您的当前位置:首页正文

一种企业风险评估方法及系统[发明专利]

2021-02-23 来源:易榕旅网
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 112163757 A(43)申请公布日 2021.01.01

(21)申请号 202011016692.0(22)申请日 2020.09.24

(71)申请人 福建省星云大数据应用服务有限公

地址 350000 福建省福州市鼓楼区工业路

洪山科技园科研楼5层505室(72)发明人 颜阿南 傅瑶 林欣郁 高元荣 

张毅 杨雅享 张兴 邱敏 

陈诗媛 林大勇 杨璐璐 刘小慧 (74)专利代理机构 福州市鼓楼区京华专利事务

所(普通合伙) 35212

代理人 宋连梅(51)Int.Cl.

G06Q 10/06(2012.01)G06Q 30/00(2012.01)

权利要求书2页 说明书7页 附图1页

G06F 16/215(2019.01)

CN 112163757 A(54)发明名称

一种企业风险评估方法及系统(57)摘要

本发明提供了计算机技术领域的一种企业风险评估方法及系统,方法包括如下步骤:步骤S10、从各政务系统获取各企业的政务数据;步骤S20、对获取的所述政务数据进行预处理后,存储至预先创建的数据库中;步骤S30、利用二维列联表对数据库中存储的各所述政务数据进行相关性分析,得到影响企业风险的自变量;步骤S40、创建一风险评估模型,将影响企业风险的自变量输入所述风险评估模型进行训练;步骤S50、利用训练后的所述风险评估模型对企业风险进行评估。本发明的优点在于:实现对施工企业的风险进行客观评估,进而极大的提高了施工的安全性。

CN 112163757 A

权 利 要 求 书

1/2页

1.一种企业风险评估方法,其特征在于:包括如下步骤:步骤S10、从各政务系统获取各企业的政务数据;步骤S20、对获取的所述政务数据进行预处理后,存储至预先创建的数据库中;步骤S30、利用二维列联表对数据库中存储的各所述政务数据进行相关性分析,得到影响企业风险的自变量;

步骤S40、创建一风险评估模型,将影响企业风险的自变量输入所述风险评估模型进行训练;

步骤S50、利用训练后的所述风险评估模型对企业风险进行评估。2.如权利要求1所述的一种企业风险评估方法,其特征在于:所述步骤S10具体包括:步骤S11、客户端通过SPI接口向各政务系统分别发送登录请求;步骤S12、政务系统基于接收的所述登录请求向客户端返回临时串码;步骤S13、客户端接收所述临时串码,利用加密算法基于用户密码对所述临时串码进行签名,生成第一签名数据并发送给政务系统;

步骤S14、政务系统接收所述第一签名数据,利用加密算法基于本地的用户密码对所述临时串码进行签名,生成第二签名数据,判断所述第一签名数据与第二签名数据是否一致,若是,则身份验证通过,进入步骤S15;若否,则身份验证不通过,结束流程;

步骤S15、政务系统将各企业的政务数据发送给客户端;所述政务数据至少包括注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数。

3.如权利要求1所述的一种企业风险评估方法,其特征在于:所述步骤S20具体为:创建一数据库,对获取的所述政务数据进行包括数据清洗、格式转换以及数据脱敏的预处理后,存储至所述数据库中。

4.如权利要求2所述的一种企业风险评估方法,其特征在于:所述步骤S30具体为:设定一数量阈值n,n为正整数;将所述政务数据中的注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况以及外部信用评价分数作为自变量,将所述政务数据中的安全事故发生次数作为因变量;

利用二维列联表对所述自变量与因变量进行相关性分析,得到相关性最大的n个自变量,即对企业风险影响最大的n个自变量。

5.如权利要求4所述的一种企业风险评估方法,其特征在于:所述步骤S40中,所述风险评估模型具体为:

安全事故发生概率=1/(1+exp(a+b1*自变量1+b2*自变量2+…+bn*自变量n));其中a和bn均表示回归系数;自变量n为注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数中的一个。

6.一种企业风险评估系统,其特征在于:包括如下模块:政务数据获取模块,用于从各政务系统获取各企业的政务数据;政务数据预处理模块,用于对获取的所述政务数据进行预处理后,存储至预先创建的

2

CN 112163757 A

权 利 要 求 书

2/2页

数据库中;

相关性分析模块,用于利用二维列联表对数据库中存储的各所述政务数据进行相关性分析,得到影响企业风险的自变量;

风险评估模型训练模块,用于创建一风险评估模型,将影响企业风险的自变量输入所述风险评估模型进行训练;

风险评估模块,用于利用训练后的所述风险评估模型对企业风险进行评估。7.如权利要求6所述的一种企业风险评估系统,其特征在于:所述政务数据获取模块具体包括:

登录请求发送单元,用于客户端通过SPI接口向各政务系统分别发送登录请求;临时串码发送单元,用于政务系统基于接收的所述登录请求向客户端返回临时串码;临时串码签名单元,用于客户端接收所述临时串码,利用加密算法基于用户密码对所述临时串码进行签名,生成第一签名数据并发送给政务系统;

签名验证单元,用于政务系统接收所述第一签名数据,利用加密算法基于本地的用户密码对所述临时串码进行签名,生成第二签名数据,判断所述第一签名数据与第二签名数据是否一致,若是,则身份验证通过,进入政务数据发送单元;若否,则身份验证不通过,结束流程;

政务数据发送单元,用于政务系统将各企业的政务数据发送给客户端;所述政务数据至少包括注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数。

8.如权利要求6所述的一种企业风险评估系统,其特征在于:所述政务数据预处理模块具体为:

创建一数据库,对获取的所述政务数据进行包括数据清洗、格式转换以及数据脱敏的预处理后,存储至所述数据库中。

9.如权利要求7所述的一种企业风险评估系统,其特征在于:所述相关性分析模块具体为:

设定一数量阈值n,n为正整数;将所述政务数据中的注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况以及外部信用评价分数作为自变量,将所述政务数据中的安全事故发生次数作为因变量;

利用二维列联表对所述自变量与因变量进行相关性分析,得到相关性最大的n个自变量,即对企业风险影响最大的n个自变量。

10.如权利要求9所述的一种企业风险评估系统,其特征在于:所述风险评估模型训练模块中,所述风险评估模型具体为:

安全事故发生概率=1/(1+exp(a+b1*自变量1+b2*自变量2+…+bn*自变量n));其中a和bn均表示回归系数;自变量n为注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数中的一个。

3

CN 112163757 A

说 明 书

一种企业风险评估方法及系统

1/7页

技术领域

[0001]本发明涉及计算机技术领域,特别指一种企业风险评估方法及系统。

背景技术

[0002]施工企业在承揽工程时需要具备一定的资质,不同等级的资质能够承揽不同规模的工程,但单纯从资质等级并不能有效的判断施工企业的风险系数,若仅从资质等级这单一的维度觉得施工企业能否承揽工程,将产生巨大的安全隐患。[0003]随着政务信息的建设,海量的政务数据正在逐步生成和生长,这些不断产生的政务数据里蕴含的大量信息,具有丰富的利用价值,通过对这些政务数据的整理和分析,能够更有效、更有针对性的对施工企业进行风险评估。[0004]因此,如何提供一种企业风险评估方法及系统,实现对施工企业的风险进行客观评估,进而提高施工的安全性,成为一个亟待解决的问题。发明内容

[0005]本发明要解决的技术问题,在于提供一种企业风险评估方法及系统,实现对施工企业的风险进行客观评估,进而提高施工的安全性。[0006]第一方面,本发明提供了一种企业风险评估方法,包括如下步骤:[0007]步骤S10、从各政务系统获取各企业的政务数据;[0008]步骤S20、对获取的所述政务数据进行预处理后,存储至预先创建的数据库中;[0009]步骤S30、利用二维列联表对数据库中存储的各所述政务数据进行相关性分析,得到影响企业风险的自变量;[0010]步骤S40、创建一风险评估模型,将影响企业风险的自变量输入所述风险评估模型进行训练;

[0011]步骤S50、利用训练后的所述风险评估模型对企业风险进行评估。[0012]进一步地,所述步骤S10具体包括:[0013]步骤S11、客户端通过SPI接口向各政务系统分别发送登录请求;[0014]步骤S12、政务系统基于接收的所述登录请求向客户端返回临时串码;[0015]步骤S13、客户端接收所述临时串码,利用加密算法基于用户密码对所述临时串码进行签名,生成第一签名数据并发送给政务系统;[0016]步骤S14、政务系统接收所述第一签名数据,利用加密算法基于本地的用户密码对所述临时串码进行签名,生成第二签名数据,判断所述第一签名数据与第二签名数据是否一致,若是,则身份验证通过,进入步骤S15;若否,则身份验证不通过,结束流程;[0017]步骤S15、政务系统将各企业的政务数据发送给客户端;所述政务数据至少包括注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数。

4

CN 112163757 A[0018]

说 明 书

2/7页

进一步地,所述步骤S20具体为:

[0019]创建一数据库,对获取的所述政务数据进行包括数据清洗、格式转换以及数据脱敏的预处理后,存储至所述数据库中。[0020]进一步地,所述步骤S30具体为:[0021]设定一数量阈值n,n为正整数;将所述政务数据中的注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况以及外部信用评价分数作为自变量,将所述政务数据中的安全事故发生次数作为因变量;[0022]利用二维列联表对所述自变量与因变量进行相关性分析,得到相关性最大的n个自变量,即对企业风险影响最大的n个自变量。[0023]进一步地,所述步骤S40中,所述风险评估模型具体为:

[0024]安全事故发生概率=1/(1+exp(a+b1*自变量1+b2*自变量2+…+bn*自变量n));[0025]其中a和bn均表示回归系数;自变量n为注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数中的一个。[0026]第二方面,本发明提供了一种企业风险评估系统,包括如下模块:[0027]政务数据获取模块,用于从各政务系统获取各企业的政务数据;[0028]政务数据预处理模块,用于对获取的所述政务数据进行预处理后,存储至预先创建的数据库中;[0029]相关性分析模块,用于利用二维列联表对数据库中存储的各所述政务数据进行相关性分析,得到影响企业风险的自变量;[0030]风险评估模型训练模块,用于创建一风险评估模型,将影响企业风险的自变量输入所述风险评估模型进行训练;[0031]风险评估模块,用于利用训练后的所述风险评估模型对企业风险进行评估。[0032]进一步地,所述政务数据获取模块具体包括:[0033]登录请求发送单元,用于客户端通过SPI接口向各政务系统分别发送登录请求;[0034]临时串码发送单元,用于政务系统基于接收的所述登录请求向客户端返回临时串码;

[0035]临时串码签名单元,用于客户端接收所述临时串码,利用加密算法基于用户密码对所述临时串码进行签名,生成第一签名数据并发送给政务系统;[0036]签名验证单元,用于政务系统接收所述第一签名数据,利用加密算法基于本地的用户密码对所述临时串码进行签名,生成第二签名数据,判断所述第一签名数据与第二签名数据是否一致,若是,则身份验证通过,进入政务数据发送单元;若否,则身份验证不通过,结束流程;

[0037]政务数据发送单元,用于政务系统将各企业的政务数据发送给客户端;所述政务数据至少包括注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数。[0038]进一步地,所述政务数据预处理模块具体为:

5

CN 112163757 A[0039]

说 明 书

3/7页

创建一数据库,对获取的所述政务数据进行包括数据清洗、格式转换以及数据脱

敏的预处理后,存储至所述数据库中。[0040]进一步地,所述相关性分析模块具体为:[0041]设定一数量阈值n,n为正整数;将所述政务数据中的注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况以及外部信用评价分数作为自变量,将所述政务数据中的安全事故发生次数作为因变量;[0042]利用二维列联表对所述自变量与因变量进行相关性分析,得到相关性最大的n个自变量,即对企业风险影响最大的n个自变量。[0043]进一步地,所述风险评估模型训练模块中,所述风险评估模型具体为:

[0044]安全事故发生概率=1/(1+exp(a+b1*自变量1+b2*自变量2+…+bn*自变量n));[0045]其中a和bn均表示回归系数;自变量n为注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数中的一个。[0046]本发明的优点在于:

[0047]通过从各政务系统获取包括注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数的政务数据,即整合了各政务系统多维度的政务数据,再对政务数据进行数据清洗、格式转换以及数据脱敏的预处理后,利用二维列联表找出对企业风险影响最大的n个自变量,将n个自变量输入创建的风险评估模型进行训练,最终利用训练后的风险评估模型对企业风险进行评估,实现对施工企业的风险进行客观评估,进而极大的提高了施工的安全性,使施工企业的监管逐步从粗放型向精细化、精准化转变,从被动响应向主动预见转变,从经验判断向大数据科学决策转变。附图说明

[0048]下面参照附图结合实施例对本发明作进一步的说明。[0049]图1是本发明一种企业风险评估方法的流程图。[0050]图2是本发明一种企业风险评估系统的结构示意图。

具体实施方式

[0051]本申请实施例中的技术方案,总体思路如下:从各政务系统获取多维度的政务数据,再对政务数据进行预处理后,利用二维列联表找出对企业风险影响最大的n个自变量,将n个自变量输入创建的风险评估模型进行训练,最终利用训练后的风险评估模型对企业风险进行评估,实现对施工企业的风险进行客观评估,进而提高施工的安全性。[0052]请参照图1至图2所示,本发明一种企业风险评估方法的较佳实施例,包括如下步骤:

[0053]步骤S10、从各政务系统获取各企业的政务数据;传统上各政务系统的政务数据是相互割裂的,未进行整合分析,使得数据的价值未被充分利用,本申请从各政务系统获取多维的政务数据能够对企业风险进行全面的评估,提升风险评估的准确性;

6

CN 112163757 A[0054]

说 明 书

4/7页

步骤S20、对获取的所述政务数据进行预处理后,存储至预先创建的数据库中;

[0055]步骤S30、利用二维列联表对数据库中存储的各所述政务数据进行相关性分析,得到影响企业风险的自变量;[0056]步骤S40、在SPSS软件上创建一风险评估模型,将影响企业风险的自变量输入所述风险评估模型进行训练;所述风险评估模型能够很好的解释各自变量对因变量的影响。[0057]步骤S50、利用训练后的所述风险评估模型对企业风险进行评估。[0058]利用所述风险评估模型能够对企业的安全事故发生概率进行计算,在具体实施时,可将安全事故发生概率转换为对应的分值,例如(1-安全事故发生概率)*1200,即将分值映射到1至1200的区间,还可基于资质等级以及是否具有施工安全证进行额外的加分,并将分值区间用A、B、C、D、E来表示,便于直观区分风险等级。[0059]所述步骤S10具体包括:[0060]步骤S11、客户端通过SPI接口向各政务系统分别发送登录请求;[0061]步骤S12、政务系统基于接收的所述登录请求向客户端返回临时串码;即将所述临时串码作为会话凭据;[0062]步骤S13、客户端接收所述临时串码,利用加密算法基于用户密码对所述临时串码进行签名,生成第一签名数据并发送给政务系统;[0063]步骤S14、政务系统接收所述第一签名数据,利用加密算法基于本地的用户密码对所述临时串码进行签名,生成第二签名数据,判断所述第一签名数据与第二签名数据是否一致,若是,则身份验证通过,进入步骤S15;若否,则身份验证不通过,结束流程;所述加密算法优选为HMAC算法;通过这种身份验证的方法,全过程无需传输用户密码,避免用户密码在传输过程中被窃取,而所述临时串码作为后续调用的身份标识;[0064]步骤S15、政务系统将各企业的政务数据发送给客户端;所述政务数据至少包括注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数,即从企业基本信息、资质信息以及信用行为3大维度选取政务数据。[0065]在具体实施时,可对所述政务数据进行量化,例如注册资本单位为万元,取其自然对数作为自变量;根据总资产、总负债、总收入、总利润、净利润等财务指标计算资产负债率、利润率和总资产净利率;资质等级分为一级、二级、三级、四级,对应4、3、2、1四个定值,若没有匹配到资质等级则取0;外部信用评价分数取近三年最高分和最低分均值。[0066]所述步骤S20具体为:[0067]创建一数据库,对获取的所述政务数据进行包括数据清洗、格式转换以及数据脱敏的预处理后,存储至所述数据库中。数据清洗即预设一些筛选条件对所述政务数据进行过滤;格式转换即将从各政务系统获取的政务数据转换为统一格式,便于后期的数据分析利用;数据脱敏指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据的可靠保护。

[0068]所述步骤S30具体为:[0069]设定一数量阈值n,n为正整数;将所述政务数据中的注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况以及外部信用评价分数作为自变量,将所述政务数据中的

7

CN 112163757 A

说 明 书

5/7页

安全事故发生次数作为因变量;[0070]利用二维列联表对所述自变量与因变量进行相关性分析,得到相关性最大的n个自变量,即对企业风险影响最大的n个自变量。[0071]所述步骤S40中,所述风险评估模型具体为:

[0072]安全事故发生概率=1/(1+exp(a+b1*自变量1+b2*自变量2+…+bn*自变量n));[0073]其中a和bn均表示回归系数;自变量n为注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数中的一个。所述风险评估模型中,(a+b1*自变量1+b2*自变量2+…+bn*自变量n)部分为线性回归分析,1/(1+exp(.))表示将线性回归的取值进行归一化处理,最终使得安全事故发生概率的取值范围为0至1。[0074]例如设置数量阈值n的取值为5,通过二维列联表分析得到对企业风险影响最大的5个自变量分别为不良行为次数、处罚次数、黑名单上榜次数、惩戒次数以及外部信用评价分数,利用这5个自变量对所述风险评估模型进行训练得到:

[0075]安全事故发生概率=1/(1+exp(0.642+0.079*不良行为次数+0.447*处罚次数+0.21*黑名单上榜次数+0.188*惩戒次数-0.007*外部信用评价分数))。[0076]本发明一种企业风险评估系统的较佳实施例,包括如下模块:[0077]政务数据获取模块,用于从各政务系统获取各企业的政务数据;传统上各政务系统的政务数据是相互割裂的,未进行整合分析,使得数据的价值未被充分利用,本申请从各政务系统获取多维的政务数据能够对企业风险进行全面的评估,提升风险评估的准确性;[0078]政务数据预处理模块,用于对获取的所述政务数据进行预处理后,存储至预先创建的数据库中;[0079]相关性分析模块,用于利用二维列联表对数据库中存储的各所述政务数据进行相关性分析,得到影响企业风险的自变量;[0080]风险评估模型训练模块,用于在SPSS软件上创建一风险评估模型,将影响企业风险的自变量输入所述风险评估模型进行训练;所述风险评估模型能够很好的解释各自变量对因变量的影响。

[0081]风险评估模块,用于利用训练后的所述风险评估模型对企业风险进行评估。[0082]利用所述风险评估模型能够对企业的安全事故发生概率进行计算,在具体实施时,可将安全事故发生概率转换为对应的分值,例如(1-安全事故发生概率)*1200,即将分值映射到1至1200的区间,还可基于资质等级以及是否具有施工安全证进行额外的加分,并将分值区间用A、B、C、D、E来表示,便于直观区分风险等级。[0083]所述政务数据获取模块具体包括:[0084]登录请求发送单元,用于客户端通过SPI接口向各政务系统分别发送登录请求;[0085]临时串码发送单元,用于政务系统基于接收的所述登录请求向客户端返回临时串码;即将所述临时串码作为会话凭据;[0086]临时串码签名单元,用于客户端接收所述临时串码,利用加密算法基于用户密码对所述临时串码进行签名,生成第一签名数据并发送给政务系统;[0087]签名验证单元,用于政务系统接收所述第一签名数据,利用加密算法基于本地的用户密码对所述临时串码进行签名,生成第二签名数据,判断所述第一签名数据与第二签

8

CN 112163757 A

说 明 书

6/7页

名数据是否一致,若是,则身份验证通过,进入政务数据发送单元;若否,则身份验证不通过,结束流程;所述加密算法优选为HMAC算法;通过这种身份验证的方法,全过程无需传输用户密码,避免用户密码在传输过程中被窃取,而所述临时串码作为后续调用的身份标识;[0088]政务数据发送单元,用于政务系统将各企业的政务数据发送给客户端;所述政务数据至少包括注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数,即从企业基本信息、资质信息以及信用行为3大维度选取政务数据。

[0089]在具体实施时,可对所述政务数据进行量化,例如注册资本单位为万元,取其自然对数作为自变量;根据总资产、总负债、总收入、总利润、净利润等财务指标计算资产负债率、利润率和总资产净利率;资质等级分为一级、二级、三级、四级,对应4、3、2、1四个定值,若没有匹配到资质等级则取0;外部信用评价分数取近三年最高分和最低分均值。[0090]所述政务数据预处理模块具体为:[0091]创建一数据库,对获取的所述政务数据进行包括数据清洗、格式转换以及数据脱敏的预处理后,存储至所述数据库中。数据清洗即预设一些筛选条件对所述政务数据进行过滤;格式转换即将从各政务系统获取的政务数据转换为统一格式,便于后期的数据分析利用;数据脱敏指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据的可靠保护。

[0092]所述相关性分析模块具体为:[0093]设定一数量阈值n,n为正整数;将所述政务数据中的注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况以及外部信用评价分数作为自变量,将所述政务数据中的安全事故发生次数作为因变量;[0094]利用二维列联表对所述自变量与因变量进行相关性分析,得到相关性最大的n个自变量,即对企业风险影响最大的n个自变量。[0095]所述风险评估模型训练模块中,所述风险评估模型具体为:

[0096]安全事故发生概率=1/(1+exp(a+b1*自变量1+b2*自变量2+…+bn*自变量n));[0097]其中a和bn均表示回归系数;自变量n为注册资本、成立时间、总资本、总负债、总收入、总利润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数中的一个。所述风险评估模型中,(a+b1*自变量1+b2*自变量2+…+bn*自变量n)部分为线性回归分析,1/(1+exp(.))表示将线性回归的取值进行归一化处理,最终使得安全事故发生概率的取值范围为0至1。[0098]例如设置数量阈值n的取值为5,通过二维列联表分析得到对企业风险影响最大的5个自变量分别为不良行为次数、处罚次数、黑名单上榜次数、惩戒次数以及外部信用评价分数,利用这5个自变量对所述风险评估模型进行训练得到:

[0099]安全事故发生概率=1/(1+exp(0.642+0.079*不良行为次数+0.447*处罚次数+0.21*黑名单上榜次数+0.188*惩戒次数-0.007*外部信用评价分数))。[0100]综上所述,本发明的优点在于:

[0101]通过从各政务系统获取包括注册资本、成立时间、总资本、总负债、总收入、总利

9

CN 112163757 A

说 明 书

7/7页

润、净利润、企业性质、资质等级、不良行为次数、黑名单上榜次数、处罚次数、惩戒次数、经营异常情况、外部信用评价分数以及安全事故发生次数的政务数据,即整合了各政务系统多维度的政务数据,再对政务数据进行数据清洗、格式转换以及数据脱敏的预处理后,利用二维列联表找出对企业风险影响最大的n个自变量,将n个自变量输入创建的风险评估模型进行训练,最终利用训练后的风险评估模型对企业风险进行评估,实现对施工企业的风险进行客观评估,进而极大的提高了施工的安全性,使施工企业的监管逐步从粗放型向精细化、精准化转变,从被动响应向主动预见转变,从经验判断向大数据科学决策转变。[0102]虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

10

CN 112163757 A

说 明 书 附 图

1/1页

图1

图2

11

因篇幅问题不能全部显示,请点此查看更多更全内容