1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=(1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
,AB=4.
【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;
(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出
的坐标,由
与平面PBD的法向量所成角的余弦值的绝对值可得直
线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM,
∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则
,即M为PB的中点;
(2)解:取AD中点G, ∵PA=PD,∴PG⊥AD,
__________________________________________________
__________________________________________________
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,
由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.
以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=
,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,
),
),C(2,
4,0),B(﹣2,4,0),M(﹣1,2,
,
设平面PBD的一个法向量为则由
,得
,取z=
.
, ,得. .
.
取平面PAD的一个法向量为∴cos<
>=
=
∴二面角B﹣PD﹣A的大小为60°; (3)解:
,平面BDP的一个法向量为
.
>
∴直线MC与平面BDP所成角的正弦值为|cos<|=|
|=|
|=
.
__________________________________________________
__________________________________________________
【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.
2.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为AH的长.
,求线段
【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;
(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值; (Ⅲ)设AH=t,则H(0,0,t),求出所成角的余弦值为
列式求得线段AH的长.
的坐标,结合直线NH与直线BE
【解答】(Ⅰ)证明:取AB中点F,连接MF、NF, ∵M为AD中点,∴MF∥BD,
__________________________________________________
__________________________________________________
∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE. ∵N为BC中点,∴NF∥AC,
又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE. ∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE. 又MF∩NF=F.
∴平面MFN∥平面BDE,则MN∥平面BDE; (Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.
∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系. ∵PA=AC=4,AB=2,
∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2), 则
,
,
,
.
. . ,则正弦值为
; ,
,
|=
.
.
设平面MEN的一个法向量为由
,得
,取z=2,得
由图可得平面CME的一个法向量为∴cos<
>=
∴二面角C﹣EM﹣N的余弦值为
(Ⅲ)解:设AH=t,则H(0,0,t),∵直线NH与直线BE所成角的余弦值为∴|cos<
>|=|
|=|
__________________________________________________
__________________________________________________
解得:t=或t=.
∴当H与P重合时直线NH与直线BE所成角的余弦值为或.
,此时线段AH的长为
【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.
3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是(Ⅰ)设P是
的中点.
上的一点,且AP⊥BE,求∠CBP的大小;
(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.
【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°; (Ⅱ)法一、取
的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG
中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平
__________________________________________________
__________________________________________________
面角.求解三角形得二面角E﹣AG﹣C的大小.
法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小. 【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A, ∴BE⊥平面ABP,又BP⊂平面ABP, ∴BE⊥BP,又∠EBC=120°, 因此∠CBP=30°; (Ⅱ)解法一、 取
的中点H,连接EH,GH,CH,
∵∠EBC=120°,∴四边形BECH为菱形, ∴AE=GE=AC=GC=
.
取AG中点M,连接EM,CM,EC, 则EM⊥AG,CM⊥AG,
∴∠EMC为所求二面角的平面角. 又AM=1,∴EM=CM=
.
在△BEC中,由于∠EBC=120°,
由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12, ∴
,因此△EMC为等边三角形,
故所求的角为60°.
解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.
__________________________________________________
__________________________________________________
由题意得:A(0,0,3),E(2,0,0),G(1,故设由设由
,可得,得
,
,
为平面AEG的一个法向量,
,取z1=2,得
为平面ACG的一个法向量,
,取z2=﹣2,得
,3),C(﹣1,.
,0),
;
.
∴cos<>=.
∴二面角E﹣AG﹣C的大小为60°.
【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.
4.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.
__________________________________________________
__________________________________________________
(Ⅰ)证明平面ABEF⊥平面EFDC; (Ⅱ)求二面角E﹣BC﹣A的余弦值.
【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;
(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.
【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF. ∵∠AFD=90°,∴AF⊥DF, ∵DF∩EF=F, ∴AF⊥平面EFDC, ∵AF⊂平面ABEF,
∴平面ABEF⊥平面EFDC; (Ⅱ)解:由AF⊥DF,AF⊥EF,
可得∠DFE为二面角D﹣AF﹣E的平面角; 由ABEF为正方形,AF⊥平面EFDC, ∵BE⊥EF, ∴BE⊥平面EFDC 即有CE⊥BE,
可得∠CEF为二面角C﹣BE﹣F的平面角.
__________________________________________________
__________________________________________________
可得∠DFE=∠CEF=60°.
∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC, ∴AB∥平面EFDC,
∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD, ∴AB∥CD, ∴CD∥EF,
∴四边形EFDC为等腰梯形.
以E为原点,建立如图所示的坐标系,设FD=a, 则E(0,0,0),B(0,2a,0),C(,0,∴
=(0,2a,0),
=(,﹣2a,
a),
a),A(2a,2a,0), =(﹣2a,0,0)
,
设平面BEC的法向量为=(x1,y1,z1),则
则,取=(,0,﹣1).
设平面ABC的法向量为=(x2,y2,z2),则,
则,取=(0,,4).
设二面角E﹣BC﹣A的大小为θ,则cosθ==
=﹣
,
.
则二面角E﹣BC﹣A的余弦值为﹣
__________________________________________________
__________________________________________________
【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.
5.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=
.
(Ⅰ)证明:D′H⊥平面ABCD; (Ⅱ)求二面角B﹣D′A﹣C的正弦值.
【分析】(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD; (Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到量
的坐标,分别求出平面ABD′与平面AD′C的一个法向
,设二面角二面角B﹣D′A﹣C的平面角为θ,求出|cosθ|.则二面
角B﹣D′A﹣C的正弦值可求. 【解答】(Ⅰ)证明:∵ABCD是菱形,
__________________________________________________
__________________________________________________
∴AD=DC,又AE=CF=, ∴
,则EF∥AC,
又由ABCD是菱形,得AC⊥BD,则EF⊥BD, ∴EF⊥DH,则EF⊥D′H, ∵AC=6, ∴AO=3,
又AB=5,AO⊥OB, ∴OB=4, ∴OH=
=1,则DH=D′H=3,
∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH, 又OH∩EF=H, ∴D′H⊥平面ABCD;
(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系, ∵AB=5,AC=6,
∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,﹣3,0),
,
设平面ABD′的一个法向量为由∴
,得.
,
,
,取x=3,得y=﹣4,z=5.
,
同理可求得平面AD′C的一个法向量
设二面角二面角B﹣D′A﹣C的平面角为θ,
__________________________________________________
__________________________________________________
则|cosθ|=
∴二面角B﹣D′A﹣C的正弦值为sinθ=
. .
【点评】本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题. 6.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF. (Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.
【分析】(I)取AB的中点D,连结CD,DF,DE.计算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;
(II)以C为原点建立空间直角坐标系,求出
和平面CEF的法向量,则直
__________________________________________________
__________________________________________________
线AC1与平面CEF所成角的正弦值等于|cos<>|.
【解答】证明:(I)取AB的中点D,连结CD,DF,DE. ∵AC=BC,D是AB的中点,∴CD⊥AB.
∵侧面ABB1A1是边长为2的正方形,AE=,A1F=. ∴A1E=,EF=DF=
=
,
=
,DE=
=
,
∴EF2+DE2=DF2,∴DE⊥EF,
又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE, ∴EF⊥平面CDE,又CD⊂平面CDE, ∴CD⊥EF,
又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线, ∴CD⊥平面ABB1A1,又CD⊂ABC, ∴平面ABB1A1⊥平面ABC. (II)∵平面ABB1A1⊥平面ABC,
∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC. ∵CA⊥CB,AB=2,∴AC=BC=
.
以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示: 则A(2). ∴
=(﹣
,0,2),
=(
,0,),
=(,
,
,2).
,0,0),C(0,0,0),C1(0,0,2),E(
,0,),F(
,
,
设平面CEF的法向量为=(x,y,z),则
__________________________________________________
__________________________________________________
∴,令z=4,得=(﹣,﹣9,4).
∴∴sin<
=10,||=6
>=
,||==
. .
.
∴直线AC1与平面CEF所成角的正弦值为
【点评】本题考查了面面垂直的判定,线面角的计算,空间向量的应用,属于中档题.
7.如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2BC=4
,PA=2.
,
(1)求证:AB⊥PC;
__________________________________________________
__________________________________________________
(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.
【分析】(1)利用直角梯形的性质求出AB,AC的长,根据勾股定理的逆定理得出AB⊥AC,由PA⊥平面ABCD得出AB⊥PA,故AB⊥平面PAC,于是AB⊥PC; (2)假设存在点M,做出二面角的平面角,根据勾股定理求出M到平面ABCD的距离从而确定M的位置,利用棱锥的体积求出B到平面MAC的距离h,根据勾股定理计算BM,则
即为所求角的正弦值.
【解答】解:(1)证明:∵四边形ABCD是直角梯形, AD=CD=2
,BC=4
,
=
=4,
∴AC=4,AB=
∴△ABC是等腰直角三角形,即AB⊥AC, ∵PA⊥平面ABCD,AB⊂平面ABCD, ∴PA⊥AB,
∴AB⊥平面PAC,又PC⊂平面PAC, ∴AB⊥PC.
(2)假设存在符合条件的点M,过点M作MN⊥AD于N,则MN∥PA, ∴MN⊥平面ABCD,∴MN⊥AC.
过点M作MG⊥AC于G,连接NG,则AC⊥平面MNG, ∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角. 若∠MGN=45°,则NG=MN,又AN=∴MN=1,即M是线段PD的中点.
∴存在点M使得二面角M﹣AC﹣D的大小为45°.
NG=
MN,
__________________________________________________
__________________________________________________
在三棱锥M﹣ABC中,VM﹣ABC=S△ABC•MN=设点B到平面MAC的距离是h,则VB﹣MAC=∵MG=∴
MN=
,∴S△MAC==,解得h=2
=.
=2
, ,
=,
在△ABN中,AB=4,AN=∴BM=
=3
,
,∠BAN=135°,∴BN==,
∴BM与平面MAC所成角的正弦值为=.
【点评】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题.
8.如图,在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求侧棱AA1与平面AB1C所成角的正弦值的大小; (2)已知点D满足
=
+
,在直线AA1上是否存在点P,使DP∥平面AB1C?
若存在,请确定点P的位置,若不存在,请说明理由.
__________________________________________________
__________________________________________________
【分析】(1)推导出A1O⊥平面ABC,BO⊥AC,以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,利用向量法能求出侧棱AA1与平面AB1C所成角的正弦值.
(2)假设存在点P符合题意,则点P的坐标可设为P(0,y,z),则
.利用向量法能求出存在点P,使DP∥平面AB1C,其坐标为(0,
0,
),即恰好为A1点.
【解答】解:(1)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O, ∴A1O⊥平面ABC.
又∠ABC=∠A1AC=60°,且各棱长都相等, ∴AO=1,OA1=OB=
,BO⊥AC.…(2分)
故以O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz, 则A(0,﹣1,0),B(∴
=(0,1,
),
,0,0),A1(0,0,=(
,
,取x=1,得=(1,0,1).
),
),C(0,1,0), =(0,2,0).…(4分)
设平面AB1C的法向量为则
设侧棱AA1与平面AB1C所成角的为θ,
__________________________________________________
__________________________________________________
则sinθ=|cos<,>|=||=,
∴侧棱AA1与平面AB1C所成角的正弦值为(2)∵∴
=
,而
,0,0),又∵B(
,
.…(6分)
, ,0,0).
.
=(﹣2),∴点D(﹣
假设存在点P符合题意,则点P的坐标可设为P(0,y,z),∴∵DP∥平面AB1C,=(﹣1,0,1)为平面AB1C的法向量, ∴由
=λ
,得
,∴y=0.…(10分)
),
又DP⊄平面AB1C,故存在点P,使DP∥平面AB1C,其坐标为(0,0,即恰好为A1点.…(12分)
【点评】本题考查线面角的正弦值的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.
9.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2点,BD与AB1交于点O,且CO⊥平面ABB1A1. (Ⅰ)证明:平面AB1C⊥平面BCD;
,D是AA1的中
(Ⅱ)若OC=OA,△AB1C的重心为G,求直线GD与平面ABC所成角的正弦值.
__________________________________________________
__________________________________________________
【分析】(Ⅰ)通过证明AB1⊥BD,AB1⊥CO,推出AB1⊥平面BCD,然后证明平面AB1C⊥平面BCD.
(Ⅱ)以O为坐标原点,分别以OD,OB1,OC所在直线为x,y,z轴,建立如图所示的空间直角坐标系O﹣xyz.求出平面ABC的法向量,设直线GD与平面ABC所成角α,利用空间向量的数量积求解直线GD与平面ABC所成角的正弦值即可. 【解答】(本小题满分12分) 解:(Ⅰ)∵ABB1A1为矩形,AB=2,
,
从而
,,
,D是AA1的中点,∴∠BAD=90°,
,∵,
∴∠ABD=∠AB1B,…(2分) ∴
,∴
,从而AB1⊥BD…(4分)
∵CO⊥平面ABB1A1,AB1⊂平面ABB1A1,∴AB1⊥CO,∵BD∩CO=O,∴AB1⊥平面BCD, ∵AB1⊂平面AB1C,
∴平面AB1C⊥平面BCD…(6分) (Ⅱ)如图,以O为坐标原点,
分别以OD,OB1,OC所在直线为x,y,z轴, 建立如图所示的空间直角坐标系O﹣xyz.
__________________________________________________
__________________________________________________
在矩形ABB1A1中,由于AD∥BB1,所以△AOD和△B1OB相似, 从而又
,
,∴
,
,
∴,,,,
∵G为△AB1C的重心,∴…(8分)
设平面ABC的法向量,
为,
由可得,
令y=1,则z=﹣1,设
直
线
GD
,所以与
平
面
ABC
.…(10分) 所
成
角
α
,
则
=
,
所以直线GD与平面ABC所成角的正弦值为
…(12分)
【点评】本题考查平面与平面垂直的判定定理的应用,直线与平面所成角的求法,
__________________________________________________
__________________________________________________
考查空间想象能力以及计算能力.
10.在矩形ABCD中,AB=4,AD=2,将△ABD沿BD折起,使得点A折起至A′,
设二面角A′﹣BD﹣C的大小为θ. (1)当θ=90°时,求A′C的长;
(2)当cosθ=时,求BC与平面A′BD所成角的正弦值.
【分析】(1)过A作BD的垂线交BD于E,交DC于F,连接CE,利用勾股定理及余弦定理计算AE,CE,由A′E⊥CE得出A′C; (2)利用余弦定理可得A′F=立坐标系,求出值为|cos<
,从而得出A′F⊥平面ABCD,以F为原点建
和平面A′BD的法向量,则BC与平面A′BD所成角的正弦>|.
【解答】解:(1)在图1中,过A作BD的垂线交BD于E,交DC于F,连接CE. ∵AB=4∴
,AD=2
,∴BD=
,BE=
=10.
=8,cos∠CBE=
==2
. .
在△BCE中,由余弦定理得CE=
∵θ=90°,∴A′E⊥平面ABCD,∴A′E⊥CE. ∴|A′C|=(2)DE=∵tan∠FDE=
=2=2.
,∴EF=1,DF=
=
.
.
__________________________________________________
__________________________________________________
当即cos∠A′EF=时,.
∴A′E2=A′F2+EF2,∴∠A'FE=90°
又BD⊥AE,BD⊥EF,∴BD⊥平面A'EF,∴BD⊥A'F ∴A'F⊥平面ABCD.
以F为原点,以FC为x轴,以过F的AD的平行线为y轴,以FA′为z轴建立空间直角坐标系如图所示: ∴A′(0,0,∴
=(0,2
),D(﹣,0),
=(4
,0,0),B(3,2
,0),
,2=(
,0),C(3,0,,
,0,0). ).
设平面A′BD的法向量为=(x,y,z),则
∴,令z=1得=(﹣,2,1).
∴cos<>===. .
∴BC与平面A'BD所成角的正弦值为
【点评】本题考查了空间角与空间距离的计算,空间向量的应用,属于中档题.
11.如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=(Ⅰ)求证:AC⊥DC1;
__________________________________________________
,平面CC1D⊥平面ACC1A1.
__________________________________________________
(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;
(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为在,求
的值,若不存在,说明理由.
?若存
【分析】(Ⅰ)证明AC⊥CC1,得到AC⊥平面CC1D,即可证明AC⊥DC1. (Ⅱ)易得∠BAC=90°,建立空间直角坐标系A﹣xyz, 依据已知条件可得A(0,0,0),B1(2,0,1),
,
,
,B(0,0,1),
利用向量求得AM与平面DBB1所成角为0,即AM∥平面DBB1. (Ⅲ)利用向量求解
【解答】解:(Ⅰ)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,故AC⊥CC1, 由平面CC1D⊥平面ACC1A1,且平面CC1D∩平面ACC1A1=CC1, 所以AC⊥平面CC1D,
又C1D⊂平面CC1D,所以AC⊥DC1.
(Ⅱ)证明:在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC, 所以AA1⊥AB,AA1⊥AC,
又∠BAC=90°,所以,如图建立空间直角坐标系A﹣xyz, 依据已知条件可得A(0,0,0),
,
,B(0,0,1),
__________________________________________________
__________________________________________________
B1(2,0,1),,
所以
,
, 设平面DBB1的法向量为,
由即
令y=1,则
,x=0,于是
,
因为M为DC1中点,所以,所以,
由
,可得
,
所以AM与平面DBB1所成角为0, 即AM∥平面DBB1.
(Ⅲ)解:由(Ⅱ)可知平面BB1D的法向量为.
设,λ∈[0,1],
则,. 若
直
线
DP与
平
面
DBB1
成
角为
,
解得
,
故不存在这样的点.
__________________________________________________
则
,__________________________________________________
【点评】本题考查了空间线线垂直、线面平行的判定,向量法求二面角.属于中档题
12.如图,在多面体ABCDEF中,底面ABCD为正方形,平面AED⊥平面ABCD,AB=
EA=
ED,EF∥BD
( I)证明:AE⊥CD
( II)在棱ED上是否存在点M,使得直线AM与平面EFBD所成角的正弦值为若存在,确定点M的位置;若不存在,请说明理由.
?
【分析】(I)利用面面垂直的性质得出CD⊥平面AED,故而AE⊥CD; (II)取AD的中点O,连接EO,以O为原点建立坐标系,设BDEF的法向量,令|cos<
>|=
,求出平面
,根据方程的解得出结论.
【解答】(I)证明:∵四边形ABCD是正方形,∴CD⊥AD,
又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,CD⊂平面ABCD, ∴CD⊥平面AED,∵AE⊂平面AED,
__________________________________________________
__________________________________________________
∴AE⊥CD.
(II)解:取AD的中点O,过O作ON∥AB交BC于N,连接EO,
∵EA=ED,∴OE⊥AD,又平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,OE⊂平面AED,
∴OE⊥平面ABCD,
以O为原点建立空间直角坐标系O﹣xyz,如图所示: 设正方形ACD的边长为2,
,
则A(1,0,0),B(1,2,0),D(﹣1,0,0),E(0,0,1),M(﹣λ,0,1﹣λ) ∴
=(﹣λ﹣1,0,1﹣λ),
=(1,0,1),
=(2,2,0),
设平面BDEF的法向量为=(x,y,z), 则
,即
,令x=1得=(1,﹣1,﹣1),
∴cos<>==,
令||=,解得λ=0,
.
∴当M与点E重合时,直线AM与平面EFBD所成角的正弦值为
【点评】本题考查了线面垂直的判定,空间向量与线面角的计算,属于中档题.
__________________________________________________
__________________________________________________
13.如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)设点E为PD的中点,求证:CE∥平面PAB;
(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为
?若存在,试确定点N的位置,若不存在,请说明理由.
【分析】(1)取AD中点M,利用三角形的中位线证明EM∥平面PAB,利用同位角相等证明MC∥AB,得到平面EMC∥平面PAB,证得EC∥平面PAB;
(2)建立坐标系,求出平面PAC的法向量,利用直线CN与平面PAC所成的角θ的正弦值为
,可得结论.
【解答】(1)证明:取AD中点M,连EM,CM,则EM∥PA. ∵EM⊄平面PAB,PA⊂平面PAB, ∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60°,AC=AM=2,∴∠ACM=60°. 而∠BAC=60°,∴MC∥AB.
∵MC⊄平面PAB,AB⊂平面PAB,∴MC∥平面PAB. ∵EM∩MC=M,∴平面EMC∥平面PAB. ∵EC⊂平面EMC,∴EC∥平面PAB.
(2)解:过A作AF⊥AD,交BC于F,建立如图所示的坐标系,则A(0,0,0),B(
,﹣,0),C(
,1,0),D(0,4,0),P(0,0,2),
__________________________________________________
__________________________________________________
设平面PAC的法向量为=(x,y,z),则设
=λ
(0≤λ≤1),则
>|=
,取=(,﹣3,0),
=(0,4λ,﹣2λ),
=
=(﹣λ﹣1,2﹣2λ), ,∴
,
.
∴|cos<,
∴N为PD的中点,使得直线CN与平面PAC所成的角θ的正弦值为
【点评】本题考查线面平行的判定,考查线面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
14.如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,平面PAB⊥平面ABCD,PB=PC,∠ABC=45°,点E是线段PA上靠近点A的三等分点. (Ⅰ)求证:AB⊥PC;
(Ⅱ)若△PAB是边长为2的等边三角形,求直线DE与平面PBC所成角的正弦值.
__________________________________________________
__________________________________________________
【分析】(Ⅰ)作PO⊥AB于O,连接OC,可得PO⊥面ABCD.由△POB≌△POC,∠ABC=45°,得OC⊥AB,即得AB⊥面POC,可证得AB⊥PC. (
Ⅱ
)
以
O
为
原
点
建
立
空
间
坐
标
系
,
,利用向量求解.
【解答】解:(Ⅰ)作PO⊥AB于O…①,连接OC,
∵平面PAB⊥平面ABCD,且面PAB∩面ABCD=AB,∴PO⊥面ABCD.…(2分) ∵PB=PC,∴△POB≌△POC,∴OB=OC, 又∵∠ABC=45°,∴OC⊥AB…②
又PO∩CO=O,由①②,得AB⊥面POC,又PC⊂面POC,∴AB⊥PC.…(6分) (Ⅱ)∵△PAB是边长为2的等边三角形,∴如图建立空间坐标系,设面PBC的法向量为
, ,由
;
,
,
设DE与面PBC所成角为θ,
. ,令
,得
.
__________________________________________________
__________________________________________________
∴直线DE与平面PBC所成角的正弦值.…(12分)
【点评】本题考查了空间线线垂直的判定,向量法求线面角,属于中档题.
15.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AAl,A1B1上,且AE=,A1F=,CE⊥EF,M为AB中点 ( I)证明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.
【分析】(Ⅰ)推导出Rt△EAM∽Rt△FA1E,从而EF⊥ME,又EF⊥CE,由此能证明EF⊥平面CEM.
(Ⅱ)设线段A1B1中点为N,连结MN,推导出MC,MA,MN两两垂直,建空间直角坐标系,利用向量法能求出直线AC1与平面CEF所成角的正弦值. 【解答】证明:(Ⅰ)在正方形ABB1A1中,A1E=,AM=1,
__________________________________________________
__________________________________________________
在Rt△EAM和Rt△FA1E中,又∠EAM=∠FA1E=
,
,∴Rt△EAM∽Rt△FA1E,
∴∠AEM=∠A1FE,∴EF⊥EM,
又EF⊥CE,ME∩CE=E,∴EF⊥平面CEM. 解:(Ⅱ)在等腰三角形△CAB中, ∵CA⊥CB,AB=2,∴CA=CB=
,且CM=1,
设线段A1B1中点为N,连结MN,由(Ⅰ)可证CM⊥平面ABB1A1, ∴MC,MA,MN两两垂直,
建立如图所示的空间直角坐标系,
则C(1,0,0),E(0,1,),F(0,,2),A(0,1,0),C1(1,0,2), =(﹣1,1,),
=(0,﹣,),
=(1,﹣1,2),
设平面CEF的法向量为=(x,y,z),
则,取z=2,得=(5,4,2),
设直线AC1与平面CEF所成角为θ, 则sinθ=
=
,
.
∴直线AC1与平面CEF所成角的正弦值为
__________________________________________________
__________________________________________________
【点评】本题考查线面垂直的证明,考查线面角的正弦值求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
__________________________________________________
因篇幅问题不能全部显示,请点此查看更多更全内容