2014年新课标理科4.钝角三角形ABC的面积是1,AB=1,BC=2 ,则AC=( )
2A. 5 【答案】B
B.
5 C. 2 D. 1
1112SΔABC=acsinB=•2•1•sinB=∴sinB=,2222π3ππ2014年新∴B=,或.当B=时,经计算ΔABC为等腰直角三角形,不符合题意,舍去。4443π∴B=,使用余弦定理,b2=a2+c2-2accosB,解得b=5.故选B.4课标理科12.设函数fx3sinx.若存在fx的极值点x0满足x02则m的取fx0m2,m2值范围是( )
A. ,66, B. ,44, C. ,22,D.,14, 【答案】 C
f(x)=3sinπx|m|的极值为±3,即[f(x0)]2=3,|x0|≤,m2 22mm2∴x0+[f(x0)]2≥+3,∴+3 【答案】 1 f(x)=sin(x+2φ)-2sinφcos(x+φ)=sin(x+φ)•cosφ+cos(x+φ)•sinφ-2sinφcos(x+φ) =sin(x+φ)•cosφ-cos(x+φ)•sinφ=sinx≤1.∴最大值为1.2013年新课标理科17.设为第二象限角,若tan(【答案】4)1,则sincos 。 210 5(17)(本小题满分12分) △ABC的内角的对边分别为a,b,c,已知abcosCccosB (Ⅰ)求B; (Ⅱ)若b=2,求△ABC的面积的最大值。 【答案】见解析 【解析】考查正弦、余弦定理及均值不等式综合应用 ----完整版学习资料分享---- 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除 2012年新课标理科9.已知0,函数f(x)sin(x)在(,)上单调递减。则的取值范围 24是( ) 15131(A)[,] (B) [,] (C) (0,] (D)(0,2] 22424【解析】选A 592(x)[,] 不合题意 排除(D) 444351(x)[,] 合题意 排除(B)(C) 4443另:()2,(x)[,][,] 2424422315 得:, 2424224 2012年新课标理科17.(本小题满分12分) 已知a,b,c分别为ABC三个内角A,B,C的对边,acosC3asinCbc0 (1)求A (2)若a2,ABC的面积为3;求b,c。 【解析】(1)由正弦定理得: acosC3asinCbc0sinAcosC3sinAsinCsinBsinC ----完整版学习资料分享---- 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除 sinAcosC3sinAsinCsin(aC)sinC 3sinAcosA1sin(A30)12 A3030A60 (2)S21bcsinA3bc4 222 abc2bccosAbc4 解得:bc2(l fx lby) 2011年新课标理科5..已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y2x上, 则cos2= A.C. 4 5B.D. 3 53 54 5【答案】B 2011年新课标理科11.设函数f(x)sin(x)cos(x)(0,且f(x)f(x),则 2)的最小正周期为, A.f(x)在0,单调递减 2 B.f(x)在3,443,44单调递减 单调递增 C.f(x)在0,【答案】A 单调递增 2 D.f(x)在2011年新课标理科16.在ABC中,B60,AC3,则AB2BC的最大值为 。 【答案】27 2010年新课标理科4.如图,质点P在半径为2的圆周上逆时针运动,其初始 置为P0致为 位大 2,2,角速度为1,那么点P到x轴距离d关于时间t的函数图像 ----完整版学习资料分享---- 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除 答案:C 42 2010年新课标理科9.若cos,是第三象限的角,则 51tan211(A) (B) (C)2 (D)2 22答案:A 12010年新课标理科16.在ABC中,D为边BC上一点,BD=DC,ABC=120°,AD=2,若ADC的 2面积为33,则BAC= 答案:60° 1tan ----完整版学习资料分享---- 因篇幅问题不能全部显示,请点此查看更多更全内容