半导体激光器自动温度控制电路设计
作者:赵京
来源:《电子世界》2013年第17期
【摘要】本文对用于通信设备的半导体激光器温度控制电路进行了模型建立和分析,并从自动控制的角度对温控电路形式进行了详细的性能指标分析和测试,通过对不同的控制方法的仿真分析和实测数据的对比得出了一种较为有效的温度控制电路,可以满足一般温控系统的要求。
【关键词】温度检测;自动温度控制;TEC
在光纤通信领域,通常使用半导体激光器作为光源,而半导体激光器的发射波长与管芯的温度密切相关,温度升高将导致波长变长(一般为0.1nm℃),对于一般的单波长光通信系统来说,波长的漂移对系统性能并无太大影响。但对于密集波分复用系统(DWDM),由于通道间的波长间隔已经很小,保持波长的稳定就变得非常重要。例如,工作在C波段的32波系统,通路波长间隔为100GHz(约0.8nm),而工作在C+L波段的160波系统,通路波长间隔为50GHz(约0.4nm)。因此,如果不对激光器管芯的温度加以控制,微小的温度变化将导致整个系统的不可用。另外,半导体激光器是对温度敏感的器件,其阈值电流、输出波长以及输出光功率的稳定性都对温度非常敏感,其工作寿命也与其工作温度密切相关。
实验表明,温度每升高30℃激光器的寿命会降低一个数量级[1]-[4]。对于可靠性要求高的场合,且保证激光器的寿命就需要对管芯温度加以控制,这样在系统中就需要附加一个自动温度控制电路(ATC)来实现对激光器管芯的温度控制。 1.温度控制系统原理 2.热模型的建立
一般带致冷激光器的常见结构是首先将激光器、背光管、热敏电阻等组件安装在一个子热沉上,然后再固定到TEC制冷器上,当温控电路正常工作时,位于TEC上的子热沉将恒定在某一设定温度值。当给TEC致冷器通不同极性的电流时能够分别实现致冷或致热,无论处于致冷还是致热状态,温度都不会突变,而是一个缓慢变化的过程。而在一定的电流下,当时间足够长时由于外界的热交换达到了平衡状态,温度将维持在某一个值(即与壳体间的恒定温差)。因此可以推测TEC致冷器在传递函数模型上类似于一阶惯性环节:,(为致热致冷效率,为时间常数),为了确定和,以某恒定电流作为TEC致冷器输入,并通过热敏电阻检测温度的变化,将采集到的温度与时间的关系通过计算机绘制得到相应的曲线。以激光器FUJITSU的FLD5F6CXF为例,经过测量可取6秒,可取90,即1安培电流能获得的温差约为90℃。由于TEC致冷器和温度传感器之间存在一定的距离,所以还需考虑这种距离带来的温度
龙源期刊网 http://www.qikan.com.cn
延迟时间,被测的FUJITSU激光器的热延迟时间t大约为100毫秒左右,由于延迟的存在,相当于在控制回路中增加了一个延迟环节。 3.温度检测及放大电路 3.1 热敏电阻 3.2 直流电桥
5.温度控制电路设计总结
测试中分别采用了比例控制器、积分控制器和比例-积分控制器进行了试验,采用比例控制器系统的响应时间快,但稳定性很难控制;采用积分控制器系统稳定性相对于比例控制器有所提高,但是系统的响应时间将变得非常缓慢;采用比例-积分(PI)控制器系统响应时间有了很大改善,系统的的稳定性较好(图5为PI控制器上电阶跃响应实测图),对于一般的温控系统,这样的动态性能已能满足需求。对于需要较快速响应的场合,可考虑采用比例-积分-微分(PID)控制器,通过增加微分环节来提高系统的瞬态响应。
另外,考虑到不同厂家不同型号或同一厂家不同型号的激光器在性能参数上都存在差异,以及放大电路的温度漂移、非线性等,这些都对温控电路参数有一定的影响,因此在实际应用中温度控制电路的各个参数需要根据所选用的激光器来选取,并结合仿真以及试验将参数调节到最佳值。 参考文献
[1]RICCI L.,WEIDEMuLLER M,ESSLINGER T,et a1.A compact grating-stabilized diode laser system for atomic physics[J].Optics Communications,1995,117:541-549.
[2]MISKOVICE Wavelength lockers keep lasers in line[J].Photonics Spectra,1999,2:104-110.
[3]ABEDINETAL K.S.Active stabilization of a higher-order mode-locker fiber laser operating at a pulses-repetition rate of 154GHz[J].Optics Letter,2001,26(3):151-153.
[4]吴仕平,陈军,蔡洁,刘二丽,刘庆.基于模糊PID的半导体激光器工作温度控制[J].光学仪器,2009,31(6).
[5]胡寿松.自动控制原理[M].科学出版社,2012.
[6]康华光.电子技术基础(模拟部分)[M].高等教育出版社,2006.
龙源期刊网 http://www.qikan.com.cn
作者简介:赵京,硕士,武汉理工大学华夏学院讲师,主要研究方向:检测技术与自动化装置、电子技术等。
因篇幅问题不能全部显示,请点此查看更多更全内容