inMulti-AgentContracting
AlexanderBabanov,JohnCollins,andMariaGiniDepartmentofComputerScienceandEngineering
UniversityofMinnesota
Author:AlexanderBabanov DepartmentofEconomics,UniversityofMinnesota,4-192EE/CSci,200UnionStSE,Minneapolis,MN55455,phone:(612)625-0265 Author:JohnCollins Author:MariaGini ofMinnesota,4-192EE/CSci,200UnionStSE,Minneapolis,MN55455,phone:(612)625-5582,fax:(612)625-0572Numberofpages:32Numberoffigures:14Numberoftables:0 Runningtitle:RiskandExpectationinMulti-AgentContracting 1 AskingtheRightQuestion:RiskandExpectation inMulti-AgentContracting Keywords:Automatedauctions,multi-agentcontracting,expectedutility,riskestimation,optimization Abstract Inthispaperweareinterestedinthedecisionproblemfacedbyanagentwhenrequestingbidsforcollectionsoftaskswithcomplextimeconstraintsandinterdependencies.Inparticular,westudytheproblemofspecifyinganappropriatescheduleforthetasksintherequestforbids.Weexpectbidstorequireresourcecommitments,soweexpectdifferentsettingoftimewindowstosolicitdifferentbidsanddifferentcosts.Theagentisinterestedinsoliciting“desirable”bids,where“desirable”meansbidsthatcanbefeasiblycombinedinalowcostcombinationthatcoverstheentirecollectionoftasks. Sincetherequestforbidshastobeissuedbeforetheagentcanseeanybids,inthisdecisionprocessthereisaprobabilityoflossaswellasaprobabilityofgain.Thisrequiresthedecisionprocesstodealwiththeriskpostureofthepersonororganizationonwhosebehalftheagentisacting. WedescribeamodelbasedonExpectedUtilityTheory,andshowhowanagentcanattempttomaximizeitsprofitswhilemanagingitsfinancialriskexposure.Weillustratetheoperationandpropertiesofthemodel,anddiscusswhatassumptionsarerequiredforitssuccessfulintegrationinmulti-agentcontractingapplications. 2 1Introduction E-commercetechnologyhasthepotentialtobenefitsocietybyreducingthecostofbuyingandsellingandbyopeningnewmarketopportunities.Weenvisionanauction-basedapproachtothemanagementofagileanddynamicsupply-chains,inwhichautonomous,self-interestedagentsnegotiateonbehalfoforganizationsandindividualstoorganizecoordinatedactivities.Thisisanareainwhichthepotentialpayoffisveryhigh,giventheprojectedsizeofthebusiness-to-businessandmake-to-ordere-commercemarkets. Moreproductionprocessesarebeingoutsourcedtooutsidecontractors,makingsupplychainslongerandmoreconvoluted.Thisincreasedcomplexityiscompoundedbyincreasingcompetitivepressure,andacceleratedproductionscheduleswhichdemandtightintegrationofallprocesses.Findingpotentialsuppliersisonlyonestepintheprocessofproducinggoods.Timedependenciesamongoperationsmakeschedulingamajorfactor.Alatedeliveryofapartmightproduceacascadeofdevastatingeffects.Unfortunately,currentauction-basedsystemsdonothaveanynotionoftime.Handlingauctionsfortaskswithtimeconstraintsisbeyondthecapabilitiesofcurrente-commercesystems. Wepresenttheresultsofastudyofhowanautonomousagentcanmaximizeitsprofitswhilepredictingandmanagingitsfinancialriskexposurewhenrequestingbidsfortaskswithcomplextimeconstraints.Weshowhowthiscanbedonebyspecifyingappropriatetimewindowsfortaskswhensolicitingbids,andbyusingreceivedbidseffectivelyinbuildingafinalworkschedule. 2MAGNET,AMulti-AgentNegotiationTestbedforContractingTaskswithTemporalandPrecedenceConstraints ThisstudyisapartoftheMAGNET(Multi-AGentNEgotiationTestbed)researchproject[7].MAGNETagentsparticipateinfirst-price,sealed-bidcombinatorialauctionsovercollectionsoftaskswithprecedencerelationsandtimeconstraints.MAGNETpromisestoincreasetheefficiencyofcurrentmarketsbyshiftingmuchoftheburdenofmarketexploration,auctionhandling,andpreliminarydecisionanalysisfromhuman 3 decisionmakerstoanetworkofheterogeneousagents. Wedistinguishbetweentwoagentroles,theCustomerandtheSupplier(seeFigure1).Acustomerhasasetoftaskstobeperformed,withcomplexdependenciesamongthetasks.Whenacustomerlackstheresourcestocarryoutitsowntasks,itmaysolicitresourcesfromsuppliersbypresentingaRequestforQuotes(RFQs)throughanagent-mediatedmarket.Supplieragentsmayoffertoprovidetherequestedresourcesorservices,forspecifiedprices,overspecifiedtimeperiods.Oncethecustomerreceivesbids,itevaluatesthemtoselectanoptimalsetofbidsandcreateaworkschedule.ThispaperdealswithdecisionproblemsintheBidManagercomponentoftheCustomerAgent. Top−levelGoalCustomerAgentPlannerTaskNetworkRe−planDomainModelMarketMarketOntologyMarketStatisticsMarketSessionDomainModelSupplierAgentBidManagerCommitmentsAvailabilityBidManagerRe−bidTaskAssignmentStatisticsBidProtocolEvents andResponsesBidProtocolEvents andResponsesResourceManagerExecutionManagerFigure1:TheMAGNETarchitecture Thisisaschematicoutlineofthemaininteractionsamongagents: •AcustomerissuesanRFQwhichspecifiestasks,theirprecedencerelations,andatimelineforthebiddingprocess.Foreachtask,atimewindowisspecifiedgivingtheearliesttimethetaskcanstartandthelatesttimethetaskcanend. •Supplierssubmitbids.Abidincludesasetoftasks,aprice,aportionofthepricetobepaidasanon-refundabledeposit,andestimateddurationandtimewindowdatathatreflectsupplierresourceavailabilityandconstrainthecustomer’sschedulingprocess. 4 •Thecustomerdecideswhichbidstoaccept.Eachtaskneedstobemappedtoexactlyonebid(i.e.nofreedisposal[24]),andtheconstraintsofallawardedbidsmustbesatisfiedinthefinalworkschedule.•Whenthecustomerawardsabid,itpaysadepositandspecifiestheworkschedule.•Whenthesuppliercompletesatask,thecustomerpaystheremainderoftheprice. •Ifthesupplierfailstocompleteatask,thepriceisforfeitandthedepositmustbereturnedtothecustomer.Apenaltymayalsobeleviedfornon-performance,oraleveled-commitmentprotocol[35]maybeused.Thecustomerdecideswhethertohandlethefailurebyreplanningorrebiddingthefailedtask(s). 2.1AMotivatingExample Asanexample,imaginethatweneedtoconstructagarage.Figure2showsthetasksneededtocompletetheconstruction.Thetasksarerepresentedinatasknetwork,wherelinksindicateprecedenceconstraints.ThefirstdecisionwearefacedwithishowtosequencethetasksintheRFQandhowmuchtimetoallocatetoeachofthem.Forinstance,wecouldreducethenumberofparalleltasks,allocatemoretimetotaskswithhighervariabilityindurationortasksforwhichthereisashortageoflaborers,orallowmoreslacktime. 2Roofing1Masonry3Plumbing4Electric5Exterior6Interior1 24 3 56tFigure2:AtasknetworkexampleandacorrespondingRFQ. AsampleRFQisshowninFigure2.NotethatthetimewindowsintheRFQdonotneedtoobeytheprecedenceconstraints;theonlyrequirementisthattheacceptedbidsobeythem.Weassumethatthesupplierismorelikelytobid,andsubmitalower-costbid,ifitisgivenagreaterflexibilityinschedulingitsresources.Itisuptothecustomertofindabidcombinationthatformsafeasibleschedule. 5 2.2ExperiencesandObservations Wehaveshown[6]thatthetimeconstraintsspecifiedintheRFQcanaffectthecustomer’soutcomeintwomajorways: 1.byaffectingthenumber,price,andtimewindowsofbids.Weassumethatbidswillreflectsupplierresourcecommitments,andthereforelargertimewindowswillresultinmorebidsandbetterutilizationofresources,inturnleadingtolowerprices[5].However,anRFQwithoverlappingtimewindowsmakestheprocessofwinnerdeterminationmorecomplex[5].Anotherlessobviousproblemisthateveryextrabidovertheminimumneededtocoveralltasksaddsonemorerejectedbid.Ultimately,alargepercentageofrejectionswillreducethecustomeragent’scredibility,which,afterrepeatedinteractionsinthemarket,willresultinfewerbidsand/orhighercosts. 2.byaffectingthefinancialexposureofthecustomeragent[6].Weassumenon-refundabledepositsarepaidtosecureawardedbids,andpaymentsforeachtaskaremadeasthetasksarecompleted.Thepayoffforthecustomeroccursonlyatthecompletionofallthetasks.Onceataskiscompletedinthetimeperiodspecified,thecustomerisliableforitsfullcost,regardlessofwhetherinthemeantimeothertaskshavefailed.Ifataskisnotcompletedbythesupplier,thecustomerisnotliableforitscost,butthisfailurecanruinotherpartsoftheplan.Slackinthescheduleincreasestheprobabilitythattaskswillbecompletedorthattherewillbeenoughtimetorecoverifanyfail.However,slackextendsthecompletiontimeandsoreducesthepayoff.Inmanybusinesssituations,thespeedisthekey;thevalueofthefinalpayoffmaydropoffverysteeplywithtime. TheagentneedstoissuetheRFQbeforehavingreceivedanybid,sotheprocessofdecidinghowtoschedulethedifferenttasksandhowmuchtimetoallocatetoeachtask,involvesaprobabilityoflossaswellasaprobabilityofgain.Thisrequiresthedecisionprocesstodealwiththeriskpostureofthepersonororganizationonwhosebehalftheagentisacting. Theagentcanuseinformationavailablefromthemarketonexpectedcosts,probabilityofcompletionoftaskswithinatimewindow,andexpectednumbersofbidderstoguideitsdecisiononhowtosequencethetasksandhowmuchtimetoallocatetoeach. 6 InthenextSection,wewillproposeaprincipledmethodforgeneratingRFQsthattakesintoaccounttheagent’sriskpostureandavailablemarketstatisticstoproduceaschedulethatoptimizestheagent’sexpectedutility. 3ExpectedUtilityApproach InthissectionwedescribeanewapproachtotheconstructionofoptimalRFQsthatemploystheExpectedUtilityTheorytoreducethelikelihoodofreceivingunattractivebids,whilemaximizingthenumberofbidsthatarelikelytobeawarded.Thisapproachwasoriginallysuggestedinourpreviouswork[3].InthisworkweextenditandpayspecialattentiontotherelationbetweenthesizeofRFQtimewindowsandthenumberofexpectedbidsbyinvestigatingthebalancebetweenthequantityandthequalityofexpectedbids. 3.1Terminology Atasknetwork(seeFigure2)isatupleN,≺ofasetNofindividualtasksandstrictpartialorderingonthem,suchthatforanyi,j∈N,i≺jimpliesthattaskiimmediatelyprecedestaskj.WealsouseNtodenotethenumberoftaskswhereappropriate. Atasknetworkischaracterizedbyastarttimetsandafinishtimetf,whichdelimittheintervaloftimewhentaskscanbescheduled.Theplacementoftaskninthescheduleischaracterizedbytasknstarttime f tsnandtasknfinishtimetn,subjecttothefollowingconstraints: s ts≤tfm≤tn, ∀m∈P1(n)and sf tfn≤tm≤t ∀m∈S1(n) whereP1(n)istheasetofimmediatepredecessorsofn,P1(n)={m∈N|m≺n}.S1(n)isdefinedsimilarlytobethesetofimmediatesuccessorsoftaskn. Theprobabilityoftaskncompletionbytimet,conditionalontheultimatesuccessfulcompletionoftaskn,is s distributedaccordingtothecumulativedistributionfunction(CDF)Φn=Φn(tsn;t),limt→∞Φn(tn;t)=1. 7 ObservethatΦnisdefinedtobeexplicitlydependentonthestarttimetsn.Toseetherationale,considertheprobabilityofsuccessfulmaildeliveryinxdaysforpackagesthatweremailedondifferentdaysofaweek.Thereisanassociatedunconditionalprobabilityofsuccesspn∈[0,1]characterizingthepercentageoftasksthataresuccessfullycompletedgiveninfinitetime(seeFigure3).IntheempiricalsupportofworkweassumedWeibullprobabilitydistributionforΦn,howevertheformofthedistributionisnottiedinthetheory.Infact,weexpectthatthesuccessprobabilitieswouldbederivedfromtheavailablemarketinformation. 1pnpnΦn(tsn;t)tFigure3:Unconditionaldistributionforsuccessfulcompletionprobability. Tasknbearsanassociatedcost1.Weassumethetotalcostoftasknhastwoparts:adeposit,whichispaidwhenthebidisaccepted,andacostcnwhichisduesometimeaftersuccessfulcompletionofn.Sincedepositsareassumedtobepaidupfront,theamountdoesnotchangebetweenschedulesandwecanassumewithoutlossofgeneralitythesumofdepositstobe0. ThereisasinglefinalrewardVscheduledattheplanfinishtimetfandpaidconditionalonalltasksinNbeingsuccessfullycompletedbythattime. Foreachcostandreward,thereisanassociatedrateofreturnqn2thatisusedtocalculatethediscountedpresentvalue(PV)forpayoffcndueattimetas −t PV(cn;t):=cn(1+qn). WeassociatetherateofreturnqwiththefinalpayoffV. weusewords“cost”and“reward”todenotesomemonetaryvalue,whilereferringthesamevalueas“payment” or“payoff”wheneveritisscheduledatsometimet. 2Thereasonforhavingmultipleq’sisthatindividualtaskscanbefinancedfromdifferentsources,thusaffectingtasknscheduling. 1Hereafter 8 3.2ExpectedUtilityandCertaintyEquivalent Werepresentthecustomeragent’spreferencesoverpayoffsbythevonNeumann-Morgensternutilityfunctionu[21].Wefurtherassumethattheabsoluterisk-aversioncoefficientr:=−u′′/u′ofuisconstantforanyvalueofitsargument,henceucanberepresentedasfollows: u(x)=−exp{−rx}forr=0andu(x)=xforr=0 Itisimperativetonoteherethatwedonotcompareutilityvaluesdirectly;thecounterintuitive(i.e.de-creasinginmonetaryterms)formoftheutilityforr<0isatradeoffforsimplenotation. Weassumethatafuturestateoftheworldcanbedescribedintermsofpotentialmoneytransfersandthecorrespondingprobabilities.Accordinglywedefinegambletobeasetofpayoff-probabilitypairsG= {(xi,pi)i}s.t.pi>0,∀iandipi=1.TheexpectationoftheutilityfunctionoveragambleGistheexpectedutility(EU): Eu[G]:= (xi,pi)∈G piu(xi) Thecertaintyequivalent(CE)ofagambleGisdefinedasthesinglepayoffvaluewhoseutilitymatchestheexpectedutilityoftheentiregambleG,i.e.u(CE[G]):=Eu[G].Henceunderourassumptions −1 CE(G)=log r (xi,pi)∈G piexp{−rxi}forr=0andCE(G)= (xi,pi)∈G pixiforr=0 OurevaluationcriterionisbaseduponcomparingCEvalues,sincetheyrepresentmoneytransfersincertainandcurrentmoney.DuetothisinterpretationCEvalues,unlikeutilities,canbecomparedacrossvariousrisk-averitiesandalternativeschedules,evenbetweendifferentplans.Naturally,theagentwillnotbewillingtoacceptgambleswithnegativecertaintyequivalent,andhighervaluesofthecertaintyequivalentwillcorrespondtomoreattractivegambles. Toillustratetheconcept,Figure4showshowthecertaintyequivalentdependsontherisk-aversityrofan 9 agent.Inthisfigureweconsideragamblethatbringstheagenteither100ornothingwithequalprobabilities.Agentswithpositivervaluesarerisk-averse;thosewithnegativervaluesarerisk-loving.Agentswithrisk-aversityclosetozero,i.e.almostrisk-neutral,haveaCEequaltothegamble’sweightedmean50. 100CE({(100,1/2),(0,1/2)})7550250−0.1r 0.1−0.0500.05Figure4:Certaintyequivalentofasimplegambleasafunctionoftherisk-aversity. 3.3CumulativeProbabilities Tocomputethecertaintyequivalentofagambleweneedtodetermineascheduleforthetasksandcomputethepayoffprobabilitypairs. ˜n3isWeassumethatthepayoffcnfortasknisscheduledattfn,soitspresentvaluec c˜n:=cn(1+qn) −tfn Wedefinetheconditionalprobabilityoftasknsuccessas f p˜n:=pnΦnts;tnn. weusethetildetodistinguishvariablesthatdependonthecurrenttaskschedule,whileomittingcorresponding indicesforthesakeofnotationalsimplicity. 3Hereafter 10 Wealsodefinetheprecursorsoftasknasasetoftasksthatfinishbeforetasknstartsinaschedule,i.e. s˜(n):=m∈N|tfP≤tmn. Theunconditionalprobabilitythattasknwillbecompletedsuccessfullyis p˜c˜n×n=p ˜(n)m∈P p˜m. Thatis,theprobabilityofsuccessfulcompletionofeveryprecursorandoftasknitselfareconsidered˜(n)failstobeindependentevents.Thereasonthisiscalculatedinsuchformisbecause,ifanytaskinPcompleted,thereisnoneedtoexecutetaskn. TheprobabilityofreceivingthefinalrewardVistherefore n∈N p˜=p˜n. 3.4ExampleandDiscussion Toillustratethedefinitionsabove,let’sreturntothetasknetworkinFigure2andconsiderthesampletaskschedulesshowninFigure5.Inthisfigurethex-axisistime,they-axisshowsboththetasknumbersandthecumulativedistributionoftheunconditionalprobabilityofcompletion(comparetoFigure3).Circle f ˜n(numbersmarkersshowstarttimestsn.Crossesindicatebothfinishtimestnandsuccessprobabilitiesp nexttoeachpoint).Squaremarkersdenotethatthecorrespondingtaskcannotspanpastthispointduetoprecedenceconstraints.ThethickpartofeachCDFshowsthetimeallocatedtoeachtask. Thecustomeragentneedsawayofcollectingthemarketinformationnecessarytobuildandusetheprob-abilitymodel.Theprobabilityofsuccessisrelativelyeasytoobserveinthemarket.ThisisthereasonforintroducingthecumulativeprobabilityofsuccessΦnandprobabilityofsuccesspn,insteadoftheaver-ageprojectlifespanorprobabilityoffailure.Indeed,itisrationalforthesuppliertoreportasuccessful 11 #123456020.990.960.950.980.970.999#1234560.990.960.950.980.97146810t0246810tFigure5:CEmaximizingtimeallocationsfortheplaninFigure2forr=−0.01(left)andr=0.02(right).completionimmediatelyinordertomaximizethepresentvalueofapayment.Alsoitisrationalnottoreportafailureuntilthelastpossiblemoment,duetoapossibilityofearningthepaymentbyrescheduling,outsourcing,orfixingtheprobleminsomeway. 3.5GambleCalculationAlgorithmandMaximization GivenascheduleliketheoneshowninFigure5,weneedtocomputethepayoffprobabilityandthenmaximizetheCEforthegamble.Writinganexplicitdescriptionoftheexpectedutilityasafunctionofgamblesisoverlycomplicatedandreliesontheorderoftaskcompletions.Insteadweproposeasimplerecursivealgorithmthatcreatesthesegambles.WethenmaximizetheCEoverthespaceofallfeasibleschedulesandthecorrespondinggambles.Algorithm:G←calcGamble(T,D) Requires:T“taskstoprocess”,D“processedtasks”Returns:G“subtreegamble”˜(m)⊂D}M←{m∈T|P ifM=∅“it’sabranch” n←first{M}“accordingtosomeordering” 12 T←T\\{n}G←∅ E←calcGamble(T,D)“follow...→n¯path”forall(x,p)∈E G←G∪{(x,p×(1−p˜n)})endfor I←calcGamble(T,D∪{n})“follow...→npath”forall(x,p)∈I G←G∪{(x+c˜n,p×p˜n)}endfor returnG“subtreeisprocessed”else“it’saleaf” ifN=D“alltasksaredone” return{(V,1)}else“sometaskfailed” return{(0,1)}endifendif Inthefirstcall,thealgorithmreceivesa“todo”tasklistT=Nanda“done”tasklistD=∅.Allthesubsequentcallsarerecursive.Toillustratetheideabehindthisalgorithm,werefertothepayoff-probabilitytreesinFigure6.ThesetwotreeswerebuiltforthetimeallocationsinFigure5andreflecttheprecursorrelationsforeachcase. Consideringthemoresequentialscheduleontheright,wenotethatwithprobability1−p˜1task1fails,thecustomeragentdoesnotpayorreceiveanythingandstopstheexecution(path¯1intherighttree).With˜1theagentproceedswithtask3(path1inthetree).Inturn,task3eitherfailswithprobabilityp˜c1=pprobabilityp˜1×(1−p˜3),inwhichcasetheagentendsupstoppingtheplanandpayingatotalofc1(path1→¯3),oritiscompletedwiththecorrespondingprobabilityp˜c˜1×p˜3.Inthecasewhereboth1and33=p 13 arecompleted,theagentstartsboth2and4inparallelandbecomesliableforpayingc2andc4respectivelyeveniftheothertaskfails(paths1→3→2→¯4and1→3→¯2→4).Ifboth2and4fail,theresultingpathinthetreeis1→3→¯2→¯4andthecorrespondingpayoff-probabilitypairisframedinthefigure. 0¯33¯44c˜1c˜1+c˜4c˜1+c˜3¯550c˜1p˜1×p˜3×(1−p˜4)×(1−p˜2)c˜1+c˜3¯55¯1¯11¯2¯44c˜1+c˜3+c˜4c˜1+c˜3+c˜4+c˜5 1¯3¯43¯24c˜1+c˜3+c˜4c˜1+c˜3+c˜4+c˜52¯33¯44c˜1+c˜2c˜1+c˜2+c˜4c˜1+c˜2+c˜3 2¯44¯44c˜1+c˜2+c˜3¯55c˜1+...+c˜4¯66¯55c˜1+...+c˜4¯66c˜1+...+c˜5˜c˜1+...+c˜6+V c˜1+...+c˜5˜c˜1+...+c˜6+VFigure6:Payoff-probabilitytreesforthetimeallocationsinFigure5. Thealgorithm’scomplexityisO2K−1×N,whereKisthemaximumnumberoftasksthatarescheduledtobeexecutedinparallel.ReducingthecomplexityofcalcGambleiscritical,sinceitwillbeexecutedintheinnerloopofanyCEmaximizationprocedure,unlesswesomehowfixprecursorrelationsand,consequently,atreestructure.IncommercialprojectstheratioK/Nislikelytobelow,sincenotmanyoftheseexhibitahighdegreeofparallelism.OurpreliminaryexperimentsallowustoconcludethattheK/Nratioislowerforrisk-averseagents(presumably,businessmen)thanforrisk-lovers(gamblers).Thesetwoconsiderationsmayreducetheneedforafasteralgorithm,thoughadditionalworktoimprovethealgorithmisplanned. 14 3.6ExperimentalResults WehaveconductedasetofexperimentsonCEmaximizationinavarietyoftasknetworks.Someoftheresultsforourreference6–tasknetworkaresummarizedinFigure7.Inthisfigure,they-axisshows11differentrisk-aversityrsettingsandthebottomx-axisistimetintheplan.Theroundedhorizontalbarsineachof11sectionsdenotetimeallocationsforeachofsixtaskswithtask1beingontop.Sectionsr=−0.01andr=0.02correspondtoschedulesinFigure5(left)andFigure5(right)respectively.Finally,theverticalbarsshowthemaximumCEvaluesonthetopx-axisforeachrsetting.r 0.070.060.050.040.030.020.010−0.01−0.02−0.03t 012345678910050100150CE Figure7:CEmaximizingschedulesandCEvaluesfortheplaninFigure2andr∈[−0.03,0.07].Let’sexaminetherelativeplacementoftimeallocationsasafunctionofr.Forthisexamplewechosetwo 15 tasks,3and4,whichhavesimilarpositionsinthetasknetwork.Task3(blackhorizontalbars)hasalowerprobabilityofsuccessintheinfinitehorizonthantask4(whitebars),aswellasahighervarianceoftheprobabilityofsuccessdistribution.Also,thecostoftask3istwicethecostoftask4.Giventhissetup,weobservedfourdistinctcasesintheexperimentaldata: 1.Risk-lovingagentstendtoscheduletasksinparallelandlateintimeinordertomaximizethepresentvalueoftheexpecteddifferencebetweenrewardandpayoffstosuppliers.ThisconfirmstheintuitionfromFigure4–risk-loversleantowardreceivinghigh,riskypayoffsratherthanlowcertainpayoffs.2.Riskneutralandminimallyrisk-averseagentsplaceriskytask3firsttomakesurethatthefailuredoesn’thappentoofarintotheproject.Note,thattheystillkeeptask2inparallel,soincase2fails,theyareliableforpayingthesupplieroftask4onsuccess.Onecanconsiderthoseagentsassomewhatoptimistic. 3.Moderatelyrisk-averseagentstrytododgethesituationabovebyschedulingtask3aftertask2isfinished.Theseagentsarewillingtoaccepttheplan,buttheirexpectationsarequitepessimistic.4.Highlyrisk-averseagentsshrinktask1intervaltozero,thus“cheating”toavoidcoveringanycosts.Onemayinterpretthisasawayofsignalingarefusaltoaccepttheplan.Indeed,theassignmentofzerodurationtoaprecursor-lesstaskensureszeroprobabilityofcompletionand,hence,zeroCEeveninthecaseswhereanynon-degenerateschedulehasnegativeCEvalue. 4GenerationofRationalRFQ IntheprevioussectionswehaveshownawayofgeneratingaCEmaximizingscheduleoftaskexecution,whichwehereafterreferasthereasonableschedule.Forachosenrisk-aversityvalueandknownmarketstatistics,thereasonablescheduleensuresthehighestexpectedqualityofthebidsthatsatisfyit.Byquality,weassumesomefunctionoftheexpectationsoverthecost,theprobabilityofsuccessfulcompletion,andtheprofitabilityoftheincomingbidsintheirfeasiblecombinationswithotherbids. Thereasonableschedule,however,cannotserveasarationalRFQ,sinceitisunlikelythatbidswillbe 16 availabletocoverpreciselythesameintervalsasmandatedbytheCEmaximizingschedule.InordertoconstructaviableRFQusingthereasonablescheduleasabasis,thecustomeragentmightchoosetoloweritsexpectationsofthebidqualitytosomelevelbywideningtheRFQtimewindowsaroundthetimewindowsinthereasonableschedule,thusincreasing4theexpectednumberofincomingbids.InthissectionwediscusscriteriathatallowforrationalizingtheselectionamongallsuchRFQs. Weapproachtheindividuallyrational(i.e.agent-dependent)RFQgenerationasfollows: 1.MeasurethesensitivityoftheexpectedbidqualitytodeviationsfromtheCEmaximizingschedule.2.DerivetherelationshipbetweenthequalityofincomingbidsandthesizeofRFQtimewindows.3.Choosarationalquality-quantitycombination. Inaddition,wesearchforasolutionconceptthatgeneratesviableRFQsandiscomprehensibletoahumanuserofthesystem. 4.1CESensitivitytoScheduleChanges WeproposemeasuringthesensitivityofCEbyinvestigatinghowCEvalueschangewithvariationsofasingletasknstarttimetsninthereasonableschedule.Forthesakeofbrevitytheresultingdependencyof sCEvaluesisdenotedbyCE(tsn).Figure8showsCE(tn),n=1...6forour6-tasksampleproblemfor r=−0.01andr=0.02respectively.Inthefigure,they-axisofeachhorizontalstripenrepresentsthe spercentageofthemaximumCEvalueastsnvaries,thex-axisrepresentstn,andthehorizontallineswith circleandcrossendsshowthecorrespondingreasonableschedules. Thetasks1,3and5intherightgrapharerelativelyrestrictivetothestarttimesofthebidsthatcanbebundledwiththereasonablebidswithoutconsiderablyimpairingtheresultingbundle’svalue.However,thefactthatthetask2intherightgraphismoreflexibledoesnotguaranteethatitwillattractahighernumberofbids,sincethelatterdependsbothonthesizeofthecorrespondingtimewindowandonthemarketpropertiesofthetask:resourceavailability,numberofprospectivebidders,seasonalchanges,etc. leasttosomeextent,—thereisafairchancethatthenumberoftheincomingbidswillceasetoincreasewheneverRFQtimewindowsbecometoolargetoinspireconfidenceonthepartofsuppliers. 4At 17 #12345602468#12345602468t10t10Figure8:CE(tsn)graphsforthecorrespondingreasonableschedulesinFigure5. WeassertthatforthepurposeofcreatingarationalRFQ,itisadmissibletochoosetimewindowsbasedonthesensitivityofCEtodeviationsofasingletimeconstraintfromthereasonableschedule.TherationaleisthattherelationsbetweentasksarealreadyencapsulatedinthecalculationsofCE,sothechangeofoneconstraintwillapproximatethereschedulingofseveralrelatedtasksintheneighborhoodofthereasonableschedule. 4.2Qualityvs.Quantity s Observethatthetimewindowforthetaskn,{tsn|CE(tn)≥x},growsasthelowestexpectedCEvalue,x, decreases.Therelationbetweenthesetwovariablesforthetasks3and4ofthetestproblemisshowninFigure9.ThecorrespondingrelationbetweenthelowestexpectedCEvalueandtheexpectednumberofbidsasafunctionofthewindowsizeisshowninFigure10.Intherightgraphweassumed,forthesakeofexample,thatthesupplyoftask3inthemarketishigherthanofthetask4,hencethedifferenceinrelativepositionsoftask3andtask4graphsinthetwofigures. ThegraphinFigure10isanexampleoftherelationbetweenthequalityandthequantityofbidswearesearchingfor.Indeed,theonlyindependentvariableinthisgraphistsn.ThequantityofbidsdependsonthesizeandpositionsofRFQtimewindowsthat,inturn,dependonthedecisionaboutthelowestacceptable 18 100806040200% of max CEtask 3task 410080604020t0% of max CEtask 3task 4E#012345601234Figure9:RelationshipbetweentheRFQwindowsizeFigure10:Relationshipbetweentheexpectednumber(showninunitsoftimeonx-axis)andthelowestad-ofbids(shownonx-axis)andthelowestadmissibleper-missiblepercentageofthemaximumCEvalue.centageofthemaximumCEvalue.CEvalue.ThequalityofbidsisafunctionoftheRFQchoiceandthepropertiesoftheplan.Finally,itisexpectedthatthecustomeragentwillpreferapointonthegraphtoanypointbelowandtotheleftofit,hencethebestchoiceshouldlieonthegraph. 4.3RationalQuality-QuantityChoiceandRFQ WeillustratethedecisionprocessofthecustomeragentinFigure11,wherethecustomeragent’spreferencesoverquality-quantitycombinationsarerepresentedbyafamilyofindifferencecurves,andthegraphofunderlyingquality-quantityrelationshipisasderivedintheprevioussection.Eachindifferencecurveshowsquality-quantitypairsthatareequivalentfromtheagent’spointofview.Inparticular,pointsA,BandCareconsideredtobeequallyattractive.TheintuitionisthatalthoughinpointAagentreceivesmuchsmallernumberofbidstocomparewithCandisexposedtoahigherriskofnotcoveringsometasks,thisisoffsetbyapositiveeffectofalowerpercentageofbidrejectionsonagent’sreputation.Alsothewinnerdeterminationproblemisexponentiallyeasiertosolve[5]forthelowerexpectednumberofbidsinpointA.Forallpointsbelowthemaximumexpectedqualityline(horizontaldashedlineinthegraph)agent’spref-erencesincreaseinthedirectionofpointM.ThusacurvethroughpointDispreferredoveronethrough 19 pointCandevenmoresooveronethroughpointE.Therationalchoicebelongstotheintersectionofthequality-quantitygraphandthehighestindifferencecurve(pointBinthegraph). expected quality of bidsindifference curvesABMDCEdirection of increasingpreferencesexpected quantity of bidsFigure11:Quality-quantitygraphwiththreeindifferencecurves. Aftertherationalchoiceofthequality-quantitycombinationsforalltasksintheplanisrevealed,weproceed ls withconstructingtheRFQtimewindows.Thechoiceofearlystarttimetesnandlatestarttimetnare determinedbythevalueofthereciprocaloftheCE(tsn)attheminimumadmissibleCEchoiceforthetask lsn.Thelatefinishtimetlfnischosentobeatthereasonabletimewindowlengthdistancefromtn.Figure12 showstwosampleRFQsforthegaragebuildingexample.Inthefiguregraybarsshowstarttimeintervals, lslf[tesn,tn],theendsofwhitebarscorrespondtolatefinishtimes,tnandthehorizontallineswithcircleand crossendsshowthecorrespondingreasonableschedules.#12345602468#12345602468t10t10Figure12:RationalRFQsforthecorrespondingreasonableschedulesinFigure5andthefollowingvectorofthemaximumCEpercentages:(80%,95%,50%,70%,50%,90%). OurchoiceoftheRFQmaynotbeoptimalinthequantitativesense,howeveritisindividuallyrationalfor 20 thecustomeragent,itisalsofasttocompute,andarguablyeasytograspforahumanuserofthesystem.ItshouldbeemphasizedherethatthechoiceoftheRFQisbasedontheuncertainmarketinformation,henceanyquantitatively“optimal”solutionisitselfacompromise. 5OpenIssuesandFurtherResearch InthissectionweoutlinetwomajorissuesthatarisewhenweemploytheexpectedutilityapproachtogeneraterationalRFQs.ThefirstissueconcernstheCEmaximizationinthedomainwithtemporalandprecedenceconstraints.ThesecondissueistheassessmentoftheEUapproachand,ultimately,theMAGNETsystemitselfintheabsenceofthereal-worlddataforthedomainofinterest. 5.1MultipleLocalMaxima OneofthemostimportantissuesrelatedtotheCEmaximizationisthepresenceofmultiplelocalmaximaofCEevenincaseswheretasknetworksarefairlysimple.Wearguethatthispropertyispartiallyduetotherelativepositioningofthetasksoffthecriticalpath.Anytwotasksthatarenotorderedbytheprecedenceconstraintscanbescheduledinthreeways:parallelandtwosequential.Schedulingtasksinparallelincreasestheprobabilityofsuccessfulcompletion,whilesequentialschedulingminimizesoverallpayments,incaseoneofthetasksfails.Incaseswhereextraslackallowsforsequentialscheduling,itturnsoutthatparallelandsequentialpositioningsoftwoindependentindividualtasksleadtosimilarresultingCEvalues. Toillustratetheissue,weconstructedasampletasknetworkwithtwoparalleltasks.Task1hasahighervarianceofcompletiontimeprobabilityandlowerprobabilityofsuccessthantask2,everythingelseisthesame.TheresultinggraphofCEisshowninFigure13.Thereare3localmaximawithpositiveCEvaluesinthisfigure:oneintheleftsidethatcorrespondstothetasktwobeingscheduledfirstinsequentialorder,anotherontherightsidecorrespondingtothetaskonebeingfirst,andyetanotheroneinthefurthermostcornerofthegraphrepresentingbothtasksbeingscheduledattime0andexecutedinparallel.Thenumberoflocalmaximagrowsconsiderablywiththenumberofthetasksthatarenotrestrictedbytheprecedence 21 relationship. CE2015105005task 2 start time101005task 1 start timeFigure13:Localmaximafortwoparalleltasks. 5.1.1DomainandAlgorithmProperties Thefollowinglistshowsthepropertiesofthedomainthatinfluencethesearchalgorithmdesign:•localmaximaareduetodifferentschedulingorderoftasksoffthecriticalpath;•groupsoflocalmaximahavesimilarCEvalues; •anRFQbasedontheglobalmaximumcanbeoverlyrestrictive. Thepropertiesofthedomainframethepropertiesofthesearchalgorithmthatwedesigntofitthisdomain.Namely,thesearchalgorithmmustbeabletotestdifferentorderingsoftasks,itshouldknowhowtoexploregroupsofsimilarlocalmaximaand,wheneverpossible,itshouldprovidealternativescheduleswithCEvaluesclosetotheglobalmaximum. WeproposeasearchalgorithmbasedontheideasoftheSimulatedAnnealing[27]andGeneticAlgo-rithms[10].Thealgorithmwillcombinethestochastictemperature-drivennatureoftheSimulatedAnneal-ingwiththesimultaneoussearchspaceexplorationoftheGeneticAlgorithms.Inthissectionwedescribetheproposedalgorithminmoredetailsandexplaintherationaleofitsdesign. 22 5.1.2SearchAlgorithm Theproposedsearchalgorithmexploresseveralalternativeschedulesinparallel.Theinitialsetofalternativescanbegeneratedinmanyways:randomgeneration,hill-climbingfromrandomschedule,CPM,etc.Theexecutionofthealgorithmproceedsinstepsbyrandomlyapplyingoneofthesixtransformationrulestoeachalternativeschedule.Theprobabilitiesofchoosingsomerulecanbeadjustedtoadjustalgorithm’sbehaviorinawiderange. Figure14illustratesthealgorithmforthecaseofthreepairwiseindependenttasks.Inthisfigurecolumnsrepresentthreeconsequitivestatesofthealgorithm,eachcolumnlistsseveralalternativeschedules.Arrowsandlettersnexttothemdenotevarioustransformationsfromthefollowinglist: 1DERS5GSII92610371148Figure14:Twostepsofthesearchalgorithmexecution. Distortionaltersstartandfinishtimesofoneorseveraltasksaswellasadjuststimewindowsofallrelated taskstomaintainprecedenceconstraints(1→5inFigure14).DistortionmimicsthebasicstepoftheSAalgorithmincontinuous2N–dimentionalspaceoftaskstartandfinishtimes. Gradientfollowingisoneormorestepsofagenericnumericalmaximizationmethod(5→9).Thisstep isverycomputationalyintensive,asitrequiresmanycallstocalcGamblealgorithmintheprocessofcalculatingnumericalderivatives.Byvaryingrelativeprobabilitiesofthedistortionandgradientfollowingwemaychoosestochasticpropertiesoftheproposedapproach. 23 Shufflingchangesrelativeschedulingoftwoormoretaskswhereveritispermittedbytheprecedence constraints.Shufflingcanswitchorderingoftasks(6→10),changesequentialorderingtoparallelorrescheduleparalleltaskstobeexecutedsequentially(4→8).ThemajorroleofshufflingistoexplorelocalmaximathathavesimilarCEvaluesduetodifferentschedulingoftasksoffthecriticalpath.Explosionaddsacopyofthesubjectscheduletothelistofalternatives(2→6,7).Explosioncompliments shufflingbyallowingforsimultaneousexplorationofthegroupsofsimilarschedules.Wemaychoosetodecreasetherateofexplosionswiththeannealingtemperaturetofocusonimprovingthecurrentsetofsolutionafterthesearchspacewasexploredtoextent. Implosionmergestwosimilar5schedulesinone.Implosionhelpsreducingcomputationalexpensesfrom crowdingseveralalternativeschedulesaroundonemaximum(7,8→11).Therateofimplosionswillchangeintheoppositedirectiontotherateofexplosions. Removaleliminatesalternativesthatdonotscorewellrelativetoothers(3→∅).Thistransformation takescareoftheschedulesthatarestuckinlocalmaximawithlowCEvalues.Therateofremovalsgrowsastheannealingtemperaturedecreases. EachofthefirstfivetransformationsistestedagainstSAtemperaturerulewheneveritleadstoadecreaseintheCEvalue.Incaseitisdiscarded,othertransformationsarechosenatrandomandapplieduntiloneofthemincreasesCEorpassesthetemperaturerule. Theprobabilitiesoftransformationsaswellasdetailsoftheproposedsearchalgorithm’spropertiesaresubjecttofurtherresearch.ItisreasonabletobelievethoughthatthecomprehensivestudyoftheRFQgenerationmechanismisonlypossibleinthedynamicmarketenvironment.Inthenextsectionweoutlinetheapproachtothelarge-scaletestingoftheMAGNETsystemthatwepresentlyresearchandthatwillprovideuswiththenecessarydata. 5Similarity isafunctionthedistancebetweentwoschedulesasbetweentwopointsinthe2N-dimensionaltimespace. 24 5.2EvolutionaryFrameworkforLarge-scaleTesting WeplantodevoteeffortstothoroughlytestthesuggestedCE-basedapproachoftherationalRFQgeneration.Inparticular,weareinterestedintestinghowwellindividualagentsinteractinapopulatedmarket.Themajorgoalsofthispartofthestudywouldbe: •providethestatisticaldatanecessaryfortheevaluationofthetheoreticalassumptionsandderivations;•facilitatetheunderstandingofthenuancesoftheCE-basedRFQgenerationandsuggestimprovementstothetheoryandimplementation; •studytherelativeperformanceofagentsinasimulatedmarket,developinganunderstandingofthepropertiesofautomatedandmixed-initiativecombinatorialauction-basedtradingsocieties. Themostcompellingapproachwouldbetogatherarichsetofstatisticaldatafromacommercedomain.Thathasnotproventobefeasible,fortworeasons.First,fewindustrialorganizationsaresufficientlyopentoexposethetypeofdatayouwouldneedtodothat,andwewouldneeddatafrommultipleorganizationsinasinglemarket.Second,dataisgatheredtoserveapurpose,andourexperiencetellsusthatwhenyouattempttoapplyexistingdatatoanewpurpose,itfrequentlyturnsouttobefullofinconsistenciesandmethodologicalproblems. Inlieuofusingrealindustrydata,wearedesigningalarge-scaletestsuiteatopanabstractdomainwithcontrollablestatistics,basedontheevolutionaryapproachtoeconomicsimulation.EvolutionaryframeworkshavebeenusedextensivelyinEconomics[23,29,39].TheframeworkwillallowustotunethemarketbytweakingthefrequencyofissuingRFQsandwillallowforthedynamicintroductionofnewsupplierstrategies,withoutimposinganyassumptionsonthenatureofstrategies.Wewilllaterextendtheframeworktosupporttradegamestobeplayedwithhumansubjects.Thiswillbeatoolspeciallyusefulforteaching,asatooltoexplorestrategicbehaviorsandtostudytheemergenceofcooperation[1,2]. Wesuggestdetailedreasoningbehindourchoiceoftheevolutionaryapproachanddescribeexperimentalresultsfromapilottradingagentsocietymodelinourrelatedresearch[4]. 25 6RelatedWork ExpectedUtilityTheory[26]isamaturefieldofEconomicsthathasattractedmanysupportiveaswellascriticalstudies,boththeoretical[19,20]andempirical[16,37].Webelievethatexpectedutilitywillplayanincreasingroleinautomatedauctions,sinceitprovidesapracticalwayofdescribingriskestimationsandtemporalpreferences. Despitetheabundanceofworkinauctions[22],limitedattentionhasbeendevotedtoauctionsovertaskswithcomplextimeconstraintsandinterdependencies.In[25],amethodisproposedtoauctionasharedtracklinefortrainscheduling.Theproblemisformulatedwithmixedintegerprogramming,withmanydomain-specificoptimizations.Bidsareexpressedbyspecifyingapricetoenteralineandatimewindow.Timeslotsareusedin[41],whereaprotocolfordecentralizedschedulingisproposed.Thestudyislimitedtoschedulingasingleresource.MAGNETagentsdealwithmultipleresources. Mostworkinsupply-chainmanagementislimitedtohierarchicalmodelingofthedecisionmakingprocess,whichisinadequatefordistributedsupply-chains,whereeachorganizationisself-interested,notcooperative.Walshetal[40]proposeaprotocolforcombinatorialauctionsforsupplychainformation,usingagame-theoreticalperspective.Theyallowcomplextasknetworks,butdonotincludetimeconstraints.MAGNETagentshavealsotoensuretheschedulingfeasibilityofthebidstheyaccept,andmustevaluateriskaswell.AgentsinMASCOT[31]coordinateschedulingwiththeuser,butthereisnoexplicitnotionofpaymentsorcontracts,andthecriteriaforaccepting/rejectingabidarenotexplicitlystated.Theirmajorobjectiveistoshowpoliciesthatoptimizescheduleslocally[17].Ourobjectiveistooptimizethecustomer’sutility.Differentheuristicsforschedulingareproposedin[9].Thestrategiesareintendedfosupplieragentsthataretryingtoadjusttheirschedulestowinnewawards.Intheworkpresentedhere,weareconcernedwiththeschedulingthatcustomersneedtodobeforerequestingbids. InMAGNETagentsinteractwitheachotherthroughamarket.Themarketinfrastructureprovidesacommonvocabulary,collectsstatisticalinformationthathelpsagentsestimatecosts,schedules,andrisks,andactsasatrustedintermediaryduringthenegotiationprocess.Themarketactsalsoasamatchmaker[38], 26 allowingustoignoretheissueofhowagentswillfindeachother.Forasurveyontheuseofintelligentagentsinmanufacturingsee[36]. Thedeterminationofwinnersofcombinatorialauctions[30]ishard.Dynamicprogramming[30]workswellforsmallsetsofbids,butdoesnotscaleandimposessignificantrestrictionsonthebids.AlgorithmssuchasCABOB[34],Bidtree[33]andCASS[11]reducethesearchcomplexity.Reevesetal[28]useauctionmechanismsto”fillintheblanks”inprototypedeclarativecontractsthatarespecifiedinalanguagebasedonCourteousLogicProgramming[13].Theseauctionssupportbiddingonmanyattributesotherthanprice,buttheproblemofcombiningcombinatorialbidswithsideconstraintsisnotaddressed. Combinatorialauctionsarebecominganimportantmechanismnotjustforagent-mediatedelectroniccom-merce[14,42,32]butalsoforallocationoftaskstocooperativeagents(see,forinstance,[15,8]). In[15]combinatorialauctionsareusedfortheinitialcommitmentdecisionproblem,whichistheproblemanagenthastosolvewhendecidingwhethertojoinaproposedcollaboration.Theiragentshaveprecedenceandhardtemporalconstraints.However,toreducesearcheffort,theyusedomain-specificroles,ashorthandnotationforcollectionsoftasks.Intheirformulation,eachtasktypecanbeassociatedwithonlyasinglerole.MAGNETagentsareself-interested,andtherearenolimitstothetypesoftaskstheycandecidetodo.In[12]schedulingdecisionsaremadenotbytheagents,butinsteadbyacentralauthority.Thecentralauthorityhasinsighttothestatesandschedulesofparticipatingagents,andagentsrelyontheauthorityforsupportingtheirdecisions. Leyton-Brownetal[18]suggestawayofconstructingauniversaltestsuiteforwinnerdeterminationalgo-rithmsincombinatorialauctions.Theirworkdoesnotincludecaseswithprecedenceandtimeconstraintsand,thus,isnotdirectlyapplicabletotheMAGNETframework.Itneverthelessprovideswell-understoodtestcasesforcomparingtheperformanceofalgorithms. 27 7Conclusions Auctionmechanismsareaneffectiveapproachtonegotiationamonggroupsofself-interestedeconomicagents.Weareparticularlyinterestedinsituationswhereagentsneedtonegotiateovermultiplefactors,includingnotonlyprice,buttaskcombinationsandtemporalfactorsaswell. Wehaveshownhowanagentcanuseinformationabouttheriskpostureofitsprincipal,alongwithmarketstatistics,toformulateRequestsforQuotesthatoptimizethetradeoffbetweenriskandvalue,andincreasethequalityofthebidsreceived.Thisrequiresdecidinghowtosequencetasksandhowmuchtimetoallocatetoeachofthem.Bidsclosesttothespecifiedtimewindowsarethemostpreferredrisk-payoffcombinations.TheworkdescribedhereisapartofalargereffortattheUniversityofMinnesotathataimstostudyhowautonomousorsemi-autonomousagentscanbeusedincomplexcommerce-orienteddomains. Acknowledgments PartialsupportforthisresearchisgratefullyacknowledgedfromtheNationalScienceFoundationunderawardNSF/IIS-0084202. References [1]R.M.Axelrod.Theevolutionofcooperation.BasicBooks,1984. [2]RobertAxelrod.Thecomplexityofcooperation.PrincetonUniversityPress,1997. [3]AlexanderBabanov,JohnCollins,andMariaGini.Riskandexpectationsina-prioritimeallocation inmulti-agentcontracting.InProc.oftheFirstInt’lConf.onAutonomousAgentsandMulti-AgentSystems,volume1,pages53–60,Bologna,Italy,July2002. 28 [4]AlexanderBabanov,WolfgangKetter,andMariaGini.Anevolutionaryframeworkforlarge-scale experimentationinmulti-agentsystems.InTowardanApplicationScience:MASProblemSpacesandTheirImplicationstoAchievingGloballyCoherentBehavior,Bologna,Italy,July2002. [5]JohnCollins.SolvingCombinatorialAuctionswithTemporalConstraintsinEconomicAgents.PhD thesis,UniversityofMinnesota,June2002. [6]JohnCollins,CoreyBilot,MariaGini,andBamshadMobasher.Decisionprocessesinagent-based automatedcontracting.IEEEInternetComputing,pages61–72,March2001. [7]JohnCollins,WolfgangKetter,andMariaGini.Amulti-agentnegotiationtestbedforcontractingtasks withtemporalandprecedenceconstraints.Int’lJournalofElectronicCommerce,7(1):35–57,2002.[8]M.B.DiasandA.Stentz.Afreemarketarchitecturefordistributedcontrolofamultirobotsystem.In SixthInt’lConf.onIntelligentAutonomousSystems,pages115–122,Venice,Italy,July2000.[9]ParthaSarathiDutta,SandipSen,andRajatishMukherjee.Schedulingtobecompetitiveinsupply chains.InIJCAIworkshoponE-BusinessandtheIntelligentWeb,August2001. [10]StephanieForrest.Geneticalgorithms:Principlesofnaturalselectionappliedtocomputation.Science, 261:872–878,1993. [11]YuzoFujishima,KevinLeyton-Brown,andYoavShoham.Tamingthecomputationalcomplexityof combinatorialauctions:Optimalandapproximateapproaches.InProc.ofthe16thJointConf.onArtificialIntelligence,1999. [12]AlyssaGlassandBarbaraJ.Grosz.Sociallyconsciousdecision-making.InProc.oftheFourthInt’l Conf.onAutonomousAgents,pages217–224,June2000. [13]B.N.Grosof,Y.Labrou,andH.Y.Chan.Adeclarativeapproachtobusinessrulesincontracts: CourteouslogicprogramsinXML.InProc.ofACMConfonElectronicCommerce(EC’99),pages68–77.ACM,1999. 29 [14]RobertH.Guttman,AlexandrosG.Moukas,andPattieMaes.Agent-mediatedelectroniccommerce:a survey.KnowledgeEngineeringReview,13(2):143–152,June1998. [15]LukeHunsbergerandBarbaraJ.Grosz.Acombinatorialauctionforcollaborativeplanning.InProc. of4thInt’lConfonMulti-AgentSystems,pages151–158,Boston,MA,2000.IEEEComputerSocietyPress. [16]BrunoJullienandBernardSalani´e.Estimatingpreferencesunderrisk:Thecaseofracetrackbettors. TheJournalofPoliticalEconomy,108(3):503–530,June2000. [17]DagKjenstad.CoordinatedSupplyChainScheduling.PhDthesis,DeptofProductionandQuality Engineering,NorvegianUniversityofScienceandTechnology,Trondheim,Norway,1998. [18]KevinLeyton-Brown,MarkPearson,andYoavShoham.Towardsauniversaltestsuiteforcombinatorial auctionalgorithms.InProc.ofACMConfonElectronicCommerce(EC’00),pages66–76,Minneapolis,MN,October2000. [19]MarkJ.Machina.Choiceunderuncertainty:Problemssolvedandunsolved.TheJournalofEconomic Perspectives,1(1):121–154,1987. [20]MarkJ.Machina.Dynamicconsistencyandnon-expectedutilitymodelsofchoiceunderuncertainty. TheJournalofEconomicLiterature,27(4):1622–1668,December1989. [21]AndreuMas-Colell,MichaelD.Whinston,andJerryR.Green.MicroeconomicTheory.OxfordUniver-sityPress,1995. [22]R.McAfeeandP.J.McMillan.Auctionsandbidding.JournalofEconomicLiterature,25:699–738, 1987. [23]RichardR.Nelson.Recentevolutionarytheorizingabouteconomicchange.JournalofEconomic Literature,33(1):48–90,March1995. [24]NoamNisan.Biddingandallocationincombinatorialauctions.In1999NWUMicroeconomicsWork-shop,1999. 30 [25]DavidC.ParkesandLyleH.Ungar.Anauction-basedmethodfordecentralizedtrainscheduling.In Proc.oftheFifthInt’lConf.onAutonomousAgents,pages43–50,Montreal,Quebec,May2001.ACMPress. [26]JohnW.Pratt.Riskaversioninthesmallandinthelarge.Econometrica,32:122–136,1964. [27]ColinR.Reeves.ModernHeuristicTechniquesforCombinatorialProblems.JohnWiley&Sons,New York,NY,1993. [28]DanielM.Reeves,MichaelP.Wellman,andBenjaminN.Grosof.Automatednegotiationfromdeclar-ativecontractdescriptions.InProc.oftheFifthInt’lConf.onAutonomousAgents,pages51–58,Montreal,Quebec,May2001.ACMPress. [29]DavidRode.Marketefficiency,decisionprocesses,andevolutionarygames.DepartmentofSocialand DecisionSciences,CarnegieMellonUniversity,March1997. [30]MichaelH.Rothkopf,AlexanderPeke˘c,andRonaldM.Harstad.Computationallymanageablecombi-natorialauctions.ManagementScience,44(8):1131–1147,1998. [31]NormanM.Sadeh,DavidW.Hildum,DagKjenstad,andAllenTseng.MASCOT:anagent-based architectureforcoordinatedmixed-initiativesupplychainplanningandscheduling.InWorkshoponAgent-BasedDecisionSupportinManagingtheInternet-EnabledSupply-Chain,atAgents’99,pages133–138,1999. [32]TuomasSandholm.Analgorithmforwinnerdeterminationincombinatorialauctions.InProc.ofthe 16thJointConf.onArtificialIntelligence,pages524–547,1999. [33]TuomasSandholm.Approachestowinnerdeterminationincombinatorialauctions.DecisionSupport Systems,28(1-2):165–176,2000. [34]TuomasSandholm,SubhashSuri,AndrewGilpin,andDavidLevine.CABOB:Afastoptimalalgorithm forcombinatorialauctions.InProc.ofthe17thJointConf.onArtificialIntelligence,Seattle,WA,USA,August2001. 31 [35]TuomasW.Sandholm.NegotiationAmongSelf-InterestedComputationallyLimitedAgents.PhDthesis, DepartmentofComputerScience,UniversityofMassachusettsatAmherst,1996. [36]W.ShenandD.H.Norrie.Agent-basedsystemsforintelligentmanufacturing:Astate-of-the-artsurvey. KnowledgeandInformationSystems,1999. [37]V.KerrySmithandWilliamH.Desvousges.Anempiricalanalysisoftheeconomicvalueofriskchanges. TheJournalofPoliticalEconomy,95(1):89–114,February1987. [38]KatiaSycara,KeithDecker,andMikeWilliamson.Middle-agentsfortheInternet.InProc.ofthe15th JointConf.onArtificialIntelligence,pages578–583,1997. [39]LeighTesfatsion.Agent-basedcomputationaleconomics:Growingeconomiesfromthebottomup.ISU EconomicsWorkingPaperNo.1,DepartmentofEconomics,IowaStateUniversity,December2001.[40]WilliamE.Walsh,MichaelWellman,andFredrikYgge.Combinatorialauctionsforsupplychainfor-mation.InProc.ofACMConfonElectronicCommerce(EC’00),October2000. [41]MichaelP.Wellman,WilliamE.Walsh,PeterR.Wurman,andJeffreyK.MacKie-Mason.Auction protocolsfordecentralizedscheduling.GamesandEconomicBehavior,35:271–303,2001. [42]PeterR.Wurman,MichaelP.Wellman,andWilliamE.Walsh.TheMichiganInternetAuctionBot: Aconfigurableauctionserverforhumanandsoftwareagents.InSecondInt’lConf.onAutonomousAgents,pages301–308,May1998. 32 因篇幅问题不能全部显示,请点此查看更多更全内容