万事开头难,要想上好一堂课,尤其是理论性很强的数学课,更离不开好的导入。导入是在课堂教学活动开始的教学行为方式,是教学活动的重要环节。精彩的导入可以激发学生的求知欲,产生学习动机,明确学习方向和建立知识间联系,为整节课的教学打下良好的基础。教学中,由于教学内容的差异以及课的类型、教学目标各不相同,导入的方法也没有固定的章法可循。下面中公讲师陈向辉结合数学教学实践谈谈高中数学的几种常用课堂导入方法,希望对大家有所帮助。
一、复习导入法
复习导入法即所谓“温故而知新”,利用数学知识之间的联系导入新课,淡化学生对新知识的陌生感,使学生迅速将新知识纳入原有的知识结构中,能有效降低学生对新知识的认知难度。它的设计思路:复习与新知识相关的旧知识,分析新旧知识的联系点,围绕新课主题设问,让学生思考,教师点题导入新课。
例如:在学习“反函数”时,使学生回忆函数及映射的定义,提出问题引导学生反过来思考,从而引进反函数的概念。这样导入,学生能从旧知识的复习中发现一串新知识,清楚反函数与原函数的关系,并且掌握了反函数的定义。
中公讲师陈向辉提醒考生,运用此法要注意如下几点:一要找准新旧知识的联结点,而联结点的确定又建立在对教材认真分析和对学生深入了解的基础之上。二是搭桥铺路,巧设契机。复习、练习、提问等都只是手段,一方面要通过有针对性的复习为学习新知识作好铺垫,另一方面在复习的过程中又要通过各种巧妙的方式设置难点和疑问,使学生思维暂时出现困惑或受到阻碍,从而激发学生思维的积极性,创造教授新知识的契机。
二、创设情境导入法
创设情境导入法即教师选取与所授内容有关的生活实例或某种经历,通过对其分析、引申、演绎归纳出从特殊到一般、从具体到抽象的规律来导入新课,这样可以使学生如临其境,生动形象。它的设计思路:教师从实际生活出发,引出里面所包含的数学问题,引发学生的思考,从而点出新课。
例如:在学习“相互独立事件同时发生的概率”时,创设如下情景:常说三个臭皮匠顶一个诸葛亮,能顶上吗?已知诸葛亮解出问题的概率为0.8,三个臭皮匠能解出问题的概率分别为0.5、0.45、0.4,且每个人必须独立解题,那么三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?激起学生强烈的求知欲望。运用此法需要注意:情景的设
置要从贴近学生生活的事例或是学生耳熟能详的典例出发,若学生对这个情境不熟悉,他们也无从下手。只有贴近他们,他们才会自始至终围绕问题,步步深入领会问题本质,收到更好的教学效果。
三、设疑导入法
设疑导入法即教师通过设疑布置“问题陷阱”,学生在解答问题时不知不觉掉进“陷阱”,使他们的解答自相矛盾,引起学生积极思考,进而引出新课主题的方法。它的设计思路:教师提出问题,学生解答问题,针对学生出现的矛盾对立观点,引发学生的争论与思考,在激起学生对知识的强烈兴趣后,教师点题导入新课。
例如:在学习“两角和与两角差的三角函数公式”时,教师出示问题:“成立吗?”。学生议论纷纷,有的说:“成立,因为„„”;有的说:“不行„„”。认为正确的同学的说法是:代入第一个式子成立,立即有学生提出异议:取的角太特殊了,不信让α=β=45°试试,大多同学认可后一位同学的说法,就连刚才同意第一位同学观点的学生也倒向了后者。这时教师不失时机的提出问题:“那么到底等于什么呢?它与α、β的三角函数之间又有怎样的关系呢?”板书课题,导入新课。
运用此法必须做到:一是巧妙设疑。要针对教材的关键、重点和难点,从新的角度巧妙设问。此外,所设的疑点要有一定的难度,要能使学生暂时处于困惑状态,营造一种“心求通而未得通,口欲言而不能言”的情境。二是以疑激思,善问善导。设疑质疑还只是设疑导入法的第一步,更重要的是要以此激发学生的思维,使学生的思维尽快活跃起来。因此,教师必须掌握一些设问的方法与技巧,并善于引导,使学生学会思考和解决问题。
四、类比导入法
类比导入法即以已知的数学知识类比未知的数学新知识,以简单的数学现象类比复杂的数学现象,使抽象的问题形象化,引起学生丰富的联想,调动学生的非智力因素,激发学生的思维活动。它的设计思路:教师引导学生比较未知的数学新知识与已知的数学知识的各个侧面,揭示了教学的重点和难点,对前后联系密切的知识教学具有温故知新的特殊作用。
例如“圆锥曲线”一章的学习,学习“椭圆”知识可用学生已有的“圆的知识”类比导入,而后续知识双曲线与抛物线的学习则可用已有的椭圆知识类比导入。运用此方法一定要注意类比的贴切、恰当,两种知识之间有很强的可类比性,才能使学生同中求异、异中求同,深刻理解并掌握知识。
五、直接导入法
直接导入法是教师直接从课本的课题中提出新课的学习重点、难点和教学目的,以引起学生的有意注意,诱发探求新知识的兴趣,使学生直接进入学习状态。它的设计思路:教师
用简捷明快的讲述或设问,直接点题导入新课。
例如在学习函数单调性的证明时,直接提出函数单调性的定义,告诉学生直接从图象观察出来的单调性并不精确,只有通过定义证明才行,提出用定义证明的方法步骤,进行证明。这种方法直截了当,让学生容易理解。
六、练习导入法
练习导入法即先根据新课的内容和目标设置一定的练习,以引起学生的注意,或者使学生产生压力感,急于听教师讲解的导入方法。
例如学习“等差数列前n项和”时,可给学生安排如下课堂练习: 思考题:如何求下列各式的和?
①前100个自然数的和:1+2+3+„+100=____________; ②前n个奇数的和:1+3+5+„+(2n-1)=______________; ③前n个偶数的和:2+4+6+„+2n=___________________。
这三道小题,第一题是学生以前都知道的答案,而2、3两道则必须寻找解题的技巧与规律了,使学生对“等差数列前n项和”的知识有了强烈的认知欲望,此时开始学习恰到好处。
运用此法值得注意的是,练习题的形式可以多种多样,既可有笔答题,也可有口答题,根据不同内容精心设计编写将会对新知识教学产生良好的效果。
俗话说,好的开头是成功的一半,上课一开始就能吸引学生的注意力和引起他们的兴趣,产生强烈的好奇心和求知欲,教学往往会达到事半功倍的效果。
总之,数学的导入法很多,其关键就是要创造最佳的课堂气氛和环境,充分调动学生内在的积极因素,激发他们的求知欲,使他们处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
因篇幅问题不能全部显示,请点此查看更多更全内容