即两个波形之间有一间断角),每个周期内有120。~180。的间断角,最小也不低于80。~100。[见左下图(b)]。另外,励磁涌流对于额定电流幅值的倍数,与变压器容量有关,容量越大,变压器的涌流倍数也越小。 3.4.2变压器差动保护中减小励磁涌流影响的措施 防止励磁涌流的影响,采用BCH型具有速饱和变流器的继电器是国内目前广泛采用的一种方法。当外部故障时,所含非周期分量的最大不平衡电流能使速饱和变流器的铁芯很快地单方面饱和,传变性能变坏,致使不平衡电流难于传变到差动继电器的差动线圈上,保证差动保护不会误动。内部故障时虽然速饱和变流器一次线圈的电流也含有一定的非周期性分量,但它衰减得快,一般经过1.5~2个周波即衰减完毕,此后速饱和变流器一次线圈中通过的完全是周期性的短路电流,于是在二次线圈中产生很大的感应电动势,并使执行元件中的相应电流也较大,从而使继电器能灵敏地动作。速饱和变流器正是利用容易饱和的性能来躲过变压器外部短路不平衡电流和空载合闸励磁涌流的非周期分量影响。 此外,减小励磁涌流还可以采用以下措施: 3.4.3采用内部短路电流和励磁涌流波形的差别(有无间断角)来躲过励磁涌流。 即间断角鉴别法,这种方法是将差电流进行微分,再将微分后的电流进行全波整流,利用整流后的波形在动作整定值下存在时间长短来判断是内部故障,还是励磁涌流。 3.4.4利用二次谐波制动。 保护装置在变压器空载投入和外部故障切除电压恢复时,利用二次谐波分量进行制动;内部故障时,利用基波做;外部故障时,利用比例制动回路躲过不平衡电流。 4结语 综上所述,为了保证差动保护动作的选择性,差动继电器的动作电流必须避越最大不平衡电流。不平衡电流越小,保护装置的灵敏度越高,从而保证变压器的安全稳定运行。 浅析变压器差动保护CT的接线问题 发布日期:2009-6-25 11:59:30 (阅374次) 关键词: 变压器 接线 差动保护 变压器差动保护为变压器的主保护,保护工作原理决定了CT接线的正确性十分重要,实际工作 中不乏由于差动回路接线错误造成保护不能正常工作的情况。因此有必要分析变压器差动保护CT接线的正确接法,找出规律,为现场施工和施工后的接线调整提供依据。以下讨论基于如下前提: ①变压器极性正确; ②CT本身极性正确,即L1同名端为K1; ③CT二次回路接线相别正确,即在转接端子上无A、C相接错的情况。 变压器差动保护一种正确的接法的接线图如图1所示:用IAY表示变压器星形侧A相一次电流,Iay表示A相二次电流,Iay’表示流进差动保护继电器的电流。 用Ia△表示变压器三角形侧a相一次电流,Ia△’表示a相二次电流。按图1所示电流方向,则有: Iay’ = Iby – Iay Iby’ = Icy – Iby Icy’ = Iay – Icy 相量图如图2所示,从图2中看出,三相两侧电流均反相,即有ICD=Iay’+ Ia△’=0。当然如果变压器星形侧流进继电器的电流方向取反方向,三相两侧电流则均同相,而此时仍有ICD= Ia△’- Iay’ =0。 第一种情况。将变压器星形侧CT接法反出,如图3(a)所示。则有 Iay’ = Iay – Icy Iby’ = Iby – Iay Icy’ = Icy – Iby 相量图如图3(b)所示,可见将A相与另一侧c相、B相与a相、C相与b相连接,则仍有ICD=0。 第二种情况,将上面三角形接法反接(引出端也反过来),如图4(a)所示。则有: Iay’ = Icy – Iay Iby’ = Iay –Iby Icy’ = Iby – Icy 可见,与第一种情况比较刚好反相。 第三种情况,CT接法反出,如图4(b)所示。则有: Iay’= Iay – Iby Iby’= Iby – Icy Icy’= Icy –Iay 可见,与上文介绍的正确接法反相。 总结出的规律如下: 反接相位反(引出端同时反过来);反出需调相(A与c,B与a,C与b)。再来看看CT极性标注,既可以认为是L1与K1,也可以认为是L2与K2。当不按同名端来接,则CT二次电流均反相 ,对于变压器星形侧,则有: Iay’= Iay – Iby Iby’= Iby – Icy Icy’= Icy –Iay 可见流进继电器的电流同样反相,CT星形接法当然是反相的。所以有以下结论:同名端反接,相位反;两侧均反相,作用同。为此有必要提出一种标准接法,在此基础上运用以上规律进行变化。标准接法叙述如下: ①靠近变压器侧接L1,K1出。 ②变压器星形侧AK1连BK2,BK1连CK2,CK1连AK2。 10kV线路保护整定计算问题及解决办法 发布日期:2009-7-3 14:29:18 (阅417次) 关键词: 继电保护 整定计算 10 kV线路 摘要:对10 kV线路继电保护的整定计算中存在的特殊问题,提出了解决的方法。 关键词:10 kV线路;继电保护;整定计算 10 kV配电线路结构复杂,有的是用户专线,只接一两个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几十米,有的线路长到几十千米;有的线路上配电变压器容量很小,最大不超过100 kVA,有的线路上却达几千千伏安的变压器;有的线路上设有开关站或用户变电站,还有多座并网小水电站等。有的线路属于最末级保护。陕西省镇安电网中运行的35 kV变电站共有7座,主变压器10台,总容量45.65 MVA;35 kV线路8条,总长度135 km;10 kV线路36条,总长度1240 km;并网的小水电站41座(21条上网线路),总装机容量17020 kW。 1 10 kV线路的具体问题 对于输电线路而言,一般无T接负荷,至多T接一、两个集中负荷。因此,利用规范的保护整定计算方法,各种情况都能够计算,一般均满足要求。但对于10 kV配电线路,由于以上所述的特点,在设计、整定、运行中会碰到一些具体问题,整定计算时需做一些具体的、特殊的考虑,以满足保护的要求。 2 保护整定应考虑系统运行方式 按《城市电力网规划设计导则》,为了取得合理的经济效益,城网各级电压的短路容量应该从网络的设计、电压等级、变压器的容量、阻抗的选择、运行方式等方面进行控制,使各级电压下断路器的开断电流以及设备的动热稳定电流得到配合,该导则推荐10 kV短路电流I k≤16 kA。 系统最大运行方式,流过保护装置短路电流最大的运行方式(由系统阻抗最小的电源供电)。 系统最小运行方式,流过保护装置短路电流最小的运行方式(由系统阻抗最大的电源供电)。 在无110 kV系统阻抗资料的情况时,由于3~35 kV系统容量与110 kV系统比较,相对较小,其各元件阻抗相对较大,则可近似认为110 kV系统容量为无穷大,对实际计算结果没有多大影响。 选取基准容量Sjz = 100 MVA,10 kV基准电压Ujz = 10.5kV,10 kV基准电流Ijz = 5.5 kA,10 kV基准阻抗Zjz = 1.103Ω。 3 整定计算方案 10 kV配电线路的保护,一般采用瞬时电流速断(Ⅰ段)、定时限过电流(III段)及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护,如保护Ⅱ段、电流电压速断、电压闭锁过电流、电压闭锁方向过电流等。现针对一般保护配置进行分析。 3.1 瞬时电流速断保护 由于10 kV线路一般为多级保护的最末级,或最末级用户变电站保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电站的线路,选择性靠重合闸来纠正。分为两种类型进行整定计 算。 放射状类型:按躲过本线路末端(主要考虑主干线)最大三相短路电流整定。时限整定为0 s(保护装置只有固有动作时间无人为延时)。 专线类型:按躲过线路上配电变压器低压侧出口最大三相短路电流整定。时限整定为0 s(保护装置只有固有动作时间无人为延时)。 特殊问题的解决如下 当线路很短时,最小方式时无保护区;或下一级为重要的用户变电站时,可将速断保护改为限时电流速断保护。动作电流与下级电流速断保护配合(即取1.1倍的下级保护最大速断值),动作时限较下级电流速断大一个时间级差,此种情况在城区较常见,在新建变电站或改造变电站时,建议保护配置采用微机保护,这样改变保护方式就非常容易。在无法采用其它保护的情况下,可依靠重合闸来保证选择性。 当线路较长且较规则,线路上用户较少,可采用躲过线路末端最大三相短路电流整定。此种情况一般能同时保证选择性与灵敏性,按放射状类型整定。 对于多条线路重叠故障,引起主变压器断路器越级跳闸时,按常规,在继电保护整定计算中是不考虑重叠故障的,但可采用加装瞬时电流速断保护,一般可整定于0 s 动作,使线路故障在尽可能短的时限内切除;在上下级保护时限配合可能的情况下,适当调整10 kV线路过电流保护与主变压器过电流保护的时限级差,以使主变压器过电流保护有足够的返回时间。 对于10 kV开关站进线保护,其速断保护按所有出现的最大一台变压器速断保护相配合(带延时)。 双侧电源线路的方向电流速断保护定值,应按躲过本线路末端最大三相短路电流整定;无方向的电流速断保护定值应按躲过本线路两侧母线最大三相短路电流整定。对双回线路,应以单回运行作为计算的运行方式;对环网线路,应以开环方式作为计算的运行方式。 单侧电源线路的电流速断保护定值,按双侧电源线路的方向电流速断保护的方法整定。 对于接入供电变压器的终端线路(含T接供电变压器或供电线路),如变压器装有差动保护,线路电流速断保护定值,允许按躲过变压器低压侧母线三相最大短路电流整定。如变压器以电流速断作为主保护,则线路电流速断保护应与变压器电流速断保护配合整定。 灵敏度校验(保护性能分析) 。按最大运行方式下,线路最大保护范围不应小于线路全长的50%。按最小运行方式下,线路最小保护范围不应小于线路全长的15%~20%。瞬时电流速断保护虽能迅速切除短路故障,但不能保护线路全长。 3.2 定时限过电流保护 按躲过本线路最大负荷电流整定。时限整定为0.3s(微机保护),按阶梯型原则整定。 特殊问题的解决如下。 当线路较长,过电流保护灵敏度不够时(如20 km以上线路),可采用复压闭锁过流或低压闭锁过流保护,此时负序电压取0.06Ue(Ue为额定电压),低电压取0.6~0.7Ue,动作电流按正常最大负荷电流整定,只考虑可靠系数及返回系数。当保护无法改动时,应在该线路适当处加装柱上断路器或跌落式熔断器,作为后一段线路的主保护,其额定电流按后面一段线路的最大负荷电流选取。 最终解决办法是调整网络结构,使10 kV线路供电半径符合规程要求。 当过电流保护,灵敏度不够时(如变压器为5~10kVA或线路极长),由于每台变压器高压侧均有跌落式熔断器,因此可不予考虑。 当过电流定值偏大,甚至大于瞬时电流速断定值时,而导致保护灵敏度不够时,可考虑保证1.5倍的灵敏度(近后备)整定。 对于时限级差配合无法满足整定要求时,因10 kV线路保护处于系统多级保护的最末端,而上级后备保护动作时限限制在一定数值范围内,可能会出现时限逐级配合后无法满足要求时,对于只有一台主变压器的变电站,可采用主变压器高压侧过电流保护相同的动作时限,使主变压器10 kV断路器动作时间增加0.5 s,有利于该断路器与10kV线路保护的配合。与逐级配合整定相比,对用户的停电影响相同,在实际中也是允许的。 对于上网小水电10 kV线路,应躲过小水电输送的最大三相短路电流,按双侧电源线路考虑,采用方向过电流保护。 4 三相一次重合闸 10 kV配电线路一般采用后加速的三相一次重合闸,由于安装于末级保护上,所以不需要与其他保护配合。考虑的主要是重合闸的重合成功率,以使用户负荷尽量少影响。根据有关统计分析,架空线路的瞬时性故障次数,约占故障次数的70%左右,重合闸的成功率约50%~70%。 因而重合闸对电力系统供电可靠性起了很大的作用。 重合闸整定时间, 应等于线路对有足够灵敏系数的延时段保护的动作时间,加上故障点足够断电去游离时间和裕度时间,再减去断路器合闸固有时间。 单侧电源线路的三相重合闸时间除应大于故障点断电去游离时间外,还应大于断路器及操作机构, 复归原状准备好再次动作的时间。单侧电源线路的三相一次重合闸动作时间不宜小于1 s。 双侧电源线路的三相重合闸时间,除了考虑单侧电源线路重合闸的因素外,还应考虑线路两侧保护装置,以不同时间切除故障的可能性。对于多回线并列运行的双侧电源线路的三相一次重合闸,其无电压检定侧的动作时间不宜小于5 s。 在10 kV配电线路中,多为照明负荷,供电可靠性要求较低,短时停电不会造成很大的损失。为了保证瞬时性故障能可靠消除,提高重合闸的重合成功率,可酌情延长重合闸动作时间,一般采用1.5 s的重合闸时间。 10 kV配电线路继电保护的配置虽然简单,但由于线路的复杂性和负荷的多变性,在保护装置的选型上值得重视。根据镇安电网保护配置情况及运行经验,建议在新建变电站保护 配置中采用微机保护。微机保护在具备电流速断、过电流及重合闸的基础上,还应具备低压(或复压)闭锁、时限速断、带方向保护等功能,以适应线路及负荷变化对保护方式的不同要求。 该整定计算方案经多年运行考验,符合选择性、灵敏性、速动性、可靠性“四性”原则,对于10 kV配电线路,动作时间小于0.5 s,保证了10 kV设备和线路的热稳定,同时选择性好,动作时间准确,未出现误动情况,保证了供电的可靠性。 因篇幅问题不能全部显示,请点此查看更多更全内容