您的当前位置:首页正文

电脑电源维修 (1)

2021-10-13 来源:易榕旅网


1、KA7500B第12脚(供电脚):正常数据: +12V-+20V左右,少数机器26V也属正常。。

2、KA7500B第8、11脚(半桥驱动输出):正常数据:+2V左右,用来驱动半桥电路,将300V电压进行功率变换的。

3、KA7500B第4脚(保护脚):正常数据:0V,如为3V,说明电路处于保护状态,应该检查相关电路有无过流过压损坏的元件。

4、KA7500B第13、14、15脚(IC内部输出脚):内部输出5V.

具体检测方法:

脱机待机下,测试整流后的两个大滤波电容上应有+300V左右的直流电压。

测量7500或494的第12脚供电脚应12V--20V的直流供电,第14脚应有从内部输出的5V,第4脚(保护脚)正常时为0V,第8脚、第11脚应有1.5--2V的的驱动电压输出。哪一点电压不对,查其相关电路,即可找出故障元件。

直接代换

TL494/KA7500B/BD494/BDL494/S494PA/IR3M02/MB3670/MB3759 /MST894C/TL594/ULN8186/DBL494/ULS8194R/IR9494/UPC494 /UA494/TL494CN

保险丝良好,各路直流电压无输出的检修

ATX开关电源脱机,将电路板从电源盒中拆出,延长电源盒到电路板的电源连线,加电。测两只半桥变换开关管的ce电压,应为

+300V的一半,否则开关管损坏。

若开关管正常,将PS-ON对地短接而无电压输出,应为保护电路动作或KA7500B、LM339及其外围元件损坏。

先测KA7500B的12脚电压,应在10V~40V。若无,可断开12脚与外部的连接,如电压正常,KA7500B必坏;若仍无,查至辅

助电源间的供电支路。

12脚供电电压正常,测14脚+5V基准电压,若无或偏差+5V很大,则KA7500B必坏。

14脚+5V电压正常,测4脚,应为低电平。若偏高,可断开4脚与LM339电路的连接,仍高的话,KA7500B损坏。 KA7500B正常,4脚仍高电平,有两种情况:一是4脚与14间的电解电容漏电;二是LM339及其外围电路异常。 正常状态下,待机时,PS-ON为高电平,使LM339的6脚电压比较器II的反相端为高电平,略高于7脚电压比较器II的同相端电平,使1脚电压比较器II的输出端为低电平,通过外围电路使4脚LM339电压比较器I的反相端为低电平,低于电压比较器I的同相端电平,使2脚电压比较器I的输出端为高电平,经外围电路,使KA7500B的4脚为高电平,封锁8、11脚的脉宽调制信号输出。同时,1脚的低电平又通过外围电路,使LM339的14脚电压比较器III的输出端为低电平,通过外围电路,使LM339的11脚电压比较器

IV的同相端为低电平,从13脚电压比较器IV的输出端为低电平,无PW-OK信号送出。

启动后,PS-ON为低电平,使LM339的6脚为低电平,低于7脚电平,使1脚输出端为高电平。由于外围电路的隔离,电压比较器I不再受1脚控制。通常,电压比较器I的反相端4脚电平,设置的比同相端5脚电平高,而使其2脚输出端呈低电平,经外围电路,使KA7500B的4脚为低电平,允许8、11脚的脉宽调制信号输出。KA7500B的1脚电压比较器的同相端取样电平略高于2脚反相端的电平,使其输出端3脚为高电平。经外围电路,使LM339的9脚为高电平,电压比较器III比较后,14脚输出高电平。经外围电

路,使11脚为高电平,电压比较器IV比较后,13脚输出高电平,向主机送出PW-OK信号。

所以,如果电解电容电容正常,而KA7500B的4脚仍为高电平,可按上述LM339的工作流程,对LM339和外围电路进行检查,

就能发现问题所在。

如果ATX的整流滤波输出电路存在短路性故障,通过外围连接电路,会使KA7500B的6脚电平拉高,当超过内部误差放大器的固定分压比时,促使调制脉冲变窄,使输出电流减小。同时,LM339的5脚电平也被拉高,使2脚电压比较器I的输出端为高电平,经

外围电路,使KA7500B的4脚为高电平,封锁8、11脚的脉宽调制信号输出而保护。

如果保护电路动作。将PS-ON端对地短接,测PW-OK端为低电平,查LM339及其外围电路;PW-OK端为高电平,可查整流滤波直流输出电路的肖特基快恢复整流二极管是否击穿、滤波电容是否漏电、负载电阻是否短路、功率变换变压器是否存在匝间短路等。

以上分析只是对KA7500B和LM339配对使用时,一般情况下的工作流程说明,不针对什么牌子的开关电源,只要是KA7500B

和LM339配对使用就适用,希望对各位有所帮助。

TL494各电压实测值对照表(V)

引脚 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 待机时 0 4.5 0 3.3 1.5 3.2 0 2.3 0 0 2.4 10~40 5 5 5 0.5 启动后 4.4 4.3 3 0 1.5 3.2 0 2.3 0 0 2.4 10~40 5 5 5 0.5

说明:有的电路16脚接地。KA7500B和TL494的功能、引脚排列都是一样的,完全可以代换。

在ATX开关电源中,+5V SB开关电源是非受控的辅助电源,其工作在高频率、高电压的工作状态下,在正常情况下接通电源时,它输出一路非受控的+5V SB电压和一组为脉宽调制集成控制IC DBL494{12}脚供电电压,使其处于待机状态。以ATX9912P机型为例,介绍其常见故障及检修,供参考,电路如附图。  [例1]接通电源,开启电源开关O/I,无电压输出,同时无+5V SB。

拆盖查相关元件无异常,保险管F1完好,测滤波电容C1、C2无短路现象,并有充放电过程;用数字万用表DT9208测开关管Q2及Q1、ZD1、D8均未发现击穿或变值现象。于是,接通电源测Q2 c极有+300V电压,说明电源整流滤波输出正常。检查未发现损坏的元件,分析很可能是控制回路中某电容(如C5、C4等)失效,更换C5后开机,一切正常。

 [例2]接通电源,开启电源开关O/I,无输出。

拆盖测保险F1已熔断,同时,测量开关管Q2已击穿,用C3150代换Q2(C5027),装上F1(6.3A/250V)后,开机,一切正常。此故障是因Q2固定螺丝间的绝缘管或绝缘片安装不良,导致Q2因外壳与散热片相碰而击穿,并熔断F1,导致无输出,所以在更换Q时应特别注意绝缘可靠。  [例3]故障现象同例2。

拆盖,用万用表测F1已熔断,查Q1、Q2均击穿更换Q1、Q2后,装上F1开机,故障依旧。经查R10、R11开路,用100Ω/0.125W的电阻换上后,开机有输出,但+5VSB过高,说明反馈回路或稳压部分还有故障。快速关机(开机时过长,会再次击穿开关管),经查光耦合器PH1损坏,用PC817更换后,开机一切正常。  [例4]开启电源开关O/I,+5VSB过低,其余各路输出正常。

其余各路输出正常,说明电源工作基本正常,但+5V SB接上负载后,下降至2~4V左右(此时,用示波器测其波形变得很散,甚至看不到波形)。说明电源带负载能力差,故障很可能发生在反馈控制回路,经查Q1性能不良(b-e结阻值变大),用C945更换后,开机带载一切正常。

使用长城电源的用户不在少数,可是维修资料却少之又少,在此发表一贴,以期抛砖引玉! 为方便阅读,图纸就上传二张(如果占了坛子空间,请版主删除),别的图纸可以在咱家坛子里找到的。

通过维修一些ATX电源盒,加上阅读一些资料,将一些维修ATX电源盒的小经验,发到坛子里,希望能助上需要此类信息朋友的一臂之力,同时如果有不对之处,还请坛主

和朋友们批评并指正,以便大家共同进步!

在维修过程中,如果打开电源盒就能看到次级有鼓包的电容,建议先将它们更换掉,特别是对ATX电源盒内保险没有烧断却仍保护没有输出的情况下,可以起到事半功倍的效果,本人就曾遇到过两例,更换后电源就正常工作了. 另外,修好电源后建议用一个30W5Ω的电阻(用来测试5V带载能力的,测试时间自己把握哟,发热的

)和

一个12V的风扇做假负载通电试机1小时以上再上机,试机过程中5Ω负载会发热,请注意!如果修复后测量某组电压低,如12V测量只有10点几伏,可以加负载(风扇)再测,多数即可恢复显示正常值。

检修过程中如发现次级5V、12V整流管有击穿短路故障时,不要在更换元件后就通电上机,应检查一下相关的5V接口和12V接口(如CPU供电、硬盘供电接口)是否损坏,确认无误并用假负载试机后再上机,以免再次损坏电源。

长城系列电源维修关键测试点: (目前常用的是UPC、TL494或KA7500,它们之间可以直接代换):

1、KA7500B第12脚(供电脚):正常数据: +12V-+20V左右,少数机器26V也属正常。

2、LM339N第13脚(PG输出脚): 正常数据:5V ,第3脚为5V供电,此5V来自7500内部输出。

3、KA7500B第8、11脚(半桥驱动输出):正常数据:+2V左右,用来驱动半桥电路,将300V电压进行功率变换的。 4、KA7500B第4脚(保护脚):正常数据:0V,如为3V,说明电路处于保护状态,应该检查相关电路有无过流过压损坏的元件。

5、KA7500B第13、14、15脚(IC内部输出脚):内部输出5V.

长城系列电源通用IC代换表:

TL494/KA7500B/BD494/BDL494/S494PA/IR3M02/MB3670/MB3759 /MST894C/TL594/ULN8186/DBL494/ULS8194R/IR9494/UPC494 /UA494/TL494CN

常用元件型号:

5V电源管 C3866 功率管 J13009-2

BYW51200 SBL2045CT S30SC4M (2009.1.13补充)

这里再补充一点具体检测方法:

脱机待机下,测试整流后的两个大滤波电容上应有+300V左右的直流电压,ATX14脚(绿线,PS信号)应该有5V,LM339的13脚(PG)应该为0V,ATX紫色线上应该有+5V,其他各脚为0V。

短接绿、黑线启动电源后,ATX绿线就为0V,PG为5V,同时ATX其他各脚应有正常的电压输出。继续测量7500或494的第12脚供电脚应12V--20V的直流供电,第14脚应有从内部输出的5V,第4脚(死区,保护脚)正常时为0V,第8脚、第11脚应有1.5--2V的的驱动电压输出。哪一点电压不对,查其相关电路,即可找出故障元件。

四、故障检修实例

实例1 一台LWT2005型开关电源供应器,开机出现“三无(主机电源指示灯不亮,开关电源风扇不转,显示器点不亮)”。

故障分析与维修:先采用替换法(用一个好的ATX开关电源替换原主机箱内的ATX电源)确认LWT2005型开关电源已坏。然后拆开故障电源外壳,直观检查发现机板上辅助电源电路部分的R001、R003、R05呈开路性损坏,Q1(C1815)、开关管Q03(BUT11A)呈短路性损坏,如图14所示。且R003烧焦、Q1的c、e极炸断,保险管FUSE(5A/250V)发黑熔断。经更换上述损坏元器件后,采用二中的检修方法和技巧:用一根导线将ATX插头14脚与15脚(两脚相邻,便于连接)连接,并在+12V端接一个电源风扇。检查无误后通电,发现两个电源风扇(开关电源自带一个+12V散热风扇)转速过快,且发出很强的呜音,迅速测得+12V上升为+14V,且辅助电源电路部分发出一股逐渐加强的焦味,立即关电。分析认为,输出电压升高,一般是稳压电路有问题。细查为IC4、IC3构成的稳压电路部分的IC3(光电耦合器Q817)不良。由于IC3不良,当输出电压升高时,IC3内部的光敏三极管不能及时导通,从而就没有反馈电流进入开关管Q03的e极,不能及时缩短Q03的导通时间,导致Q03导通时间过长,输出电压升高。如不及时关电,(从发出的焦味来看,Q03很可能因导通时间过长,功耗过重而损坏)又将大面积地烧坏元器件。

将IC3更换后,重新检查、测量刚才更换过的元器件,确认完好后通电。测各路输出电压一切正常,风扇转速正常(几乎听不到转动声)。通电观察半小时无异常现象。再接入主机内的主板上,通电试机2小时一直正常。至此,检修过程结束。后又维修大量同型号或不同型号(其电路大多数相同或类似)的开关电源,其损坏的电路及元器件大多雷同。 实例2 一台银河YH—004A型开关电源供应器,开机出现“三无”。

故障分析与维修:先采用替换法确认该开关电源已坏。然后拆开故障电源外壳,直观检查机板上辅助电源电路部分,发现D30、ZD3、R78、Q15(开关管)烧坏。根据实物绘制关键电路如图15所示,经更换上述元器件后并按实例1方法进行通电试机,发现两个电源风扇时转时不转。怀疑电路中有虚焊,将整个电路重新加焊一遍后,通电故障如初。维修一时陷入困境。后经仔细分析电路图,在电源风扇时转时不转的瞬间,测得开关电源输出电压波动很大,莫非稳压电路出了故障?

经与实例1中相关电路相比较,两种开关电源电路有较大差别,但所用的脉宽调制集成电路都是双排8脚,前例采用的是IC2(KA7500B),本例是IC1(TL494)(有些也采用BDL494),分析、比较两种不同标号的集成电路,得出两者的引脚、功能完全相同,可以直接互换。以此推测出IC1(TL494)的稳压原理如下:IC1(TL494)的①、②脚电压取样比较器正、负输入端,取样电阻R31、R32、R33、R37、R38构成+5V、+12V自动稳压电路。如图16所示。

当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1①脚和②脚,并与IC1内部基准电压相比较,输出误差电压与IC1内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。当输出电压降低时,稳压控制过程相反,从而使开关电源输出电压保持稳定。

开路测量R31、R32、R33、R37、R38阻值正常,在路检测IC1(TL494)的①、②脚电阻值与IC2(KA7500B)①、②脚电阻值相比较,差别很大。试用一只KA7500B集成电路代换TL494后,经查无误后通电试机,测得各路输出电压值正常,风扇转速正常。接入主机内,通电试机一切正常。检修过程结束。 实例3 一台ATX—300L型开关电源供应器(简称007电源),开机出现“三无”。 故障分析与维修:如图17所示。先用代换法确认该电源已烧坏;然后拆开外壳,直观检查保险丝烧黑,用表测量主电源开关三极管Q01、Q02(两者型号均为C4106)击穿短路,整流电路部分印制线路板烧黑。将Q1、Q2用同型号换新(注:两者必须同型号,否则将导致带载能力下降,输出电压不稳定,从而引起主电源开关管再次击穿。如推动三极管Q3、Q4损坏,其更换方法类似),并将印制线路板烧黑部分用小刀剥开划断,再用导线按原线路接好(必须做好这一步,因路板烧黑被炭化后易导电)。由于保险管焊在路板上(维修多台开关电源都是如此,其作用是保证接触良好),焊下坏管,用一新的4A/250V保险管焊上。 经检查无误后通电开机,电源风扇旋转,各路输出电压正常。接入主机板开机时,CPU风扇旋转,但显示器黑屏,测+5V、+12V电压在规定电压值内波动,不稳定。仔细观察,发现电源风扇转速过快,测IC2(KA7500B)的12脚(VCC电源端)电压高达23V(正常时一般为19V)且抖动,测13、14、15脚有正常的+5V电压输出。怀疑IC2内部不良,果断更换IC2,再开机,显示器点亮,各路输出电压正常,故障排除. 附: ATX开关电源电压比较器LM339N和脉宽调制集成电路KA7500B各引脚功能及实测数据,表中电压数据以伏特(V)为单位,用南京产MF47型万用表10V、50V、250V直流电压挡,在ATX电源脱机检修好后,连接主机内各部件正常工作状态下测得;在路电阻数据以千欧(KΩ)为单位,用R×1K挡测得,正向电阻用红表笔测量,反向电阻用黑表笔测量,另一表笔接地。 表1:电压比较器LM339N引脚功能及实测数据 在路电阻值(KΩ) 引脚号 引脚功能 工作电压(V) 正 向 反 向 1 2 3 4 5 6 7 8 9 10 11 12

电压取样输出端 电压取样输出端 电源输入端 电压取样反相输入端 电压取样同相输入端 电子开关启动端 电压取样同相输入端 电压取样反相输入端 PG信号同相控制端 电压取样反相输入端 电压取样同相输入端 地 4 0 5 1.2 0.8 1 1.2 1.2 1.2 1.4 1.6 0 8.5 8.5 4 11 10.5 10.5 11 9.5 11 10 11.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PG信号输出端 电压取样输出端 4 1.8 3.6 9.5 13 14 说明:当用表笔测量LM339N的第11脚电压时,将引起电脑重新启动,属于正常现象。 表2:脉宽调制集成电路KA7500B各引脚功能及实测数据 在路电阻值(KΩ) 引脚号 引脚功能 工作电压(V) 正 向 反 向 1 2 3 电压取样比较器同相输入端 电压取样比较器反相输入端 反馈控制端 脉宽调制输出控制端 4 (死区控制端) 5 6 7 8 9 10 11 12 13 14 15 16 振荡1 振荡2 地 脉宽调制输出1 地 地 脉宽调制输出2 电源输入端 输出方式控制端 电压取样比较器负端 电流取样比较器反相输入端 电流取样比较器同相输入端 0.6 0 0 2 0 0 2 19 5 5 5 2 9 9 0 7.5 0 0 7.5 6.2 4 4 4 7.5 12.6 21 0 21 0 0 21 17 4 4 4 8 0 9.5 19 4.8 4.6 2.2 4.5 8 9.2 7 8.8 ∞ ATX微机开关电源维修总图 2007年11月01日 星期四 15:45 atx电源工作原理及检修

检修atx开关电源,从+5vsb、ps-on和pw-ok信号入手来定位故障区域,是快速检修中行之有效的方法。

一、+5vsb、ps-on、pw-ok控制信号

atx开关电源与at电源最显著的区别是,前者取消了传统的市电开关,依*+5vsb、ps-on控制信号的组合来实现电源的开启和关闭。+5vsb是供主机系统在atx待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5v高电平,使用紫色线由atx插头9脚引出。ps-on为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的atx开关电源,待机时电压值为3v、3.6v、4.6v各不相同。当按下主机面板的power开关或实现网络唤醒远程开机,受控启动后ps-on由主板的电子开关接地,使用绿色线从atx插头14脚输入。pw-ok是供主板检测电源好坏的输出信号,使用灰色线由atx插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5v高电平。

脱机带电检测atx电源,首先测量在待机状态下的ps-on和pw-ok信号,前者为高电平,后者为低电平,插头9脚除输出+5vsb外,不输出其它电压。其次是将atx开关电源人为唤醒,用一根导线把atx插头14脚ps-on信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将atx电源由待机状态唤醒为启动受控状态,此时ps-on信号为低电平,pw-ok、+5vsb信号为高电平,atx插头+3.3v、±5v、±12v有输出,开关电源风扇旋转。上述*作亦可作为选购atx开关电源脱机通电验证的方法。

二、 控制电路的工作原理

atx开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、ps-on和pw-ok产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照下图。

1.辅助电源电路

只要有交流市电输入,atx开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300v直流脉动电压,一路经r72、r76至辅助电源开关管q15基极,另一路经t3开关变压器的初级绕组加至q15集电极,使q15导通。t3反馈绕组的感应电势(上正下负)通过正反馈支路c44、r74加至q15基极,使q15饱和导通。反馈电流通过r74、r78、q15的b、e极等效电阻对电容c44充电,随着c44充电电压增加,流经q15基极电流逐渐减小,t3反馈绕组感应电势反相(上负下正),与c44电压叠加至q15基极,q15基极电位变负,开关管迅速截止。

q15截止时,zd6、d30、c41、r70组成q15基极负偏压截止电路。反馈绕组感应电势的正端经c41、r70、d41至感应电势负端形成充电回路,c41负极负电压,q15基极电位由于d30、zd6的导通,被箝位在比c41负电压高约6.8v(二极管压降和稳压值)的负电位上。同时正反馈支路c44的充电电压经t3反馈绕组,r78,q15的b、e极等效电阻,r74形成放电回路。随着c41充电电流逐渐减小,ub电位上升,当ub电位增加到q15的b、e极的开启电压时,q15再次导通,又进入下一个周期的振荡。

q15饱和期间,t3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在t3辅助电源变压器中。当q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,t3储存的磁能转化为电能经bd5、bd6整流输出。其中bd5整流输出电压供q16三端稳压器7805工作,q16输出+5vsb,若该电压丢失,主板就不会自动唤醒atx电源启动。bd6整流输出电压供给ic1脉宽调制tl494的12脚电源输入端,该芯片14脚输出稳压5v,提供atx开关电源控制电路所有元件的工作电压。

2.ps-on和pw-ok、脉宽调制电路

ps-on信号控制ic1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,ps-on信号高电平3.6v,ic10精密稳压电路wl431的ur电位上升,uk电位下降,q7导通,稳压5v通过q7的e、c极,r80、d25和d40送入ic1的4脚,当4脚电压超过3v时,封锁8、11脚的调制脉宽输出,使t2推动变压器、t1主电源开关变压器停振,停止提供+3.3v、±5v、±12v的输出电压。 受控启动后,ps-on信号由主板启闭控制电路的电子开关接地,ic10的ur为零电位,uk电位升至+5v,q7截止,c极为零电位,ic1的4脚低电平,允许8、11脚输出脉宽调制信号。ic1的输出方式控制端13脚接稳压5v,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为ic1的5、6脚外接定时阻容元件的振荡频率的一半,控制q3、q4的c极所接t2推动变压器初级绕组的激励振荡,t2次级它激振荡产生的感应电势作用于t1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3.3v、±5v、±12v的输出电压。

推动管q3、q4发射极所接的d17、d18以及c17用于抬高q3、q4发射极电平,使q3、q4基极有低电平脉冲时能可*截止。c31用于通电瞬间封锁ic1的8、11脚输出脉冲,atx电源带电瞬间,由于c31两端电压不能突变,ic1的4脚出现高电平,8、11脚无驱动脉冲输出。随着c31的充电,ic1的启动由ps-on信号控制。

pw-ok产生电路由ic5电压比较器lm393、q21、c60及其周边元件构成。 待机时ic1的反馈控制端3脚为低电平,q21饱和导通,ic5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,pw-ok向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后ic1的3脚电位上升,q21由饱和导通进入放大状态,e极电位由稳压5v经r104对c60充电来建立,随着c60充电的逐渐进行,ic5的3脚控制电平逐渐上升,一旦ic5的3脚电位大于2脚的固定分压比,经正反馈的迟滞比较器,1脚输出高电平的pw-ok信号。该信号相当于at电源的pg信号,在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5v,主机检测到pw-ok电源完好的信号后启动系统。在主机运行过程中若遇市电掉电或用户关机时,atx开关电源+5v输出端电压必下跌,这种幅值变小的反馈信号被送到ic1组件的电压取样放大器同相端1脚后,将引起如下的连锁反应:使ic1的反馈控制端3脚电位下降,经r63耦合到q21的基极,随着q21基极电位下降,一旦q21的e、b极电位达到0.7v,q21饱和导通,ic5的3脚电位迅速下降,当3脚电位小于2脚的固定分压电平时,ic5的输出端1脚将立即从5v下跳到零电平,关机时pw-ok输出信号比atx开关电源+5v输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。

3.自动稳压控制电路

ic1的1、2脚电压取样放大器正、负输入端,取样电阻r31、r32、r33构成+5v、+12v自动稳压电路。当输出电压升高时(+5v或+12v),由r31取得采样电压送到ic1的1脚和2脚基准电压相比较,输出误差电压与芯片内锯齿波产生电路的振荡脉冲在pwm比较器进行比较放大,使8、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内,反之稳压控制过程相反,从而使开关电源输出电压稳定。ic1的电流取样放大器负端输入15脚接稳压5v,正端输入16脚接地,电流取样放大器在脉宽调制控制电路中没有使用。

ATX微机开关电源维修教程{1}

2011年01月09日 星期日 下午 09:54

随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新起到一个抛砖引玉的作用。 一、概述

ATX开关电源的主要功能是向计算机系统提供所需的直流电源。一般计算机电源所采用的都是双管半桥式无电压的目的。其外观图和内部结构实物图见图1和图2所示。

ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(载保护电路。 二、工作原理

ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制

1、输入整流滤波电路

只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、2、高压尖峰吸收电路

如图5所示,D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极使Q03免遭损坏。 3、辅助电源电路

如图6所示,整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02正),并与C02电压叠加后送往Q03的b极,使b极电位变负,此时开关管Q03因b极无启动电流而迅速截止。

开关管Q03截止时,T3③~④反馈绕组、D7、R01、R02、R03、R04、R05、C09、IC3、IC4组成再起振支路T3反馈绕组的④端感应出正电压,D7截止,T3次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电开关管Q03的b极提供启动电流,使开关管Q03由截止转为导通。同时,正反馈支路C02的充电电压经T3反馈时,Q03再次导通,又进入下一个周期的振荡。如此循环往复,构成一个自激多谐振荡器。

Q03饱和期间,T3次级绕组输出端的感应电动势为负,整流二级管D9和D50截止,流经初级绕组的导通电输出。其中D50整流输出电压经三端稳压器7805稳压,再经电感L7滤波后输出+5VSB。若该电压丢失,主板就提供ATX开关电源控制电路中相关元器件的工作电压。

T2为主电源激励变压器,当副电源开关管Q03导通时,IC流经T3初级①~②绕组,使T3③~④反馈绕组产通,在回路中产生电流,保证了整个电路的正常工作;同时,在T2初级①~④反馈绕组产生感应电动势(上正下负二极管,在开关管Q01和Q02处于截止和导通期间能提供持续的电流。这样就形成了主开关电源它激式多谐振电同时,又通过T2初级绕组反作用于T1主开关电源变压器,使主电源电路开始工作,为负载提供+3.3V、±5V、

4、PS信号和PG信号产生电路以及脉宽调制控制电路

如图7所示,微机通电后,由主板送来的PS信号控制IC2的④脚(脉宽调制控制端)电压。待机时,主板启动控制电路的电子开关断开,PS信号输出高电平3.6V,经R37到达IC1(电压比较器LM339N)的⑥脚(启动端),由内部经IC1的①脚输出低电平,使D35、D36截止;同时,IC1的②脚一路经R42送出一个比较电压对C35进行充电,另一路经R41送出一个比较电压给IC2的④脚,IC2的④脚电压由零电位开始逐渐上升,当上升的电压超过3V时,关闭IC2⑧、11脚的调制脉宽电压输出,使T2推动变压器、T1主电源开关变压器停振,从而停止提供+3.3V、±5V、±12V等各路输出电压,电源处于待机状态。受控启动后,PS信号由主板启动控制电路的电子开关接地,IC1的⑥脚为低电平(0V),IC2的④脚变为低电平(0V),此时允许⑧、11脚输出脉宽调制信号。IC2的13脚(输出方式控制端)接稳压+5V (由IC2内部14脚稳压输出+5V电压),脉宽调制器为并联推挽式输出,⑧、11脚输出相位差180度的脉宽调制信号,输出频率为IC2的⑤、⑥脚外接定时阻容元件R30、C30的振荡频率的一半,控制推动三极管Q3、Q4的c极相连接的T2次级绕组的激励振荡。T2初级它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级绕组的感应电动势整流输出+3.3V、±5V、±12V等各路输出电压。

D12、D13以及C40用于抬高推动管Q3、Q4的e极电平,使Q3、Q4的b极有低电平脉冲时能可靠截止。C35用于通电瞬间关闭IC2的⑧、11脚输出脉宽调制信号脉冲。ATX电源通电瞬间,由于C35两端电压不能突变,IC2的④脚输出高电平,⑧、11脚无驱动脉冲信号输出。随着C35的充电,IC2的启动由PS信号电平高低来加以控制,PS信号电平为高电平时IC2关闭,为低电平时IC2启动并开始工作。

PG产生电路由IC1(电压比较器LM339N)、R48、C38及其周围元件构成。待机时IC2的③脚(反馈控制端)为零电平,经R48使IC1的⑨脚正端输入低电位,小于11脚负端输入的固定分压比,IC113脚(PG信号输出端)输出低电位,PG向主机输出零电平的电源自检信号,主机停止工作处于待机状态。受控启动后IC2的③脚电位上升,IC1的⑨脚控制电平也逐渐上升,一旦IC1的⑨脚电位大于11脚的固定分压比,经正反馈的迟滞比较器,13脚输出的PG信号在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PG电源完好的信号后启动系统,在主机运行过程中若遇市电停电或用户执行关机操作时,ATX开关电源+5V输出电压必然下跌,这种幅值变小的反馈信号被送到IC2的①脚(电压取样比较器同相输入端),使IC2的③脚电位下降,经R48使IC1的⑨脚电位迅速下降,当⑨脚电位小于11脚的固定分压电平时,IC1的13脚将立即从+5V下跳到零电平,关机时PG输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘的磁头来不及归位而划伤硬盘。 5、主电源电路及多路直流稳压输出电路

如图8所示,微机受控启动后,PS信号由主板启动控制电路的电子开关接地,允许IC2的⑧、11脚输出脉宽调制信号,去控制与推动三极管Q3、Q4的c极相连接的T2推动变压器次级绕组产生的激励振荡脉冲。T2的初级绕组由它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级①②绕组产生的感应电动势经D20、D28整流、L2(功率因素校正变压器,也称低电压扼流线圈。以它为主来构成功率因素校正电路,简称PFC电路,起自动调节负载功率大小的作用。当负载要求功率很大时,则PFC电路就经过L2来校正功率大小,为负载输送较大的功率;当负载处于节能状态时,要求的功率很小,PFC电路通过L2校正后为负载送出较小的功率,从而达到节能的作用。)第④绕组以及C23滤波后输出—12V电压;从T1次级③④⑤绕组产生的感应电动势经D24、D27整流、L2第①绕组及C24滤波后输出—5V电压;从T1次级③④⑤绕组产生的感应电动势经D21、L2第②③绕组以及C25、C26、C27滤波后输出+5V电压;从T1次级③⑤绕组产生的感应电动势经L6、L7、D23、L1以及C28滤波后输出+3.3V电压;从T1次级⑥⑦绕组产生的感应电动势经D22、L2第⑤绕组以及C29滤波后输出+12V电压。其中,每两个绕组之间的R(5Ω/1/2W)、C(103)组成尖峰消除网络,以降低绕组之间的反峰电压,保证电路能够持续稳定地工作。 6、自动稳压稳流控制电路 (1)+3.3V自动稳压电路

IC5(精密稳压电路TL431)、Q2、R25、R26、R27、R28、R18、R19、R20、D30、D31、D23(场效应管)、R08、C28、C34等组成+3.3V自动稳压电路。如图9所示。

当输出电压(+3.3V)升高时,由R25、R26、R27取得升高的采样电压送到IC5的G端,使UG电位上升,UK电位下降,从而使Q2导通,升高的+3.3V电压通过Q2的ec极,R18、D30、D31送至D23的S极和G极,使D23提前导通,控制D23的D极输出电压下降,经L1使输出电压稳定在标准值(+3.3V)左右,反之,稳压控制过程相反。 (2)+5V、+12V自动稳压电路

IC2的①、②脚电压取样比较器正、负输入端,取样电阻R15、R16、R33、R35、R68、R69、R47、R32构成+5V、+12V自动稳压电路。如图10所示。

当输出电压升高时(+5V或+12V),由R33、R35、R69并联后的总电阻取得采样电压,送到IC2的①脚和②脚,与IC2内部的基准电压相比较,输出误差电压与IC2内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。

反之稳压控制过程相反,从而使开关电源输出电压保持稳定。 (3)+3.3V、+5V、+12V自动稳压电路

IC4(精密稳压电路TL431)、IC3、Q1、R01、R02、R03、R04、R05、R005、D7、C09、C41等组成+3.3V、+5V、+12V自动稳压电路。如图11所示。

当输出电压升高时,T3次级绕组产生的感应电动势经D50、C04整流滤波后一路经R01限流送至IC3的①脚,另一路经R02、R03获得增大的取样电压送至IC4的G端,使UG电位上升,UK电位下降,从而使IC4内发光二极管流过的电流增加,使光敏三极管导通,从而使Q1导通,同时经负反馈支路R005、C41使开关三极管Q03的e极电位上升,使得Q03的b极分流增加,导致Q03的脉冲宽度变窄,导通时间缩短,最终使输出电压下降,稳定在规定范围之内。 反之,当输出电压下降时,则稳压控制过程相反。 (4)自动稳流电路

IC2的15、16脚电流取样比较器正、负输入端,取样电阻R51、R56、R57构成负载自动稳流电路。如图12所示。

负端输入端15脚接稳压+5V,正端输入端16脚, 该脚外接的R51、R56、R57与地之间形成回路,当负载电流偏高时,T2次级绕组产生的感应电动势经R10、D14、C36整流滤波,再经R54、R55降压后获得增大的取样电压,同时与R51、R56、R57支路取得增大的采样电流一起送到IC215脚和16脚,与IC2内部基准电流相比较,输出误差电流,与IC2内部锯齿波产生电路产生的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电流回落至标准值的范围之内。 反之稳流控制过程相反,从而使开关电源输出电流保持稳定. 三、检修的基本方法与技巧

计算机ATX开关电源与日常生活中彩电的开关电源显著的区别是:前者取消了传统的市电按键开关,采用新型的触点开关,并且依靠+5VSB、PS控制信号的组合来实现电源的自动开启和自动关闭。主机在通电的瞬间,主机电源会向主板发送一个Power Good(简称PG)信号,如果主机电源的输入电压在额定范围之内,输出电压也达到最低检测电平(+5V输出为4.75V以上),并且让时间延迟约100ms~500ms后(目的是让电源电压变得更加稳定),PG电路就会发出“电源正常”的信号,接着CPU会产生一个复位信号,执行BIOS中的自检,主机才能正常启动。+5VSB是供主机系统在ATX待机状态时的电源,以及开启和关闭自动管理模块及其远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头⑨脚引出。如图13所示。PS为主机开启或关闭电源以及网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时的电压值各不相同,常见的待机电压值为3V、3.6V、4.6V。当按下主机面板的POWER电源开关或实现网络唤醒远程开机时,受控启动后PS由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PG

是供主板检测电源好坏的输出信号,使用灰色线由ATX插头⑧脚引出,待机状态为低电平(0V),受控启动电压输出稳定的高电平(+5V)。

脱机带电检测ATX电源,首先测量在待机状态下的PS和PG信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它任何电压。其次是将ATX开关电源进行人工唤醒,方法是:用一根导线把ATX插头14脚(绿色线)PS信号与任一地端(黑色线3、7、13、15、16、17)中的任一脚短接,这一步是检测的关键(否则,通电时开关电源风扇将不旋转,整个电路无任何反应,导致无法检修或无法判断其故障部位和质量好坏)。将ATX电源由待机状态唤醒为启动受控状态,此时PS信号变为低电平,PG、+5VSB信号变为高电平,这时可观察到开关电源风扇旋转。为了验证电源的带负载能力,通电前可在电源的+12V输出插头处再接一个开关电源风扇或CPU电源风扇,也可在+5V与地之间并联一个4Ω/10W左右的大功率电阻做假负载。然后通电测量各路输出电压值是否正常,如果正常且稳定,则可放心接上主机内各部件进行使用;如发现不正常,则必须重新认真检查电路,此时绝对不允许与主机内各部件连接,以免通电造成严重的经济损失。

上述操作亦可作为单独选购ATX开关电源脱机通电验证质量好坏的方法。

四、故障检修实例

实例1一台LWT2005型开关电源供应器,开机出现“三无(主机电源指示灯不亮,开关电源风扇不转,显示器点不亮)”。

故障分析与维修:先采用替换法(用一个好的ATX开关电源替换原主机箱内的ATX电源)确认

LWT2005型开关电源已坏。然后拆开故障电源外壳,直观检查发现机板上辅助电源电路部分的R001、R003、R05呈开路性损坏,Q1(C1815)、开关管Q03(BUT11A)呈短路性损坏,如图14所示。且R003烧焦、Q1的c、e极炸断,保险管FUSE(5A/250V)发黑熔断。经更换上述损坏元器件后,采用二中的检修方法和技巧:用一根导线将ATX插头14脚与15脚(两脚相邻,便于连接)连接,并在+12V端接一个电源风扇。检查无误后通电,发现两个电源风扇(开关电源自带一个+12V散热风扇)转速过快,且发出很强的呜音,迅速测得+12V上升为+14V,且辅助电源电路部分发出一股逐渐加强的焦味,立即关电。分析认为,输出电压升高,一般是稳压电路有问题。细查为IC4、IC3构成的稳压电路部分的IC3(光电耦合器Q817)不良。由于IC3不良,当输出电压升高时,IC3内部的光敏三极管不能及时导通,从而就没有反馈电流进入开关管Q03的e极,不能及时缩短Q03的导通时间,导致Q03导通时间过长,输出电压升高。如不及时关电,(从发出的焦味来看,Q03很可能因导通时间过长,功耗过重而损坏)又将大面积地烧坏元器件。

将IC3更换后,重新检查、测量刚才更换过的元器件,确认完好后通电。测各路输出电压一切正常,风扇转速正常(几乎听不到转动声)。通电观察半小时无异常现象。再接入主机内的主板上,通电试机2小时一直正常。至此,检修过程结束。后又维修大量同型号或不同型号(其电路大多数相同或类似)的开关电源,其损坏的电路及元器件大多雷同。

实例2一台银河YH—004A型开关电源供应器,开机出现“三无”。

故障分析与维修:先采用替换法确认该开关电源已坏。然后拆开故障电源外壳,直观检查机板上辅助电源电路部分,发现D30、ZD3、R78、Q15(开关管)烧坏。根据实物绘制关键电路如图15所示,经更换上述元器件后并按实例1方法进行通电试机,发现两个电源风扇时转时不转。怀疑电路中有虚焊,将整个电路重新加焊一遍后,通电故障如初。维修一时陷入困境。后经仔细分析电路图,在电源风扇时转时不转的瞬间,测得开关电源输出电压波动很大,莫非稳压电路出了故障?

经与实例1中相关电路相比较,两种开关电源电路有较大差别,但所用的脉宽调制集成电路都是双排8脚,前例采用的是IC2(KA7500B),本例是IC1(TL494)(有些也采用BDL494),分析、比较两种不同标号的集成电路,得出两者的引脚、功能完全相同,可以直接互换。以此推测出IC1

(TL494)的稳压原理如下:IC1(TL494)的①、②脚电压取样比较器正、负输入端,取样电阻R31、R32、R33、R37、R38构成+5V、+12V自动稳压电路。如图16所示。

当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1①脚和②脚,并与IC1内部基准电压相比较,输出误差电压与IC1内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。当输出电压降低时,稳压控制过程相反,从而使开关电源输出电压保持稳定。

开路测量R31、R32、R33、R37、R38阻值正常,在路检测IC1(TL494)的①、②脚电阻值与IC2(KA7500B)①、②脚电阻值相比较,差别很大。试用一只KA7500B集成电路代换TL494后,经查无误后通电试机,测得各路输出电压值正常,风扇转速正常。接入主机内,通电试机一切正常。检修过程结束。

实例3一台ATX—300L型开关电源供应器(简称007电源),开机出现“三无”。

故障分析与维修:如图17所示。先用代换法确认该电源已烧坏;然后拆开外壳,直观检查保险丝烧黑,用表测量主电源开关三极管Q01、Q02(两者型号均为C4106)击穿短路,整流电路部分印制线路板烧黑。将Q1、Q2用同型号换新(注:两者必须同型号,否则将导致带载能力下降,输出电压不稳定,从而引起主电源开关管再次击穿。如推动三极管Q3、Q4损坏,其更换方法类似),并将印制线路板烧黑部分用小刀剥开划断,再用导线按原线路接好(必须做好这一步,因路板烧黑被炭化后易导电)。由于保险管焊在路板上(维修多台开关电源都是如此,其作用是保证接触良好),焊下坏管,用一新的4A/250V保险管焊上。

经检查无误后通电开机,电源风扇旋转,各路输出电压正常。接入主机板开机时,CPU风扇旋转,但显示器黑屏,测+5V、+12V电压在规定电压值内波动,不稳定。仔细观察,发现电源风扇转速过快,测IC2(KA7500B)的12脚(VCC电源端)电压高达23V(正常时一般为19V)且抖动,测13、14、15脚有正常的+5V电压输出。怀疑IC2内部不良,果断更换IC2,再开机,显示器点亮,各路输出电压正常,故障排除。

附:ATX开关电源电压比较器LM339N和脉宽调制集成电路KA7500B各引脚功能及实测数据,表中电压数据以伏特(V)为单位,用南京产MF47型万用表10V、50V、250V直流电压挡,在ATX电源脱机检修好后,连接主机内各部件正常工作状态下测得;在路电阻数据以千欧(KΩ)为单位,用R×1K挡测得,正向电阻用红表笔测量,反向电阻用黑表笔测量,另一表笔接地。 表1:电压比较器LM339N引脚功能及实测数据

在路电阻值(KΩ) 工作电压(V) 正向反向 4 8.5 1 0 8.5 2 5 4 3 1.2 0.8 11 10.5 4 5 引脚号 引脚功能 1 2 3 4 5

电压取样输出端 电压取样输出端 电源输入端 电压取样反相输入端 电压取样同相输入

6 7 8 9 10 11 12 13 14 端 电子开关启动端 1 电压取样同相输入1.2 端 电压取样反相输入1.2 端 PG信号同相控制端 1.2 电压取样反相输入1.4 端 电压取样同相输入1.6 端 地 0 PG信号输出端 4 电压取样输出端 1.8 10.5 11 9.5 11 10 11.5 0 3.6 9.5 6 7 8 9 10 11 12 13 14 说明:当用表笔测量LM339N的第11脚电压时,将引起电脑重新启动,属于正常现象。 表2:脉宽调制集成电路KA7500B各引脚功能及实测数据

在路电阻值(KΩ) 工作电压(V) 正向反向 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

引脚号 引脚功能 电压取样比较器同相输入端 电压取样比较器反相输入端 反馈控制端 脉宽调制输出控制端 (死区控制端) 振荡1 振荡2 地 脉宽调制输出1 地 地 脉宽调制输出2 电源输入端 输出方式控制端 电压取样比较器负端 电流取样比较器反相输入端 电流取样比较器同相输入端 4.8 4.6 2.2 0 0.6 0 0 2 0 0 2 19 5 5 5 2 4.5 8 9.2 9.5 9 9 0 7.5 0 0 7.5 6.2 4 4 4 7.5 7 8.8 ∞ 19 12.6 21 0 21 0 0 21 17 4 4 4 8

表3:开关电源电路主要三极管实测电压值(单位:V)

电压值(V) 电路符号 元器件型号 Q2 Q3 Q4 Q01 Q02 Q03 A1015 C1815 C1815 C4106 C4106 BUT11A B C E 2.6 1.8 1.8 —1.5 0 —2.2 —2.5 4.4 4.4 280 140 280 3.3 1.4 1.4 140 0 0 电压值(V) 电路符号 元器件型号 D21 D22 D23 S30SC4M BYQ28E B2060 G S D 0 5 0 0 5 0 5 12 3.3 电压值(V) 电路符号 元器件型号 IC4 IC5 TL431 TL431 K A G 3.8 2.6 0 0 2.4 2.4

ATX微机开关电源维修教程3 6、自动稳压稳流控制电路 (1)+3.3V自动稳压电路

IC5(精密稳压电路TL431)、Q2、R25、R26、R27、R28、R18、R19、R20、D30、D31、D23(场效应管)、R08、C28、C34等组成+3.3V自动稳压电路。如图9所示。

当输出电压(+3.3V)升高时,由R25、R26、R27取得升高的采样电压送到IC5的G端,使UG电位上升,UK电位下降,从而使Q2导通,升高的+3.3V电压通过Q2的ec极,R18、D30、D31送至D23的S极和G极,使D23提前导通,控制D23的D极输出电压下降,经L1使输出电压稳定在标准值(+3.3V)左右,反之,稳压控制过程相反。 (2)+5V、+12V自动稳压电路

IC2的①、②脚电压取样比较器正、负输入端,取样电阻R15、R16、R33、R35、R68、R69、R47、R32构成+5V、+12V自动稳压电路。如图10所示。

当输出电压升高时(+5V或+12V),由R33、R35、R69并联后的总电阻取得采样电压,送到IC2的①脚和②脚,与IC2内部的基准电压相比较,输出误差电压与IC2内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。 反之稳压控制过程相反,从而使开关电源输出电压保持稳定。 (3)+3.3V、+5V、+12V自动稳压电路

IC4(精密稳压电路TL431)、IC3、Q1、R01、R02、R03、R04、R05、R005、D7、C09、C41等组成+3.3V、+5V、+12V自动稳压电路。如图11所示。

当输出电压升高时,T3次级绕组产生的感应电动势经D50、C04整流滤波后一路经R01限流送至IC3的①脚,另一路经R02、R03获得增大的取样电压送至IC4的G端,使UG电位上升,UK电位下降,从而使IC4内发光二极管流过的电流增加,使光敏三极管导通,从而使Q1导通,同时经负反馈支路R005、C41使开关三极管Q03的e极电位上升,使得Q03的b极分流增加,导致Q03的脉冲宽度变窄,导通时间缩短,最终使输出电压下降,稳定在规定范围之内。 反之,当输出电压下降时,则稳压控制过程相反。 (4)自动稳流电路

IC2的15、16脚电流取样比较器正、负输入端,取样电阻R51、R56、R57构成负载自动稳流电路。如图12所示。

负端输入端15脚接稳压+5V,正端输入端16脚, 该脚外接的R51、R56、R57与地之间形成回路,当负载电流偏高时,T2次级绕组产生的感应电动势经R10、D14、C36整流滤波,再经R54、R55降压后获得增大的取样电压,同时与R51、R56、R57支路取得增大的采样电流一起送到IC215脚和16脚,与IC2内部基准电流相比较,输出误差电流,与IC2内部锯齿波产生电路产生的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电流回落至标准值的范围之内。 ATX微机开关电源维修教程4 三、检修的基本方法与技巧

计算机ATX开关电源与日常生活中彩电的开关电源显著的区别是:前者取消了传统的市电按键开关,采用新型的触点开关,并且依靠+5VSB、PS控制信号的组合来实现电源的自动开启和自动关闭。主机在通电的瞬间,主机电源会向主板发送一个Power Good(简称PG)信号,如果主机电源的输入电压在额定范围之内,输出电压也达到最低检测电平(+5V输出为4.75V以上),并且让时间延迟约100ms~500ms后(目的是让电源电压变得更加稳定),PG电路就会发出“电源正常”的信号,接着CPU会产生一个复位信号,执行BIOS中的自检,主机才能正常启动。+5VSB是供主机系统在ATX待机状态时的电源,以及开启和关闭自动管理模块及其远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头⑨脚引出。如图13所示。PS为主机开启或关闭电源以及网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时的电压值各不相同,常见的待机电压值为3V、3.6V、4.6V。当按下主机面板的POWER电源开关或实现网络唤醒远程开机时,受控启动后PS由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PG是供主板检测电源好坏的输出信号,使用灰色线由ATX插头⑧脚引出,待机状态为低电平(0V),受控启动电压输出稳定的高电平(+5V)。

脱机带电检测ATX电源 ,首先测量在待机状态下的PS和PG信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它任何电压。其次是将ATX开关电源进行人工唤醒,方法是:用一根导线把ATX插头14脚(绿色线)PS信号与任一地端(黑色线3、7、13、15、16、17)中的任一脚短接,这一步是检测的关键(否则,通电时开关电源风扇将不旋转,整个电路无任何反应,导致无法检修或无法判断其故障部位和质量好坏)。将ATX电源由待机状态唤醒为启动受控状态,此时PS信号变为低电平,PG、+5VSB信号变为高电平,这时可观察到开关电源风扇旋转。为了验证电源的带负载能力,通电前可在电源的+12V输出插头处再接一个开关电源风扇或CPU电源风扇,也可在+5V与地之间并联一个4Ω/10W左右的大功率电阻做假负载。然后通电测量各路输出电压值是否正常,如果正常且稳定,则可放心接上主机内各部件进行使用;如发现不正常,则必须重新认真检查电路,此时绝对不允许与主机内各部件连接,以免通电造成严重的经济损失。 ATX微机开关电源维修教程5 四、故障检修实例

实例1 一台LWT2005型开关电源供应器,开机出现“三无(主机电源指示灯不亮,开关电源风扇不转,显示器点不亮)”。

故障分析与维修:先采用替换法(用一个好的ATX开关电源替换原主机箱内的ATX电源)确认

LWT2005型开关电源已坏。然后拆开故障电源外壳,直观检查发现机板上辅助电源电路部分的R001、R003、R05呈开路性损坏,Q1(C1815)、开关管Q03(BUT11A)呈短路性损坏,如图14所示。且R003烧焦、Q1的c、e极炸断,保险管FUSE(5A/250V)发黑熔断。经更换上述损坏元器件后,采用二中的检修方法和技巧:用一根导线将ATX插头14脚与15脚(两脚相邻,便于连接)连接,并在+12V端接一个电源风扇。检查无误后通电,发现两个电源风扇(开关电源自带一个+12V散热风扇)转速过快,且发出很强的呜音,迅速测得+12V上升为+14V,且辅助电源电路部分发出一股逐渐加强的焦味,立即关电。分析认为,输出电压升高,一般是稳压电路有问题。细查为IC4、IC3构成的稳压电路部分的IC3(光电耦合器Q817)不良。由于IC3不良,当输出电压升高时,IC3内部的光敏三极管不能及时导通,从而就没有反馈电流进入开关管Q03的e极,不能及时缩短Q03的导通时间,导致Q03导通时间过长,输出电压升高。如不及时关电,(从发出的焦味来看,Q03很可能因导通时间过长,功耗过重而损坏)又将大面积地烧坏元器件。

将IC3更换后,重新检查、测量刚才更换过的元器件,确认完好后通电。测各路输出电压一切正常,风扇转速正常(几乎听不到转动声)。通电观察半小时无异常现象。再接入主机内的主板上,通电试机2小时一直正常。至此,检修过程结束。后又维修大量同型号或不同型号(其电路大多数相同或类似)的开关电源,其损坏的电路及元器件大多雷同。

实例2 一台银河YH—004A型开关电源供应器,开机出现“三无”。

故障分析与维修:先采用替换法确认该开关电源已坏。然后拆开故障电源外壳,直观检查机板上辅助电源电路部分,发现D30、ZD3、R78、Q15(开关管)烧坏。根据实物绘制关键电路如图15所示,经更换上述元器件后并按实例1方法进行通电试机,发现两个电源风扇时转时不转。怀疑电路中有虚焊,将整个电路重新加焊一遍后,通电故障如初。维修一时陷入困境。后经仔细分析电路图,在电源风扇时转时不转的瞬间,测得开关电源输出电压波动很大,莫非稳压电路出了故障?

经与实例1中相关电路相比较,两种开关电源电路有较大差别,但所用的脉宽调制集成电路都是双排8脚,前例采用的是IC2(KA7500B),本例是IC1(TL494)(有些也采用BDL494),分析、比较两种不同标号的集成电路,得出两者的引脚、功能完全相同,可以直接互换。以此推测出IC1(TL494)的稳压原理如下:IC1(TL494)的①、②脚电压取样比较器正、负输入端,取样电阻R31、R32、R33、R37、R38构成+5V、+12V自动稳压电路。如图16所示。

当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1①脚和②脚,并与IC1内部基准电压相比较,输出误差电压与IC1内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。当输出电压降低时,稳压控制过程相反,从而使开关电源输出电压保持稳定。

开路测量R31、R32、R33、R37、R38阻值正常,在路检测IC1(TL494)的①、②脚电阻值与IC2(KA7500B)①、②脚电阻值相比较,差别很大。试用一只KA7500B集成电路代换TL494后,经查无误后通电试机,测得各路输出电压值正常,风扇转速正常。接入主机内,通电试机一切正常。检修过程结束。 实例3 一台ATX—300L型开关电源供应器(简称007电源),开机出现“三无”。

故障分析与维修:如图17所示。先用代换法确认该电源已烧坏;然后拆开外壳,直观检查保险丝烧黑,用表测量主电源开关三极管Q01、Q02(两者型号均为C4106)击穿短路,整流电路部分印制线路板烧黑。将Q1、Q2用同型号换新(注:两者必须同型号,否则将导致带载能力下降,输出电压不稳定,从而引起主电源开关管再次击穿。如推动三极管Q3、Q4损坏,其更换方法类似),并将印制线路板烧黑部分用小刀剥开划断,再用导线按原线路接好(必须做好这一步,因路板烧黑被炭化后易导电)。由于保险管焊在路板上(维修多台开关电源都是如此,其作用是保证接触良好),焊下坏管,用一新的4A/250V保险管焊上。

经检查无误后通电开机,电源风扇旋转,各路输出电压正常。接入主机板开机时,CPU风扇旋转,但显示器黑屏,测+5V、+12V电压在规定电压值内波动,不稳定。仔细观察,发现电源风扇转速过快,测IC2(KA7500B)的12脚(VCC电源端)电压高达23V(正常时一般为19V)且抖动,测13、14、15脚有正常的+5V电压输出。怀疑IC2内部不良,果断更换IC2,再开机,显示器点亮,各路输出电压正常,故障排除。

ATX微机开关电源维修教程 5

表1:电压比较器LM339N引脚功能及实测数据

在路电阻值(KΩ) 工作电压(V) 正 向 反 向 4 8.5 1 0 8.5 2 5 4 3 4 1.2 11 10.5 10.5 11 9.5 11 10 11.5 5 6 7 8 9 10 11 引脚号 引脚功能 1 2 3 4 5 6 7 8 9 10 11 电压取样输出端 电压取样输出端 电源输入端 电压取样反相输入端 电压取样同相输入0.8 端 电子开关启动端 1 电压取样同相输入1.2 端 电压取样反相输入1.2 端 PG信号同相控制端 1.2 电压取样反相输入1.4 端 电压取样同相输入1.6 12 13 14 端 地 PG信号输出端 电压取样输出端 0 4 1.8 0 3.6 9.5 12 13 14 说明:当用表笔测量LM339N的第11脚电压时,将引起电脑重新启动,属于正常现象。 表2:脉宽调制集成电路KA7500B各引脚功能及实测数据

在路电阻值(KΩ) 工作电压(V) 正 向 反 向 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (死区控制端) 振荡1 振荡2 地 脉宽调制输出1 地 地 脉宽调制输出2 电源输入端 输出方式控制端 电压取样比较器负端 电流取样比较器反相输入端 电流取样比较器同相输入端 电压取样比较器同相输入端 电压取样比较器反相输入端 反馈控制端 脉宽调制输出控制端 4.8 4.6 2.2 0 0.6 0 0 2 0 0 2 19 5 5 5 2 4.5 8 9.2 9.5 9 9 0 7.5 0 0 7.5 6.2 4 4 4 7.5 7 8.8 ∞ 19 12.6 21 0 21 0 0 21 17 4 4 4 8 引脚号 引脚功能 表3:开关电源电路主要三极管实测电压值(单位:V)

电压值(V) 电路符号 元器件型号 Q2 Q3 Q4 Q01 Q02

A1015 C1815 C1815 C4106 C4106 B C E 2.6 1.8 1.8 —1.5 0 —2.5 4.4 4.4 280 140 3.3 1.4 1.4 140 0 Q03 BUT11A —2.2 电压值(V) 280 0 电路符号 元器件型号 D21 D22 D23 S30SC4M BYQ28E B2060 G S D 0 5 0 0 5 0 5 12 3.3 电压值(V) 电路符号 元器件型号 IC4 IC5

TL431 TL431 K A G 3.8 2.6 0 0 2.4 2.4 四、故障检修实例

实例1 一台LWT2005型开关电源供应器,开机出现“三无(主机电源指示灯不亮,开关电源风扇不转,显示器点不亮)”。 故障分析与维修:先采用替换法(用一个好的ATX开关电源替换原主机箱内的ATX电源)确认LWT2005型开关电源已坏。然后拆开故障电源外壳,直观检查发现机板上辅助电源电路部分的R001、R003、R05呈开路性损坏,Q1(C1815)、开关管Q03(BUT11A)呈短路性损坏,如图14所示。且R003烧焦、Q1的c、e极炸断,保险管FUSE(5A/250V)发黑熔断。经更换上述损坏元器件后,采用二中的检修方法和技巧:用一根导线将ATX插头14脚与15脚(两脚相邻,便于连接)连接,并在+12V端接一个电源风扇。检查无误后通电,发现两个电源风扇(开关电源自带一个+12V散热风扇)转速过快,且发出很强的呜音,迅速测得+12V上升为+14V,且辅助电源电路部分发出一股逐渐加强的焦味,立即关电。分析认为,输出电压升高,一般是稳压电路有问题。细查为IC4、IC3构成的稳压电路部分的IC3(光电耦合器Q817)不良。由于IC3不良,当输出电压升高时,IC3内部的光敏三极管不能及时导通,从而就没有反馈电流进入开关管Q03的e极,不能及时缩短Q03的导通时间,导致Q03导通时间过长,输出电压升高。如不及时关电,(从发出的焦味来看,Q03很可能因导通时间过长,功耗过重而损坏)又将大面积地烧坏元器件。

将IC3更换后,重新检查、测量刚才更换过的元器件,确认完好后通电。测各路输出电压一切正常,风扇转速正常(几乎听不到转动声)。通电观察半小时无异常现象。再接入主机内的主板上,通电试机2小时一直正常。至此,检修过程结束。后又维修大量同型号或不同型号(其电路大多数相同或类似)的开关电源,其损坏的电路及元器件大多雷同。 实例2 一台银河YH—004A型开关电源供应器,开机出现“三无”。

故障分析与维修:先采用替换法确认该开关电源已坏。然后拆开故障电源外壳,直观检查机板上辅助电源电路部分,发现D30、ZD3、R78、Q15(开关管)烧坏。根据实物绘制关键电路如图15所示,经更换上述元器件后并按实例1方法进行通电试机,发现两个电源风扇时转时不转。怀疑电路中有虚焊,将整个电路重新加焊一遍后,通电故障如初。维修一时陷入困境。后经仔细分析电路图,在电源风扇时转时不转的瞬间,测得开关电源输出电压波动很大,莫非稳压电路出了故障? 经与实例1中相关电路相比较,两种开关电源电路有较大差别,但所用的脉宽调制集成电路都是双排8脚,前例采用的是IC2(KA7500B),本例是IC1(TL494)(有些也采用BDL494),分析、比较两种不同标号的集成电路,得出两者的引脚、功能完全相同,可以直接互换。以此推测出IC1(TL494)的稳压原理如下:IC1(TL494)的①、②脚电压取样比较器正、负输入端,取样电阻R31、R32、R33、R37、R38构成+5V、+12V自动稳压电路。如图16所示。

当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1①脚和②脚,并与IC1内部基准电压相比较,输出误差电压与IC1内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。当输出电压降低时,稳压控制过程相反,从而使开关电源输出电压保持稳定。

开路测量R31、R32、R33、R37、R38阻值正常,在路检测IC1(TL494)的①、②脚电阻值与IC2(KA7500B)①、②脚电阻值相比较,差别很大。试用一只KA7500B集成电路代换TL494后,经查无误后通电试机,测得各路输出电压值正常,风扇转速正常。接入主机内,通电试机一切正常。检修过程结束。

实例3 一台ATX—300L型开关电源供应器(简称007电源),开机出现“三无”。

故障分析与维修:如图17所示。先用代换法确认该电源已烧坏;然后拆开外壳,直观检查保险丝烧黑,用表测量主电源开关三极管Q01、Q02(两者型号均为C4106)击穿短路,整流电路部分印制线路板烧黑。将Q1、Q2用同型号换新(注:两者必须同型号,否则将导致带载能力下降,输出电压不稳定,从而引起主电源开关管再次击穿。如推动三极管Q3、Q4损坏,其更换方法类似),并将印制线路板烧黑部分用小刀剥开划断,再用导线按原线路接好(必须做好这一步,因路板烧黑被炭化后易导电)。由于保险管焊在路板上(维修多台开关电源都是如此,其作用是保证接触良好),焊下坏管,用一新的4A/250V保险管焊上。

经检查无误后通电开机,电源风扇旋转,各路输出电压正常。接入主机板开机时,CPU风扇旋转,但显示器黑屏,测+5V、+12V电压在规定电压值内波动,不稳定。仔细观察,发现电源风扇转速过快,测IC2(KA7500B)的12脚(VCC电源端)电压高达23V(正常时一般为19V)且抖动,测13、14、15脚有正常的+5V电压输出。怀疑IC2内部不良,果断更换IC2,再开机,显示器点亮,各路输出电压正常,故障排除。

附: ATX开关电源电压比较器LM339N和脉宽调制集成电路KA7500B各引脚功能及实测数据,表中电压数据以伏特(V)为单位,用南京产MF47型万用表10V、50V、250V直流电压挡,在ATX电源脱机检修好后,连接主机内各部件正常工作状态下测得;在路电阻数据以千欧(KΩ)为单位,用R×1K挡测得,正向电阻用红表笔测量,反向电阻用黑表笔测量,另一表笔接地。

本文详细介绍了计算机ATX开关电源的工作原理、电路组成以及一些常见故障的维修方法.重点分析了SB电压产生电路、KA7500B为核心的PWM信号产生电路和ATX电源完善的保护网络。1 引言

PU是计算机的心脏,那么电源就是计算机的能量源泉了。目前,ATX电源取代AT电源广泛使用于电脑之中。计算机是高科技含量产品,由于价格的原因,人们常常忽视电源的技术含量。实际上,要提供一个精巧、安全、严密的电源供主机使用也决非易事。在对电源原理的分析中,我们也不难发现设计者的精妙构思。下面是对ATX电源的原理和检修方法的详细介绍。 2 ATX电源原理

2.1 ATX电源与主机板接口

源取消了传统的交流电源开关,它采用软开关技术,依靠+5SB、Power On/Off控制信号的组合来实现电源的开启和关闭,使计算机的远程控制和定时开关机功能顺利实现。传统AT电源采用两组插头与主机板联接,每组各有6根线。与AT电源不同,ATX电源采用一组20线插头,其具体接线如图所示:

图 1 ATX电源与主机板接口

1、11、12:+3.3V; 2:-12V; 4:POWER On/Off;8:-5V;9、10、14、16:+5V; 18:PG信号; 19:+5V辅助电压;20:+12V;其余各黑色线为接地线。[1]

P4专用插头:P4耗电量非常大,再加上现在显卡的耗电量也比较大,所以P4电源比普通电源多出两个接头,一个6芯,另外一个4芯。 2.2 ATX电源组成结构

城CGCATX2K电源为例对ATX电源作介绍,CGCATX2K是长城公司新出的一款优秀的电源,性能稳定,输出功率大,其详细电路经本人参照电路板手工绘出,如图5所示。因保护知识产权的原因 ,本文对所有元件进行了重新编号并略去了元件型号。但这不影响我们对电源原理的理解和分析。此电源采用PWM开关电源技术,开关电源具有转换效率高且便于控制的优点,下面是电源电路的框图,如图2所示。[4]

2.3 ATX电源电路分析 2.3.1 抗干扰电路

输过程中会受到高频干扰,微机电源的功率转换分和辅助电源部分是工作在高频状态,也会对市电网产生高频干扰。抗干扰电路可起双向滤波作用,一般由滤波电容和互感线圈构成,在这里我们只画出了Rx,Cx和THR。 2.3.2 整流电路

D1~D4直接对220V交流电进行桥式整流,产生300V左右的直流电压,经C01~C02滤波后,分别加到辅助电源和功率变换电路。

2.3.3 完备的辅助电源+5VSB电压系统

+5VSB是供主机系统在ATX待机状态时的电源以及自动开关机和远程唤醒通讯联络相关电路的工作电源。 辅助电源部分采用独特的自激振荡与光电耦合器件控制相结合的电路。增强了电路的可靠性和提高了电压的稳定系数。

T1、C8、D6、R14、Q11等元件组成自激振荡电路,通电后可在SB端产生5V左右的电压。IC11、IC2及其外围元件组成稳压电路。当SB端电压有微小变化时,经精密电阻R24、R25反馈到LM431。LM431是一个精密放大器,LM431电流的大小将影响到IC11的1、2脚的导通与否。当SB电压偏高时,IC11的3,4脚导通,由于IC11内部的光电耦合作用使1、2脚导通。3脚产生的电压经D7整流,C10滤波加到1脚,从2输出至Q12的基极使Q12导通,Q12的C,E电压Vceo下降,从而Q11基极电压下降,Q11开关管截止,SB电压下降。反之,SB电压偏低时,经过相反的控制过程可使Q11导通时间延长,SB输出电压上升,达到了稳定电压的目的。

Q21、R21、R22、C14、ZD2是防止SB电压过高的保护电路。可防止由于SB+5V电压过高而引起主机板损坏,造成严重后果。当SB电压过高时,ZD2击穿,这一电压加到单向可控硅Q21的控制极使Q21的AK极之间导通,SB电压对地短路,保护了后级电路。C14的作用是在ZD2击穿后让Q21维持导通状态。

辅助电源部分还设计了过流保护电路。当流过开关管Q11发射极的电流过大时,流过R16的电流增大,R16上端电压

V=I*R (2.1)

也随之上升,此电压经R17送到Q12基极,Q12导通,引起Q11截止。防止了开关管由于过流而损坏。[1] 2.3.4功率振荡及低压产生电路

功率振荡部分主要由PWM控制和功率变换两部分构成,下面先介绍KA7500B脉宽控制原理。KA7500B是Fairchild Semiconductor International公司的产品,它由5V基准电压输出电路,两个误差放大电路,双稳态多谐振荡器,一个输出控制端口,一个PWM比较器,以及一个空载时间比较器和一个振荡电路几个部分组成。

KA7500B的12脚外接由T1提供的20V左右的电压。KA7500B电源电压可为16~24V。14脚输出的是由KA7500B内部所产生的基准电压。5脚和6脚分别接振荡电容和振荡电阻。振荡电路产生30K到50KHz左右的为锯齿波。该锯齿波与4脚输入的电压及比较放大器的输出相比较,得到PWM电压由8脚和11脚输出到Q5,Q6控制功率转换开关管Q31、Q32轮流导通。

有6个端子与PWM输出直接相关,即1、2、15、1*、13。V1大于V2、V16大于V15时,电路停止输出脉冲。13脚电压为0时,无脉冲输出,此处13脚直接与基准电压相连。

4脚为KA7500B的一个重要的控制端。4脚电压为4.5V时,输出的脉冲宽度为0,当4脚电压为0V时,输出脉冲宽度为最大。

除脉冲宽度控制电路外,低压产生电路的原理比较容易理解,在此不作详细的论述。

需要补充的是,由于通过Q11,Q31,Q31,D38,D39,D40的功率比较大,所以这些元件加了散热板。应注意元件与散热板之间都用石英片绝缘,在拆装时应注意不可去掉石英片。如果有电子爱好者需要打摩电源、增大电源功率时,可在充分散热的前提下将开关管E13007改为BU508A。[5] 2.3.4 POWER GOOD 信号的产生

P.G.是提供给主机板的开机复位信号。如果各路直流输出电压已达到它们的最低检测电平(+5V输出在4.75V以上),则电源在开机后大约延时100到500毫秒后产生,产生延时的关键元件是C24。

图3是LM339比较器内部结构图。LM339上半部分用来产生P.G.信号。电源开始工作后,14脚输出高电平,向C24充电,经一定的充电时间后,11脚才建立起了高电平。当11脚电压高于10脚时,13脚输出高电平,这就是P.G.信号。这一高电平能被保持。[3]

P.G.信号非常重要,即使电源的各路直流输出都正常,如果没有P.G.信号,主板还是没法,如果没有P.G.信号,主板还是没法工作。如果P.G.信号时序不对,可能会造成开不了机的情况。关机时,P.G.信号比ATX电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时,磁盘磁头来不及移至着陆区而划伤硬盘。

2.4 低压稳压,保护电路

图4 ATX电源电路图 2.4.1 +5,+12稳压电路

+5V、+12V的微小变化,经R68,R69、R610输入到KA7500B的1脚。由KA7500B内部误差放大器放大,比较后可调整驱动脉冲的宽度,可精确校正+5V、+12V电压的变化。 2.4.2 +3.3V稳压保护

+3.3V稳压保护电路由图5中5编号开头的元件组成。LM431是精密放大器,L51、L52是两个磁饱和变压器,当3.3V电压有微小变化时,经R58,R57反馈至LM431,LM431导通电流的大小影响Q52的基极电流的大小,使Q51趋于饱和或截止,改变了L51、L52初级线圈n1电流的大小,次级L51n2、L52n2的感抗发生变化,D39左边的电压变化,从而校正了3.3V电压的变化。

2.4.3 低压过电压保护电路

R27、ZD4、D29、R86、D26、R87、R84、R85及C22、D25等组成过电压保护电路。当+5V、-5V、+12V、-12V、+3.3V中有一路电压过高时,LM339的5脚电压升高,2脚输出高电平到KA7500B4脚使8、11输出脉冲宽度为0,使电路停止工作。D21、D23与5脚相连,可使2脚输出的高电平锁定,使过电压保护稳定。 3 ATX电源检修

为防止损坏主机板或其它部件,ATX电源出现故障后必须拆机检修。一般开关电源不能工作在空载状态下,ATX电源由于各电压输出端都并联了负载电阻,拆机后不会由于空载而扩大故障。

通电后,即使功率转换部分没有工作,辅助电源也应该有+5V电压输出。即测量接口19脚对地有+5V电压。无SB电压输出或电压不稳时要检查交直流变换和辅助电源电路。

交直流变换部分。测量D3负端电压是否为300V左右。保险丝烧毁后必须更换同型号的延时保险,不能随意用其它导线或保险代换,烧保险一般表明存在较严重的故障,此时应慎重对待。常见的原因有整流二极管损坏、滤波电容击穿或漏电、开关管Q11损坏,或者还有其它部分对地严重短路。

辅助电源部分检查的中心是Q11,正常情况下辅助电源工作在振荡状态下,用万用表测Q11基极为一负压。常见的现象是启动电阻R11、R12开路引起电路未起振,除此之外逐步检查Q12、ZD1、ZD2、Q21、LM431、IC11等。这些元件较之电阻更容易损坏,最后才检查电阻是否存在故障。SB电压不稳或偏离正常值主要是由于R24、R25阻值变化引起,这是两个精密电阻。

在正常情况下,PS/ON脚与地相连后,功率振荡电路即可启动。如果各电压输出正常,则一般说明电源工作良好,但要注意P.G.信号是否正常。 P.G.信号是电源输出到主机板的信号,表明电源工作良好,如果P.G.不正常也会引起主机板输出高电平到PS/ON,功率振荡部分不工作。

用示波器检查KA7500B的5、 8、11脚有没有振荡脉冲输出。检查的另一个关键点是KA7500B的控制脚4脚,当它为高电平时,电路没有脉冲输出。ATX电源的各保护电路非常严密,任何一路故障都会引起4脚电压异常。检修时注意分析引起4脚高电平的各种原因,同时分析LM339各个引脚电压,在可靠分析的基础上做出正确的判断。 4 结束语

因篇幅问题不能全部显示,请点此查看更多更全内容