您的当前位置:首页正文

Recent developments in comprehensive two-dimensional gas chromatography I Introduction and

2023-07-18 来源:易榕旅网
TrendsTrendsinAnalyticalChemistry,Vol.25,No.5,2006

Recentdevelopmentsin

comprehensivetwo-dimensional

qgaschromatography(GC·GC)I.Introductionandinstrumentalset-up

M.Adahchour,J.Beens,R.J.J.Vreuls,U.A.Th.Brinkman

Wereviewtheliteratureoncomprehensivetwo-dimensionalgaschroma-tography(GC·GC),emphasizingdevelopmentsintheperiod2003–2005.Thereviewopenswithageneralintroduction,theprinciplesofthetechniqueandtheset-upofGC·GCsystems.Italsodiscussestheoreticalaspects,trendsininstrumentation,columncombinations,anddetectiontechniques–notablymassspectrometricdetection.Wedevoteattentiontoawidevarietyofapplicationsandtoanalyticalperformance.ª2006ElsevierLtd.Allrightsreserved.

Keywords:Application;Complexsample;Comprehensivetwo-dimensionalgaschromatography;Detection;GC·GC;Massspectrometry;Modulation;Review

M.Adahchour*,J.Beens,

R.J.J.Vreuls,U.A.Th.BrinkmanFreeUniversity,

DepartmentofAnalytical

Chemistry,

deBoelelaan1083,1081HVAmsterdam,

TheNetherlands

1.Introduction

Some15yearsago,comprehensivetwo-dimensionalgaschromatography(GC·GC)begantoattractattentionandthefull-colour2DchromatogramofanoilsamplepublishedbyJohnPhillipsandhisco-workersin1991[1]wasaneye-openerformanyanalyticalchemists.Overtheyears,quiteanumberofreviewsonGC·GChavebeenpublished.Initially,theymainlydis-cussedtheprinciplesofthetechniqueandthebasictheory–and,ofcourse,theexper-imentalset-up.Next,interfacingtwoGCcolumnsbecameakeytopic,andthefirstfewapplicationswerereported[2–6].Mostofthesewereinthefieldofpetrochemicalanalysisand,forreasonswhichwillbeex-plainedbelow,flameionizationdetectors(FIDs)wereinvariablyusedfordetection[7].Foranappreciationoftheearlydevel-opments,problemsand(partial)solutions,thereadermayconsultreviews[8–10].

Thisreviewispublishedinfourparts.AllreferencesareincludedinPartI.

*qCorrespondingauthor.E-mail:m.adahchour@hotmail.com

Inthepastfewyears,greatstepsfor-wardhavebeenmade(e.g.,indetection,analyteidentificationandquantificationand,specifically,applications).Today,nexttopetrochemicalanalysis[11,12],areassuchasfood,airandenvironmentalanalysisarehighonthelist.Thiswasnicelydemonstratedinanextensivereview[92]inwhich–nexttotechnicaldevel-opments–differenttypesofapplicationwerehighlighted.Inthisreview,whichcoveredtheliteratureuptotheendof2002,closeto100papersonGC·GCwerequoted.Itissomewhatunexpectedtofind,amerethreeyearslater,thatafur-ther150papersdiscussingthenewtech-niquehavebeenpublished.Fromamongstthese,some40werepublishedinJ.Chromatogr.,A1019(2003)and1086(2005),inspecialissuesdevotedtotheFirstandSecondInternationalSymposiumonComprehensiveMultidimensionalGasChromatographyheldinVolendam(TheNetherlands)andAtlanta(GA,USA),respectively.Thesteepincreaseunder-scoresthatGC·GCis,indeed,arapidlyemergingandincreasinglysuccessfultechnique.Itthereforeseemsappropriatetodiscussnoveltrendsininstrumentationandtechniquesandtopresentaselectednumberofapplicationstoindicatetypicaldevelopments.Whileweintendthelistofreferencestobeexhaustiveandwequoteallpublishedpapersinatleastoneofthetablesincludedinthispaper,ouremphasis

438

0165-9936/$-seefrontmatterª2006ElsevierLtd.Allrightsreserved.doi:10.1016/j.trac.2006.03.002

TrendsinAnalyticalChemistry,Vol.25,No.5,2006Trends

Table1.MainreviewsdevotedtoGC·GCpublishedin2003–2005*Year2003

Title

Comprehensivetwo-dimensionalgaschromatography:apowerfulandversatileanalyticaltool

Applicationofcomprehensivetwo-dimensionalgaschromatographytodrugsanalysisindopingcontrolComprehensivetwo-dimensionalgaschromatography

Areviewofenvironmentaltoxicantanalysisbyusingmultidimensionalandcomprehensive2D-GCOpportunitiesforultra-highresolutionanalysisofessentialoilsusingcomprehensivetwo-dimensionalgaschromatography:areview

Imagebackgroundremovalincomprehensivetwo-dimensionalgaschromatography

Informationtechnologiesforcomprehensivetwo-dimensionalgaschromatographyTheevolutionofcomprehensivetwo-dimensionalchromatography(GC·GC)Trendsinchemometricanalysisofcomprehensivetwo-dimensionalseparationsComprehensivetwo-dimensionalchromatographyinfoodanalysis

Comprehensivetwo-dimensionalgaschromatography–apowerfulandwidelyapplicabletechniqueHyphenationofqMStoGCandGC·GCfortheanalysisofsuspectedallergens

Comprehensivetwo-dimensionalgaschromatography–apowerfulandversatiletechnique

Numberofrefs.11055199053347862883111927

Ref.[92][93][94][95][96][97][98][99][100][101][102][103][104]

2004

2005

*ReviewsbrieflydiscussingGC·GC,butprimarilytreatingrelatedGCtopics,havenotbeenincluded.

willbeontheperiod2003–05.Table1summarizesthemainreviewpapersdevotedtoGC·GCinthatperiod.

Fortherest,weunderstandthatquiteanumberofreaderswillnotbefamiliarwiththeprinciplesandbasicinstrumentationofGC·GCortermssuchasÔmodula-tionÕ,Ôwrap-aroundÕandÔorderedstructuresÕ,whicharefrequentlyusedinthisfield.Fortheirconvenience,thisreviewopenswithanintroductorysectionthatshouldbringthemup-to-date.Moredetailedinformationcanbefoundelsewhere,especially[92].

2.Principlesandinstrumentation

2.1.Generalprinciples

Sinceitsearlydays,GChasbeenrecognizedasatoolofferinghigherpeakcapacitiesthanotherchromato-graphictechniques.Overtheyears,dramaticprogresshasbeenmadeand,today,state-of-the-artone-dimensional(1D)GConcapillarycolumnscan,typically,separatesome100–150peaksinonerun.However,thisdoesnotsufficetoseparatetheindividualconstituentsofmanydifferenttypesofsample,rangingfromoilsorpetrochemicalproductstocontaminatedfishandfood,cigarettesmokeandpollutedair,andtechnicalmixturesofpolychlorinatedbiphenylsortoxaphene.

OnewaytoimprovetheseparationpowerofaGCsystemeffectivelyistocouple,throughaninterface,twoindependentcolumns.Thesuperiorityofsuchtwo-dimensional(2D)GCover1D-GCwasdemonstratedforacapillary-columnsystemsome40yearsago[271]and,overtheyears,so-calledmultidimensionalgaschromatography,abbreviatedasMDGCorGC–GC,hasbeensuccessfullyappliedtoavarietyofproblems[271,273,274].Illustrativeexamples[272]indicatethe

limitationoftheapproach.Inthelargemajorityofcases,theapplicationsareoftheheart-cuttingtype:onlyone,orafew,narrowfraction(s)oftheeluatefromthefirstcolumnis/aretransportedtothesecondcolumnforfurtherseparation.Inotherwords,thetechniquecanberecommended,andisverysuccessful,ifinformationisrequiredaboutonlyafewfractionsthatcontainallanalytesofinterest–typicallyatarget-analysissituation.

However,wheneverscreeningofanentiresampleisthemainaim(i.e.whenunknownsplayamajorrole),MDGCrapidlybecomesanextremelylaboriousandtime-consumingtechnique,withverycarefulfractionation,lengthyre-analysisofallfractions,andreconstructionofthechromatogramsasthemajorproblems.Itwillbeclearthatonecannotfindawayoutbyincreasingthewidthofthefirst-columnfractions:usingwiderfractionswillsimplydestroymoreofthefirst-columnresolution.Thealternativeistosubjectthesampletoacompre-hensive2D-GCseparation:ratherthanbeingseparatedintoafewfractions,theentiresampleisnowseparatedontwodifferentcolumns,thefractionsarekeptnarrowtoensurethatnoinformationgainedduringthefirstseparationislostand–certainlyinGCasopposedtoliquidchromatography(LC)–theinstrumentalset-upisconstructedsoastoensurethatthetotal2Dseparationiscompletedwithintheruntimeofthefirst-dimensionanalysis.Inotherwords,comparedwithMDGC,GC·GCpromisestoyieldsubstantiallyimprovedresolutionforallsampleconstituentswithnolossoftime[105,106].TheschematicofaGC·GCsystemisshowninScheme1(adaptedfrom[92]).Typically,twoGCsepa-rationsbasedondistinctlydifferentseparationmecha-nismsareused,withtheinterface–calledamodulator(seeSection2.3,PartII)–betweenthem.Itsmainfunc-tionsaretocutandtorefocusnarrowadjacentfractions

http://www.elsevier.com/locate/trac

439

TrendsTrendsinAnalyticalChemistry,Vol.25,No.5,2006

Scheme1.Typicalset-upof,andtermsfrequentlyusedinGC·GC,andvisualizationtechniques.

ofthefirst-columneluateand–afterfocusing–tore-leasetheserapidlyintothesecondcolumn.Whilstthisprocessisbeingcompleted,thefirst-dimensionsepara-tionproceeds.Inprinciple,thesecond-dimensionsepa-rationshouldbefinishedbeforetherelease-cum-injectionofthenextfraction[107].ThisisanimportantgoalofallGC·GCstudiesandtheunwantedexceptiontotherule,so-calledwrap-around,willbediscussedbelow.440

http://www.elsevier.com/locate/trac

Inmostapplications,samplesarefirstseparatedona(15–30)m·(0.25–0.32)mmID·(0.1–1)lmfilm(df)columncontaininganon-polarstationaryphase.Aftermodulation,eachindividualfractionisinjectedontoamuchshorter,narrowercolumn–withdimensions,typically,(0.5–2)m·0.1mmID·0.1lmdf–con-taininga(medium-)polarorshape-selectivestationaryphase.AswillbediscussedinSection3.3.1(inPartII),it

TrendsinAnalyticalChemistry,Vol.25,No.5,2006Trends

Scheme1.(continued)

issometimesadvantageousforseveralreasonstouseaso-calledtwinGC·GCsystem[108].Thisallowsthesimultaneousanalysisofasamplebymeansoftwodif-ferent,independentcolumncombinationshousedinthesameovenandusingasinglemodulator.

Forvisualization,allpresentations,exceptthesomewhatlessdiscerningcontourlines,areusedinfiguresincludedinthisreview.Oneaspectofinterestwithrespecttothefrequentlyapplied2Dcolourplotisthatpropercolourcontrast(i.e.zoomingin/out)tech-niqueshavetobeusedforoptimaldetectionofminoraswellasmajorsampleconstituents.Abrief,butinterest-ing,discussionofthisapproach,anditscombinationwithapexplotting,isavailable[13,92].Twomoreaspectsareofinterest:

󰀂Inordertomaintaintheintegrityofthefirst-dimensionseparation,thenarrowfractionssubjectedtomodulationshouldbenowiderthanaboutone-quarter(orr)ofthepeakwidthsinthatdimen-sion,typically5–30s[14](i.e.oneshouldpreferably

http://www.elsevier.com/locate/trac

441

Trendshavethreeorfourmodulationsacrosseachpeak).Consequently,second-dimensionruntimesshouldbeoftheorderof2–8sinotherwords,second-dimensionseparationsinvariablyareessentiallyisothermal.Insomeinstances,thesecondcolumnishousedinasep-arateoventoallowmoreflexibletemperaturecontrol;thisiswhattheset-upinScheme1shows.Sincemeetingthe‘‘modulationcriterion’’oftencausesprob-lems,temperatureprogramminginGC·GCisusuallyatalowerratethanin1D-GC(i.e.2–3°C/min).

󰀂Withtheveryfastseparationsofthesecondcolumns,itwillbeclearthatsecond-dimensionpeakswillbeextremelynarrow,typicallydisplaying50–600mswidthsatthebaseline[13,15].Consequently,detectorswillhavetobecorrespondinglyfast,withdata-acquisi-tionratesoftheorderof,preferably,atleast100Hz.Tosummarize,iftheaboveaspectsaredulyconsideredandimplementedintheinstrumentalset-upandseparationprotocol,thethreeessentialdemandsofacomprehensiveseparation[16,109,110,275,276]aremet:

󰀂allsampleconstituentsaresubjectedtotwoseparationsinwhichtheirtransportationmechanismdependsondifferentfactors;

󰀂anytwosampleconstituentsseparatedinthefirstdimensionwillremainseparatedintheseconddimension;and,

󰀂theelutionprofilesfrombothcolumnsarepreserved.2.2.Columncombinations

Inprinciple,allkindsofstationaryphasecanbeusedinthefirstdimensionofaGC·GCsystem.However,generallyspeaking,non-polarphasesarepreferred,especiallyforreasonsoforthogonality[17].Orthogonalityhasbeendefined[111]anddiscussed[112],anditisgenerallyunderstoodthataseparationistrulyorthogonaliftheconstituentdimensionsoperateindependentlyandsynentropyacrossthedimensionsiszero.Minimizingsynentropyorcrossinformationisimportantinmulti-dimensionalseparationsbecausethelargeritbecomes,thelargerbecomesthatpartoftheseparationspacethatisunoccupiedoreveninaccessible[17].

Sincetheseparationmechanismonanon-polarphaseis,inprinciple,basedonanalytevolatilityonly,thisphaseshouldbeselectedforthefirstdimension.

Fortheseconddimension,avarietyofphasescanbeselected,dependingonthedesiredanalyte–stationaryphaseinteraction(s).Inpractice,nearlytheentireplaneofaGC·GCchromatogramisthenavailableforpeakseparation.

Scheme2listsallstationaryphasesmentionedinthisreview.

2.2.1.Orthogonalapproach

AsurveyofcolumncombinationsusedinGC·GCmadeinearly2005showedthatnon-polar·(medium-)polaris442

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.25,No.5,2006

byfarthemostpopularoption,withatotalscoreofabout80%.Thisiseasilyunderstandablebecause–apartfromwhatwassaidabove–widespreadinformationisavailableonthebehaviourofahugenumberof(classesof)com-poundsonnon-polarcolumnsinconventional1D-GC,whichcanconvenientlybeusedtooptimizethefirst-dimensionseparation.Here,volatilityisnowtheonlyparameterofinterestand,consequently,aboiling-pointseparationisobtained.Withallothertypesofcolumn,whethermedium-polar,polarorshape-selective,separa-tionwillbeprimarilygovernedbythespecificinterac-tion(s)oftheselectedÔpolarÕcolumn,buttosomedegreealsobyvolatility.Withanon-polarfirst-dimensioncol-umn,analyteswithmutuallycloselysimilarvolatilitieswillelutefromthatcolumnineachindividualnarrowfraction.Becauseoftheveryfastand,thus,isothermalsecond-dimensionseparation,foranalytesofequalvola-tility(i.e.theanalytesineachindividualfraction),therewillbenoboiling-pointcontributioninthatdimension,soonlythespecificinteractionswiththestationaryphasewillgoverntheretention,andtheseparationwillindeedbeorthogonal[18,113,112].

Aswewroteonanearlieroccasion[92],orthogo-nalityis,ofcourse,notagoalinitself.However,onemainbenefitisthatorderedstructuresnowshowupinaGC·GCchromatogramforstructurallyrelatedhomo-logues,congenersandisomers[16,19,20].Structuredchromatogramsareavaluabletoolwhenperforminggroup-typeidentification,aswillbeamplydemonstratedintheApplicationssection(PartsIIIandIV).Contrarytowhatwasgenerallybelievedevenintherecentpast,andimplicitinwhatwesaidabove,thereisnoexclusiveconnectionbetweenorderedstructuresandorthogonal-ity.AswillbediscussedinmoredetailinSection2.2.2below,iftheseparationdimensionsandsampledimensionsareproperlymatched,touseGiddingsÕster-minology[16],‘‘structure’’canalsobeobtainedundernon-orthogonalconditions.

2.2.1.1.Columnselection.Itissomewhatsurprisingthat,evenwithanon-polarfirst-dimensioncolumn,littleattentionhasbeendevotedtosystematicsearchforthe‘‘best’’second-dimensioncolumn.Thatmutuallywidelydivergentoverallselectivitycanbeobtainedduringsuchastudywasdemonstratedfortheseparationof172,3,7,8-substitutedpolychlorinateddibenzo-p-dioxinsanddibenzofurans(PCDD/Fs)and12dioxin-likepolychlorinatedbiphenyls(PCBs)[114].With,inallinstances,a100%methylpolysiloxane(DB-1)firstdimension,eighttypesofsecond-dimensioncolumnweretested.Acompleteseparationofallcongenerswithdif-ferenttoxicequivalencefactor(TEF)valueswasachievedwithtwocolumncombinations,viz.DB-1·VF-23ms(70–90%cyano-containingpolymer)andDB-1·LC-50(50%liquidcrystallinemethylpolysiloxane)).Ontheother

TrendsinAnalyticalChemistry,Vol.25,No.5,2006Trends

Commercial code Stationary phase SolgelWax Cyclodex-B HT-8 BPX-5 HT-5 BPX-35 BP-20 BP-21 BP-10 BPX-50

polyethlene glycol in a sol–gel matrix permethylated β -cyclodextrin in OV 1701 8% phenyl-methylpolysiloxane (carborane) 5% phenyl-methylsilphenylene

5% phenyl-methylpolysiloxane (carborane) 35% phenyl-polysilphenylenesiloxane polyethylene glycol

polyethylene glycol (TPA-treated) 14% cyanopropylphenyl-polysiloxane 50% phenyl-methylpolysiloxane (silphenylene)

Producer* SGE SGE SGE SGE SGE SGE SGE SGE SGE SGE J&W J&W

J&W

DB-Wax polyethylene glycol DB-624

6% cyanopropylphenyl-dimethylpolysiloxane

DB-210 trifluoropropylmethylpolysiloxane

DB-1701 14%(cyanopropyl-phenyl)-methylpolysiloxane J&W DB-5 DB-17ht

5% diphenyl-dimethylpolysiloxane 50% phenyl-methylpolysiloxane

J&W J&W J&W J&W

J&W J&W

DB-Petro 100%dimethylpolysiloxaneDB-1

100% methylpolysiloxane

DB-XLB proprietaryDB-DIOXIN

proprietary (44%methyl, 28% phenyl, 20%

cyanopropyl, 8%polyoxyethylene-polysiloxane) 2,3,6-tri-O-methyl β-cyclodextrin

proprietary (70-90% cyano-containing polymer)

Chirasil-DexVF-23ms VF-1msCP-Sil 5 CB CP-Sil 2 CB

Varian/ChrompackVarian/Chrompack

100%methylpolysiloxane Varian/Chrompack100% methylpolysiloxane

Varian/Chrompack

cross-linked siloxane containing a high-molecular-Varian/Chrompack

weight hydrocarbon similar to squalaneScheme2.(Trade)namesandproducersofGCstationaryphasesquotedinthepresentreview.

hand,theuseof007-210(50%trifluoropropylmethyl-polysiloxane)wasfoundnottoaddnoticeablytotheresolutioneffectedbya1D-DGseparation,andwiththeHT-8(8%phenyl-methylpolysiloxane)columnwhichhasastrongboiling-pointbasedselectively,improvedseparationwaslimitedtothe6D3/6F4pair.

Whenanothertypeoffirstdimensioncolumnwasused(andorthogonalitywasslightlysacrificed),viz.aDB-XLBproprietarycolumn),evenbetterresultswereobtained.Inthiscase,botha007-65HT,orVF-23msandLC-50seconddimensioncolumn,acompletesepa-rationofall29prioritycongenerswasachieved.ThisisshowninFig.1,whichalsoillustratesthewidelydif-ferentoverallselectivityoftheseveralcolumnsets.TheDB-XLB·LC-50set,whichprovidesanexcellentgroupseparationbasedonplanarity,gavethebestreal-liferesult(i.e.thebestseparationfrom,also,matrixcon-stituentsinthecaseofmilksamples).Inamorerecentstudybythesamegroup,theGC·GCbehaviourof12classesoforganohalogenatedcompounds–bothchlorinatedandbrominated,andofanaromaticaswellasanon-aromaticcharacter–wasstudiedonfivecolumncombinations(i.e.aDB-1first-dimensioncolumncombinedwith007-210,HT-8,LC-50,007-65HTorVF-23msintheseconddimension[115]).Aninterestingconclusionwasthatdifferentcolumnsetswerefoundtogiveoptimumresultswithregardto,e.g.,between-groupandwithin-groupsepa-rations,resolutionofchlorinatedandbrominatedana-logues,andseparationofplanarfromnon-planargroupsofanalytes.Toquotesomeexamples:

󰀂withtheHT-8column,GC·GCseparationismainlybasedonthenumberofhalogensubstituents;

󰀂with007-65HT,polychlorinatedn-alkanes(PCAs)andpolybrominateddiphenylethers(PBDEs)areeffectivelyseparatedfromallothercompoundclassestested;and,

http://www.elsevier.com/locate/trac

443

TrendsTrendsinAnalyticalChemistry,Vol.25,No.5,2006

Commercial Stationary phase code 007-65HT 65%phenyl-methylpolysiloxane OV 1701

14% cyanopropylphenyl-methylpolysiloxane

007-210 50%trifluoropropylmethylpolysiloxane 007-1 100%methylpolysiloxane BGB-176SE BGB-172 BGB-1701 BGB-Silaren

20% 2,3-di-O-methyl-6-O-tert.-butyldimethylsilyl β-cyclodextrin diluted in SE-52

25% 2,3,6-tert.-butyldimethylsilyl β-cyclodextrin diluted in PS086 (15% phenyl-methylpolysiloxane) 14% cyanopropylphenyl-dimethylpolysiloxaneSildiphenylether-diphenylpolysiloxane

Producer* Quadrex Quadrex

Quadrex Quadrex BGB BGB BGB BGB

Restek Restek Restek

Restek Restek Supelco Supelco Sigma–Aldrich MeGA J&K

Rtx-500 diphenyl/dimethylpolysiloxane Rtx-200 trifluoropropylmethylpolysiloxane Stabilwax polyethylene glycol

XTI-5 95%dimethyl-diphenylpolysiloxane RTX-1 100%dimethylpolysiloxaneSupelcoWax-10 polyethylene glycol

SPB-5 5%diphenyl-dimethylpolysiloxane SP-2340 100%biscyanopropylpolysiloxane EtTBS-β-CD LC-50

25% 2,3-diethyl-6-tert.-butyldimethylsilylated β-cyclodextrin diluted in PS086

50% liquid crystalline-methylpolysiloxane

* SGE International, Ringwood, Australia; J&WScientific, Folsom, CA, USA; Varian, Middelburg, TheNetherlands; Quadrex, New Haven, CT, USA; BGB Analytik, Aldiswil, Switzerland;Restek Corp., Bellefonte, PA, USA; Supelco, Bellefonte, PA, USA; Sigma-Aldrich, Brussels, Belgium; Varian-Chrompack, Middelburg, The Netherlands;MeGA, Milan, Italy; J&K Environmental, Sydney, NS, Canada.

Scheme2.(continued)

󰀂DB-1·VF-23msyieldsexcellentwithin-classsepara-tions,especiallyofnon-aromaticcompounds,suchasPCAs,toxapheneandorganochlorinepesticides.Animpressiveexampleoftheseparationofthreeclassesofcompounds–toxaphene(atechnicalmixturemainlycomprisingchlorobornanesandchlorocamph-enes),PCA-60(atechnicalmixtureofpolychlorinatedn-alkaneswithachlorinationdegreeof60wt.%),andpolychlorinatedterphenyls(PCTs;a1:1mixtureofthetechnicalproductsAroclor5442andAroclor5460)–isshowninFig.2.MoredetailedinformationonthecompositionoftoxapheneandthePCAmixtureispre-sentedinSection3.2(PartIII).

Morerecently,theGC·GCbehaviourofavarietyoftestcompoundswasstudiedonarangeoffirst-dimen-sioncolumnsofdifferentpolarityandwithBPX-5orBP-20asthesecond-dimensioncolumn[112].Thepolarityofthefirst-dimensioncolumnwassystemati-callyalteredbycouplingdifferentlengthsofBPX-5andBP-20toaconstanttotallengthof20m.Theobser-444

http://www.elsevier.com/locate/trac

vationsmadeinthepapersquotedabovewereessen-tiallyconfirmed,butthemoresystematicnatureofthepresentstudy[112]gaveresultsthatcanbemoreeasilyinterpreted.Theauthorsfoundthat‘‘correlated’’phaseswithsimilarpolarityinbothdimensionsresultedinanessentiallyone-dimensionalseparation,withtheana-lytesdistributedalongadiagonalinthe2Dplane.Theuseoftheseparationspacewasminimal.Conversely,maximalusewasachievedwhenthefirstandseconddimensionsweremostdissimilar.Theauthorspro-posedtheuseofasimpleestimator(i.e.theamountofseparationspaceusedforretainedsolutescomparedwiththevoidspace)toexpresstheorthogonalityofaseparation.

Whileitwillbeclearthatmuchcanindeedbegainedintermsofbetween-andwithin-groupseparationbyselectingthepropercolumncombination,itisgoodtokeepinmindthat,withreal-lifeapplications,thesepa-rationofthetargetclassesofanalytesfrommatrixinterferencesalsoplaysarole–and,frequently,amore

TrendsinAnalyticalChemistry,Vol.25,No.5,2006Trends

B– DB-XLBB-XLB×007-65HT3281123157114105771184F14D11261671561695D16F16D16D25F15F21896D36F36F46F27F17D18F7F28D105060705F21895F15D18090100110C– DB-XLB×VF-232181123114771181054F11261674D11561571696F36F26D36F47F27F17D16F16D16D28F8D05087660708090100110D– DB-XLB×LC-507F26F47D18F5434F14D16D36F36F15D16D16D26F21691897F18D5F2281771181051261565F1101231671141575060708090100110Figure1.GC·GC–lECDchromatogramsofamixtureof10CDFs(red,fromtetra4Ftoocta8F),7CDDs(green,fromtetra4Dtoocta8D)and12dioxin-likeCBs(orange,CB81–189)foraDB-XLBcolumncombinedwithsecond-dimensioncolumnsasindicatedintheframes.Temper-atureprogrammeforfirstandsecondcolumns:90°C(2min),at30°C/minto170°C(5min),thenat1.5°C/minto290°C(10min).Finaltemper-atureforLC-50was270°Cbecauseoftemperaturelimits.InletpressureforDB-XLB·LC-50,39psi,forothercombinations,45psi.Modulationperiod,8s[114].importantone.Typicalexamplescanbefound[21,96,114,116–119].Theoreticalstudiesonthedevelopmentof2Dresolutionmodelsand/ororderedstructurestendtooverlookthisaspect.

2.2.1.2.Columndimensions.Asmentionedabove,awell-established1D-GCprocedureisoftenselectedasthebasisofanorthogonalGC·GCseparation.However,thetemperatureprogrammeisfrequentlymaderelativelyslowtomakethefirst-dimensionanalytepeakssome-whatwiderand,thus,tomakeiteasiertoachievetherequired3–4-foldmodulationofeachpeak,theso-calledmodulationcriterion.Eventhoughthisisnotahugedisadvantage,itisofinteresttotrytodecreaseruntimesbyproperlyadaptingthedimensionsofeitheroneorbothGCcolumns.Apreliminarystudyinthisarea[110]showedthatadramaticimprovementcan,indeed,beobtained.Withaconventionalfirst-dimensioncolumncombinedwitha(0.5m·0.05mmID·0.05lmdf)insteadofthemoreusual(1–2m·0.1mmID·0.1lmdf)second-dimensioncolumn,thetimeofanalysiswasreducedfrom100minto27min.Thisalmostfour-foldreductionwasclosetowhatwasexpectedonthebasisofthetwo-foldsmallerboreofthesecond-dimensioncolumn.Theoverallresolutiondidnotappeartosufferfromthechange:thepeakcapacitywasfoundtoin-creasefrom6000to9000.

Theaboveisagratifyingfirstresult.However,thequotedstudywaslimitedand,inaddition,veryfew50-lmIDcolumnsarecommerciallyavailabletoday.Moreover,thesignificantlyincreasedpeakcapacitysuggeststhat,nexttothecolumnIDeffect,otherphe-nomena–possiblyrelatedtopressureandpressureprofiles–mayplayarole.Thistopichasrecentlybeen

http://www.elsevier.com/locate/trac

445

TrendsTrendsinAnalyticalChemistry,Vol.25,No.5,2006

Figure2.GC·GC–lECDchromatogramonDB-1·007-65HTofPCAs(PCA-60),PCTs(Aroclors5442+5460)andtechnicaltoxaphene[115].

discussedinapaperthatshows,onthebasisofvarioussetsofcalculations,thatonecolumnshouldbeoperatedclosetoitsoptimumflowconditions,andasub-optimumseparationontheothercolumnaccepted[120].

Aninterestingconclusionwasthatcombiningafirst-dimensioncolumnwitha0.25–0.32mmIDwithasecondonefeaturinganIDof0.15–0.18mmturnsouttobeagoodchoice.However,herealso,someslowingdownofthetemperature-programmingrateisneededtofulfilthemodulationcriterion.AsimplermodelwasdevelopedbyHarynuketal.[121].Itcalculatestheflowratesinthecolumnsandpredictsappropriatedelay-loopdimensionsforagivenset-up.Toquoteanexample,forasystemwitha30m·0.25mmIDfirstcolumn,two0.12m·0.10mmIDtrappingcapillaries,anda1.55m·0.15mmIDsecondcolumn,themodelsug-gestsusinga1.1m·0.25mmIDloopinordertohaveanaveragelinearvelocityof30cm/sinthefirstcolumnandadeadtimeof2.5sintheloopat35°C.SuchamodelalsopredictsthepressureprogrammingratesthatcanbeusedtogeneratespecificflowratesinanyGC·GCsystem.

AnotherchallengingissuewasdiscussedbyShellieetal.[122],whostudiedtheeffectsofpressuredroponabsoluteretentionmatchinginGC·GC.Ifpeakidentitieshavetobeassignedtospecificpeakpositionsinthe2Dseparationspace,andthisnecessitatesmatchingpeakretentionsinGC·GC–FIDandGC·GC–ToFMS,theatmosphericvs.vacuumoutletconditionsconfoundthistask.Theauthorsshowedthatbyutilizingasupplementarygassupply,providedtoaT-unionbetweenthesecond-dimensioncolumnoutletandtheMSinterface,2Dchromatogramscanbegeneratedthatareessentiallyexactlymatched.For18testanalytesrepresentingvariousclassesofcom-446

http://www.elsevier.com/locate/trac

pounds,theaverageabsoluteretention-timedifferencewas42msintheseconddimension,and3.7sinthefirstdimension.

2.2.2.Non-orthogonalapproach

DespitethevariousadvantagesofusingorthogonalGC·GCconditionsmentionedinSection2.2.1,non-orthogonalapproachset-upswerealsousedinalimitednumberofearlystudies.AnumberofmorerecentapplicationsarelistedinTable2,whichshowsthattheapproachhasbeensuccessfulinwidelydifferentareas.OneexampleconcernstheseparationofplanarCBsfromothercongeners[22],inwhichapolarLC-50·non-polarBPX-5columncombinationgavearemarkablysuccessfuloverallresult(seealsoSection3.2,PartIII),butwithoutanyorderedstructure.Earlier,onewouldhavesaidthatthisisnorealsurprisebecausetheorthogonalityprinciplehasbeenviolated.However,wenowknowthat,alsowithnon-orthogonalseparations,orderedstructuresmaybepresent–andevenprominent.Asanillustration,Fig.3displaysboththewell-knownconventional(non-polar·polar)anda‘‘reversed’’(i.e.polar·medium-polar)separationofadieseloil[123].Whilethecompletelyreversedorderofseparationofthealkanes,mono-aromaticanddi-aro-maticcompoundscanbesaidtobeaccordingtoexpectations,thedifferentlyorganized,butobviouslyordered,structureissomethingofasurprise.Thevariousgroupsofcompoundsseemtobepackedtightertogether(aswasalsofoundinotherstudies[124,125];seebelow).Underoptimizedexperimentalconditions–pri-marilywithregardtotemperaturecontrol–notonlycanthealkanesbeseparatedfromthecycloalkanes,butde-tailedseparationswithineachclasscanalsobeachieved[123].TheresultspresentedinFig.3wereobtainedby

TrendsinAnalyticalChemistry,Vol.25,No.5,2006Trends

Table2.Examplesofnon-orthogonal(reversed-type)GC·GCcolumncombinations(period,2003–2005)*Application

RoastedcoffeebeansRoastedcoffeebeansFAMEsinfatsandoilFAMEsinmilkfatFAMEsinlipidsFlavoursinfoodFoodextractsPlanarCBsÔPhillipsmixÕ

Cigarettesmokecondensate:acidicfractionVOCsindieselfuel

Aminoacidsinwine,beerandhoney

*Columncombination[m·mmID·lmdf]

[30·0.25·0.25]SupelcoWax-10·[1·0.1·0.1]SPB-5[30·0.25·0.25]SolgelWax·[1·0.1·0.1]BPX-5

[30·0.25·0.25]SupelcoWax-10·[1·0.1·0.1]SPB-5[100·0.25·0.25]CP7420·[1·0.1·0.1]HP-1

[30·0.25·0.25]SupelcoWax-10·[1·0.1·0.1]SPB-5[30·0.25·0.25]BP21·[1·0.1·0.1]BPX-35[25·0.32·0.25]BP21·[1·0.1·0.1]BPX-35[10·0.15·0.1]LC-50·[0.4·0.1·0.1]BPX-5[30·0.25·0.25]SP-2331·[2·0.1·0.1]Rtx-5[50·0.25·0.25]CEC-Wax·[2·0.1·0.1]DB-17ht[60·0.25·0.25]DB-Wax·[3·0.1·0.4]DB-1701

[5·0.25·1.4]SP-2331·[5.2·0.25·0.1]DB-WaxorDB-210[30·0.25·0.25]SolgelWax·[0.4·0.1·0.1]BP1

Ref.[126][124][130][127][131][123][108][22][113][175][128][129]

Enantioselectivecolumncombinations,whichalsobelonginthiscategory,arediscussedinSection2.2.3andTable3.

Figure3.GC·GC–FIDchromatogramsofadieseloilobtainedontwodifferentcolumnsets:

(top)non-polar·polarand(bottom)polar·medium-polar[123].

http://www.elsevier.com/locate/trac

447

TrendsTrendsinAnalyticalChemistry,Vol.25,No.5,2006

usingasecondoven(40°Chighertemperature).Withoutthatoven,within-andbetween-groupseparationswereevenmoredetailed.

Furtherworkindicatedthatmoreimportantadvan-tagesaregainedwhenpolarand/orionogeniccompoundshavetobestudied[123,126–129,175].Fig.4,tobediscussedinmoredetailinSection3.3(PartIII),clearlyshowstheimprovedchromatographicbehaviourandimprovedpeakshapeofanalyteclasses,suchasaldehydes,ketonesandalcoholsand,specifically,carboxylicacids,whichcouldhardlyberecognizedwithanorthogonalapproach.Inaddition,inthiscase,themodulationtimecouldbelimitedto2–3swithoutwrap-aroundoccurring.Consequently,thefirst-dimensionseparationcouldberunclosertoitsoptimalconditionswithoutlosingthedesiredfourmodulationsacrossapeak.Anothertypicalexampleinvolvestheanalysisofthevolatilefractionofcoffeebeans[126].Anon-orthogo-nalSupelcoWax-10·SPB-5columnsetgaveaneffi-cientseparationandthechromatogramswerehighlystructured.Fig.5showspartofaGC·GC–FIDchro-matogramofroastedArabicacoffeebeans.Thepyra-zinesclearlyformaspecificpatterninthe2Dplane.Pyrazine-ringsystemswiththesamedegreeofalkyl-carbonsubstitution(e.g.,dimethylpyrazineandethyl-pyrazine)tendtoalignthemselveswithsecond-dimen-sionelutiontimewhichgraduallydecreasesastheGCoventemperatureincreases.Thispermitsdetailedcharacterizationofthepyrazinefraction,whichplaysamajorroleinthecoffee-aromaprofile.Itshouldbeno-tedthatnotallspotsshowingupintheellipsescanbeattributedtopyrazinesub-groups,butonlythosenumbered1–28.Sampledimensionalityand/orsample

Figure4.GC·GC–FIDof40oliveoilstandardsontwocolumnsets:(top)non-orthogonalBP21·BP-35and(bottom)orthogonalDB-1·BP20.Insertsdemonstratepeakshapesof(a)3-methylbutanoicacidandthreealcohols,(b)1-hexanol,(c)cis-3-hexenoland(d)trans-2-hexenol[123].

448

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.25,No.5,2006Trends

Figure5.PartofGC·GC–FIDchromatogramofroastedArabicacoffeebeansusingaSupelcoWax-10·SPB-5columnset[126].Formoredetails,seetext.

complexityobscurethe(degreeof)orderedstructures.Onlythenumberedspotsinthethreeellipsesarepyr-azines(theothersare,e.g.,thiophenes,ketonesandpyridines).Whenthequotednon-orthogonalandanorthogonalapproachwerecomparedforthesamesample[124],theformerwasfoundtobesuperior:thenumberofpeakswashigherandalargerpartoftheseparationspacewasused(alsoseeSection3.3.5,PartIII).

2.2.3.EnantioselectiveanalysisinGC·GC

Anotherfieldofinterestistheuseofenantioselective(cyclodextrin)phases[141](Table3).Shellieetal.[23,25]successfullyseparatedenantiomericpairsofmonoterpenehydrocarbonsandoxygenatedmonoter-penesandalsodeterminedtheenantiomericcompositionofthemainmonoterpenesinAustralianteatreeoil(Fig.6).Theauthorsusedbothanon-orthogonal(cyclodextrin·BP-20)andanorthogonal(DB-5·cyclodextrin)approach.Sincetheseparationofpairsofenantiomersrequireslongruntimes(andhencelongcolumns),theformerapproachispreferredwhenorderedstructuresarenotofinterest.If‘‘structure’’isrequired,thenthelattercolumncombinationgenerallygivesbet-terresults.However,suchanachiral·chiralapproachismuchmoredemandingbecauseadequateenantiomerresolutionofalltargetpairshastobeeffectedduringtheveryfastsecond-dimensionseparation.Becauseofthis,theauthors[23]usedanarrow-bore(100lmID)non-polarfirst-dimensioncolumnconnectedtoawider-bore(250lmID)second-dimensionenantioselectivecolumnwithvacuum-outletconditions.Suchconditionscausediffusioncoefficientsandanalytevolatilitytobecomehigher;second-dimensionretentiontimeswerefour-foldlowerthanwithambientpressureoutletconditions.Retentiontimeswereasshortas8sfor(±)-limonene,withadequateenantioseparation(Rsca.1)ona1-mcyclodextrinderivative-coatedcapillarycolumn.Asanapplication,bergamotessentialoilwasanalysed.

Asimilarachiral·chiralstrategywasusedbyWuetal.[132]toanalysevolatileoilsintraditionalChinesemedicines.However,a(60m·0.25mm·0.25lm)polarSolgelWaxfirst-dimensioncolumnanda(3m·0.1mm·0.1lm)Cyclodex-Bcolumnintheseconddimensionwereneededtoachieveadequateseparation.ThiscolumnsetgavebetterresultsthanDB-Wax·DB-1701andDB-Petro·DB-1701combina-tionsof,roughly,thesamedimensions.

Intwomorerecentstudies,two20–30-mcolumnshadtobecombinedtoprovidea‘‘chiral’’first-dimensionset-upwhichyieldsspecificseparationsof,e.g.,2-and3-methylpositionalisomersofbutanol,butylacetateandbutanoicacidanditsethylester,inredwine[138],andtheenantiomersoftheimportantflavourslinaloolandfuraneolinstrawberries[139].MoredetailsontheseapplicationswillbepresentedinSections3.3.3and3.3.5,respectively(PartIII).

QuiteanumberofpapershasbeendevotedtotheseparationofchiralCBsbymeansofGC·GC.ThistopicwillalsobediscussedindetailinSection3.2.2(PartIII).

http://www.elsevier.com/locate/trac

449

TrendsTrendsinAnalyticalChemistry,Vol.25,No.5,2006

Table3.EnantioselectivecolumncombinationsusedinGC·GCApplication

Monoterpenesinessentialoils

EssentialoilsinChinesemedicines

Terpenesinzedoaryvolatileoil[133,134]EnantiomericpairsofCBsEnantiomericpairsofCBsEnantiomericpairsofCBsEnantiomericpairsofCBs

2-and3-methyl-substitutedisomersinredwineMonoterpenesinAustralianteatreeoil

IsomersoffuraneolandlinaloolinstrawberryStudyofinterconversionbehaviourinGC·GC

Columncombination(m·mmID·lmdf)

[10·0.1·0.1]DB-5·[1·0.1·0.1]EtTBS-b-CDor[1·0.25·0.25]EtTBS-b-CD

[60·0.25·0.25]SolgelWax·[3·0.1·0.1]Cylodex-B[60·0.25·0.25]SolgelWax·[3·0.1·0.1]Cylodex-B[10·0.10·0.1]Chirasil-DexCB·[1·0.1·0.1]LC-50

[25·0.25·0.25]Chirasil-Dex·[0.9·0.1·0.1]LC-50orSupelcoWax-10,or·[1·0.1·0.1]VF-23ms

[30·0.25·0.25]Chirasil-Dex,BGB-172orBGB-176SE·[1or2·0.1·0.1]HT-8,BPX-50orSupelcoWax-10

[10·0.10·0.1]Chirasil-DexCB·[1.4·0.15·0.1]LC-50,or·[1.5·0.15·0.1]VF-23ms

[24·0.25·0.25]EtTBS-b-CD+[30·0.25·0.25]CycloSil-B·[1·0.1·0.1]BPX-50

25·0.25·0.25EtTBS-b-CD·0.8·0.1·0.1BP-20

[20·0.25·0.25]EtTBS-b-CD+[26·0.25·0.25]CycloSil-B·[1·0.1·0.1]BPX-50

[30·0.25·0.25]CP-Chirasil-DexCB·[0.8,2or4·0.1·0.1]BP20

Ref.[23][132][24][135][136][137][138][25][139][140]

Figure6.Enantio-GC·GC–FIDofahigh-pHdistillationofaflushgrowth(youngleaves)sampleofteatreeessentialoil.Peaknumbers:1.a-thujene;3.sabinene;4.b-pinene;8.p-cymene;9.limonene;11.c-terpinene;12.trans-sabinenehydrate;14.cis-sabinenehydrate;18.terpinen-4-ol;19.a-terpineol;U.unidentifiedcomponent.Individualisomersindicatedby(+)or(À)sign,ora,bwherecorrectassignmentofisomerswasnotconfirmed[25].

References

Thelistofreferencesisorganizedasfollows:

󰀂[1–88]comprisesallGC·GCpapersquotedin[92];

󰀂[89–91]comprisesGC·GCpaperspublishedtotheendof2002,butnotquotedin[92];

󰀂[93–270]comprisesGC·GCpapersintheperiod2003–2005;and,

󰀂[271–280]comprisesrelatedstudies.450

http://www.elsevier.com/locate/trac

[1][2][3][4][5][6]

Z.Y.Liu,J.B.Phillips,J.Chromatogr.Sci.29(1991)227.Z.Liu,M.L.Lee,J.Microcol.Sep.12(2000)24.

W.Bertsch,J.HighResolut.Chromatogr.23(2000)167.P.J.Marriott,R.Shellie,TrendsAnal.Chem.21(2002)573.R.C.Y.Ong,P.J.Marriott,J.Chromatogr.Sci.40(2002)276.M.Pursch,K.Sun,B.Winniford,H.Cortes,A.Weber,T.McCabe,J.Luong,Anal.Bioanal.Chem.373(2002)356.

[7]C.J.Venkatramani,J.B.Phillips,J.Microcol.Sep.5(1993)511.[8]J.B.Phillips,J.Beens,J.Chromatogr.,A856(1999)

331.

[9]J.Beens,U.A.Th.Brinkman,TrendsAnal.Chem.19(2000)

260.

TrendsinAnalyticalChemistry,Vol.25,No.5,2006

[10]E.B.Ledford,C.A.Billesbach,Q.Zhu,J.HighResolut.Chroma-togr.23(2000)205.

[11]R.B.Gaines,G.S.Frysinger,M.S.Hendrick-Smith,J.D.Stuart,

Environ.Sci.Technol.33(1999)2106.

[12]P.J.Schoenmakers,J.L.M.M.Oomen,J.Blomberg,W.Genuit,

G.vanVelzen,J.Chromatogr.,A892(2000)29.[13]J.Dallu¨ge,R.J.J.Vreuls,J.Beens,U.A.Th.Brinkman,J.Sep.Sci.

25(2002)201.

[14]J.V.Seeley,J.Chromatogr.,A962(2002)21.

[15]A.L.Lee,C.A.Lewis,K.D.Bartle,J.B.McQuaid,P.J.Marriott,

J.Microcol.Sep.12(2000)187.

[16]J.C.Giddings,J.Chromatogr.,A703(1995)3.

[17]C.J.Venkatramani,J.Z.Xu,J.B.Phillips,Anal.Chem.68(1996)

1486.

[18]J.Beens,R.Tijssen,J.Blomberg,J.Chromatogr.,A822(1998)

233.

[19]H.-J.deGeus,I.Aidos,J.deBoer,J.B.Luten,U.A.Th.Brinkman,

J.Chromatogr.,A910(2001)95.

[20]P.Koryta

´r,P.E.G.Leonards,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A958(2002)203.[21]J.Dallu¨ge,M.vanRijn,J.Beens,R.J.J.Vreuls,U.A.Th.Brinkman,

J.Chromatogr.,A965(2002)207.

[22]P.Haglund,M.Harju,R.Ong,P.J.Marriott,J.Microcol.Sep.13

(2001)306.

[23]R.Shellie,P.J.Marriott,Anal.Chem.74(2002)5426.[24]M.Harju,P.Haglund,J.Microcol.Sep.13(2001)300.

[25]R.Shellie,P.J.Marriott,C.Cornwell,J.Sep.Sci.24(2001)

823.

[26]H.-J.deGeus,U.A.Th.Brinkman,TrendsAnal.Chem.15(1996)

168.

[27]J.B.Phillips,J.Z.Xu,J.Chromatogr.,A703(1995)327.

[28]J.B.Phillips,R.B.Gaines,J.Blomberg,F.W.M.vanderWielen,

J.M.Dimandja,V.Green,J.Granger,D.Patterson,L.Racovalis,H.-J.deGeus,J.deBoer,P.Haglund,J.Lipsky,V.Sinha,E.B.A.Ledford,J.HighResolut.Chromatogr.22(1999)3.

[29]R.Ong,P.J.Marriott,P.Morrison,P.Haglund,J.Chromatogr.,A

962(2002)135.

[30]H.-J.deGeus,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A

767(1997)137.

[31]E.B.Ledford,C.A.Billesbach,J.HighResolut.Chromatogr.23

(2000)202.

[32]J.Harynuk,T.Go

´recki,J.Sep.Sci.25(2002)304.[33]R.M.Kinghorn,P.J.Marriott,J.HighResolut.Chromatogr.22

(1999)235.

[34]P.J.Marriott,R.M.Kinghorn,R.Ong,P.Morrison,P.Haglund,

M.Harju,J.HighResolut.Chromatogr.23(2000)253.

[35]P.J.Marriott,R.M.Kinghorn,TrendsAnal.Chem.18(1999)

114.

[36]P.J.Marriott,R.M.Kinghorn,J.Chromatogr.,A866(2000)

203.

[37]H.-J.deGeus,A.Schelvis,J.deBoer,U.A.Th.Brinkman,J.High

Resolut.Chromatogr.23(2000)189.

[38]R.M.Kinghorn,P.J.Marriott,J.HighResolut.Chromatogr.21

(1998)620.

[39]P.J.Marriott,R.M.Kinghorn,Anal.Sci.14(1998)651.

[40]R.M.Kinghorn,P.J.Marriott,P.A.Dawes,J.HighResolut.

Chromatogr.23(2000)245.

[41]C.A.Bruckner,B.J.Prazen,R.E.Synovec,Anal.Chem.70(1998)

2796.

[42]J.Beens,M.Adahchour,R.J.J.Vreuls,K.vanAltena,U.A.Th.

Brinkman,J.Chromatogr.,A919(2001)127.[43]T.Hyo¨tyla¨inen,M.Kallio,K.Hartonen,M.Jussila,S.Palonen,

M.-L.Riekkola,Anal.Chem.74(2002)4441.

[44]J.V.Seeley,F.Kramp,C.J.Hicks,Anal.Chem.72(2000)

4346.

[45]C.G.Fraga,B.J.Prazen,R.E.Synovec,Anal.Chem.72(2000)

4154.

Trends

[46]J.Beens,J.Blomberg,P.J.Schoenmakers,J.HighResolut.

Chromatogr.23(2000)182.

[47]J.Beens,H.Boelens,R.Tijssen,J.Blomberg,J.HighResolut.

Chromatogr.21(1998)47.[48]J.Dallu¨ge,L.L.P.vanStee,X.Xu,J.Williams,J.Beens,

R.J.J.Vreuls,U.A.Th.Brinkman,J.Chromatogr.,A974(2002)169.

[49]G.S.Frysinger,R.B.Gaines,J.HighResolut.Chromatogr.22

(1999)251.

[50]G.S.Frysinger,R.B.Gaines,C.M.Reddy,Environ.Forens.3

(2002)27.

[51]R.Shellie,L.-L.Xie,P.J.Marriott,J.Chromatogr.,A968(2002)

161.

[52]R.J.Western,P.J.Marriott,J.Sep.Sci.25(2002)832.

[53]J.Beens,R.Tijssen,J.Blomberg,J.HighResolut.Chromatogr.21

(2000)63.

[54]R.B.Gaines,E.B.Ledford,J.D.Stuart,J.Microcol.Sep.10(1998)

597.

[55]G.S.Frysinger,R.B.Gaines,E.B.Ledford,J.HighResolut.

Chromatogr.22(1999)195.

[56]G.S.Frysinger,R.B.Gaines,J.HighResolut.Chromatogr.23

(2000)197.

[57]J.V.Seeley,F.J.Kramp,K.S.Sharpe,S.K.Seeley,J.Sep.Sci.25

(2002)53.

[58]Z.Y.Liu,S.R.Sirimanne,D.G.Patterson,L.L.Needham,

J.B.Phillips,Anal.Chem.66(1994)3086.

[59]A.L.Lee,K.D.Bartle,A.C.Lewis,Anal.Chem.73(2001)1330.[60]H.-J.deGeus,J.deBoer,J.B.Phillips,E.B.Ledford,

U.A.Th.Brinkman,J.HighResolut.Chromatogr.21(1998)411.[61]P.J.Marriott,R.C.Y.Ong,R.M.Kinghorn,P.D.Morrison,

J.Chromatogr.,A892(2000)15.

[62]C.G.Fraga,B.J.Prazen,R.E.Synovec,J.HighResolut.Chroma-togr.23(2000)215.

[63]K.J.Johnson,B.J.Prazen,R.K.Olund,R.E.Synovec,J.Sep.Sci.

25(2002)297.

[64]B.J.Prazen,C.A.Bruckner,R.E.Synovec,B.R.Kowalski,

J.Microcol.Sep.11(1999)97.

[65]C.G.Fraga,B.J.Prazen,R.E.Synovec,Anal.Chem.73(2001)

5833.

[66]C.G.Fraga,C.A.Bruckner,R.E.Synovec,Anal.Chem.73(2001)

675.

[67]B.J.Prazen,K.J.Johnson,A.Weber,R.E.Synovec,Anal.Chem.

73(2001)5677.

[68]R.Ong,R.Shellie,P.J.Marriott,J.Sep.Sci.24(2001)367.[69]K.J.Johnson,R.E.Synovec,Chemom.Intell.Lab.Syst.60(2002)

225.

[70]J.Blomberg,P.J.Schoenmakers,J.Beens,R.Tijssen,J.High

Resolut.Chromatogr.20(1997)539.

[71]J.Beens,R.Tijssen,J.Microcol.Sep.7(1995)345.[72]G.S.Frysinger,R.B.Gaines,J.Sep.Sci.24(2001)87.[73]G.S.Frysinger,R.B.Gaines,J.Forens.Sci.47(2002)471.

[74]M.vanDeursen,J.Beens,J.Reijenga,P.Lipman,C.A.Cramers,

J.Blomberg,J.HighResolut.Chromatogr.23(2000)507.

[75]P.Haglund,M.Harju,C.Danielsson,P.J.Marriott,J.Chroma-togr.,A962(2002)127.

[76]R.E.Murphy,M.R.Schure,J.P.Foley,Anal.Chem.70(1998)

1585.

[77]R.J.Western,S.S.G.Lau,P.J.Marriott,P.D.Nichols,Lipids37

(2002)715.

[78]P.J.Marriott,R.Shellie,J.Fergeus,R.Ong,P.Morrison,Flav.

Fragr.J.15(2000)225.

[79]R.Shellie,P.J.Marriott,C.Cornwell,J.HighResolut.Chroma-togr.23(2000)554.

[80]R.Shellie,L.Mondello,P.J.Marriott,G.Dugo,J.Chromatogr.,A

970(2002)225.

[81]R.Shellie,P.J.Marriott,P.Morrison,Anal.Chem.73(2001)

1336.

http://www.elsevier.com/locate/trac

451

Trends

[82]J.-M.D.Dimandja,S.B.Stanfill,J.Grainger,D.G.Patterson,

J.HighResolut.Chromatogr.23(2000)208.

[83]M.Adahchour,J.Beens,R.J.J.Vreuls,A.M.Batenburg,

E.A.E.Rosing,U.A.Th.Brinkman,Chromatographia55(2002)361.

[84]P.J.Marriott,R.Shellie,C.Cornwell,J.Chromatogr.,A936

(2001)1.

[85]A.C.Lewis,N.Carslaw,P.J.Marriott,R.M.Kinghorn,

P.Morrison,A.L.Lee,K.D.Bartle,M.J.Pilling,Nature(London)405(2000)778.

[86]J.V.Seeley,F.J.Kramp,K.S.Sharpe,J.Sep.Sci.24(2001)444.[87]J.Beens,J.Dallu¨ge,M.Adahchour,R.J.J.Vreuls,

U.A.Th.Brinkman,J.Microcol.Sep.13(2001)134.

[88]P.J.Marriott,O.Trapp,R.Shellie,V.Schurig,J.Chromatogr.,A

919(2001)115.

[89]J.Blomberg,P.J.Schoenmakers,U.A.Th.Brinkman,J.Chroma-togr.,A972(2002)137.

[90]H.-J.deGeus,J.deBoer,U.A.Th.Brinkman,Chromatographia

55(2002)339.

[91]R.M.M.Perera,P.J.Marriott,I.E.Galbali,Analyst(Cambridge,

UK)127(2002)1601.[92]J.Dallu¨ge,J.Beens,U.A.Th.Brinkman,J.Chromatogr.,A1000

(2003)69.

[93]A.J.Kueh,P.J.Marriott,P.M.Wyne,J.H.Vine,J.Chromatogr.,

A1000(2003)109.

[94]D.Ryan,P.Marriott,Anal.Bioanal.Chem.376(2003)1939.[95]P.J.Marriott,P.Haglund,R.C.Y.Ong,Clin.Chim.Acta328

(2003)1.

[96]R.Shellie,P.Marriott,Flav.Fragr.J.18(2003)179.

[97]S.E.Reichenbach,M.T.Ni,D.M.Zhang,E.B.Ledford,

J.Chromatogr.,A985(2003)47.

[98]S.E.Reichenbach,M.Ni,V.Kottapalli,A.Visvanathan,

Chemom.Intell.Lab.Syst.71(2004)107.

[99]T.Go

´recki,J.Harynuk,O.Panic,J.Sep.Sci.27(2004)359.[100]A.E.Sinha,B.J.Prazen,R.E.Synovec,Anal.Bioanal.Chem.378

(2004)1948.

[101]P.Q.Tranchida,P.Dugo,G.Dugo,L.Mondello,J.Chromatogr.,

A1054(2004)3.

[102]J.Beens,U.A.Th.Brinkman,Anal.Bioanal.Chem.378(2004)

1939.

[103]C.Debonneville,M.A.Thome,A.Chaintreau,J.Chromatogr.Sci.

42(2004)450.

[104]J.Beens,U.A.Th.Brinkman,Analyst(Cambridge,UK)130

(2005)123.

[105]J.V.Hinshaw,LC.GCEur.(February)(2004)1.

[106]P.J.Marriott,P.D.Morrison,R.A.Shellie,M.S.Dunn,E.Sari,

D.Ryan,LC.GCEur.(December)(2003)2.[107]P.J.Marriott,T.Massil,H.Hu¨gel,J.Sep.Sci.27(2004)

1273.

[108]M.Adahchour,E.Jover,J.Beens,R.J.J.Vreuls,

U.A.Th.Brinkman,J.Chromatogr.,A1086(2005)128.[109]L.M.Blumberg,J.Chromatogr.,A985(2003)29.[110]M.Adahchour,A.Ta+o¨z,J.Beens,A.M.Batenburg,

U.A.Th.Brinkman,J.Sep.Sci.26(2003)753.

[111]P.Schoenmakers,P.Marriott,J.Beens,LC.GCEur.(June)(2003)

1.

[112]D.Ryan,P.Morrison,P.Marriott,J.Chromatogr.,A1071

(2005)47.

[113]J.-M.D.Dimandja,G.C.Clouden,I.Colo

´n,J.-F.Focant,W.V.Cabey,R.C.Parry,J.Chromatogr.,A1019(2003)261.

[114]P.Koryta

´r,C.Danielsson,P.E.G.Leonards,P.Haglund,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A1038(2004)189.

[115]P.Koryta

´r,P.E.G.Leonards,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A1086(2005)29.

[116]C.G.Fraga,J.Chromatogr.,A1019(2003)31.

452

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.25,No.5,2006

[117]M.Adahchour,L.L.P.vanStee,J.Beens,R.J.J.Vreuls,

M.A.Batenburg,U.A.Th.Brinkman,J.Chromatogr.,A1019(2003)157.

[118]T.T.Truong,P.J.Marriott,N.A.Porter,R.Leeming,J.Chroma-togr.,A1019(2003)197.

[119]M.T.Roberts,J.P.Dufour,A.C.Lewis,J.Sep.Sci.27(2004)473.[120]J.Beens,H.-G.Janssen,M.Adahchour,U.A.Th.Brinkman,

J.Chromatogr.,A1086(2005)141.

[121]J.Harynuk,T.Go

´recki,J.Chromatogr.,A1086(2005)135.[122]R.A.Shellie,P.J.Marriott,P.Morrison,L.Mondello,J.Sep.Sci.

27(2004)504.

[123]M.Adahchour,J.Beens,R.J.J.Vreuls,A.M.Batenburg,

U.A.Th.Brinkman,J.Chromatogr.,A1054(2004)47.

[124]D.Ryan,R.Shellie,P.Tranchida,A.Casilli,L.Mondello,

P.Marriott,J.Chromatogr.,A1054(2004)57.

[125]C.Vendeuvre,R.Ruiz-Guerrero,F.Bertoncini,L.Duval,

D.Thie´baut,M.-C.Hennion,J.Chromatogr.,A1086(2005)21.

[126]L.Mondello,A.Casilli,P.Q.Tranchida,P.Dugo,R.Costa,

S.Festa,G.Dugo,J.Sep.Sci.27(2004)442.[127]T.Hyo¨tyla¨inen,M.Kallio,M.Lehtonen,S.Lintonen,P.Perajoki,

M.Jussila,M.-L.Riekkola,J.Sep.Sci.27(2004)459.

[128]P.A.BuenoJr.,J.V.Seeley,J.Chromatogr.,A1027(2004)3.[129]R.Mayadunne,T.-T.Nguyen,P.J.Marriott,Anal.Bioanal.

Chem.382(2005)836.

[130]L.Mondello,A.Casilli,P.Q.Tranchida,P.Dugo,G.Dugo,J.

Chromatogr.,A1019(2003)187.

[131]L.Mondello,A.Casilli,P.Q.Tranchida,R.Costa,B.Chiofalo,P.

Dugo,G.Dugo,J.Chromatogr.,A1035(2004)237.

[132]J.Wu,X.Lu,W.Tang,H.Kong,S.Zhou,G.Xu,J.Chromatogr.,

A1034(2004)199.

[133]J.F.Wu,X.Lu,W.Y.Tang,X.H.Lian,H.W.Kong,C.H.Ruan,

G.W.Xu,Chem.J.Chin.Univ.25(2004)1432.

[134]H.F.Wu,X.Lu,W.Y.Tang,H.W.Kong,S.F.Zhou,G.W.Xu,

Chin.J.Anal.Chem.32(2004)582.

[135]L.R.Bordajandi,P.Koryta

´r,J.deBoer,M.J.Gonzalez,J.Sep.Sci.28(2005)163.

[136]L.R.Bordajandi,L.Ramos,M.J.Gonza

´lez,J.Chromatogr.,A1078(2005)128.

[137]M.Harju,A.Bergman,M.Olsson,A.Roos,P.Haglund,

J.Chromatogr.,A1019(2003)127.

[138]Y.Shao,P.Marriott,Anal.Bioanal.Chem.375(2003)635.[139]A.Williams,D.Ryan,A.O.Guasca,P.Marriott,E.Pang,

J.Chromatogr.B817(2005)97.

[140]P.J.Marriott,K.Aryusuk,R.Shellie,D.Ryan,K.Krisnangkura,

V.Schurig,O.Trapp,J.Chromatogr.,A1033(2004)135.[141]O.Trapp,J.Chem.Inform.Comput.Sci.44(2004)1671.

[142]J.B.Phillips,E.B.Ledford,FieldAnal.Chem.Tech.1(1996)

23.

[143]R.B.Gaines,G.S.Frysinger,J.Chromatogr.,A1045(2004)263.[144]J.Dallu¨ge,J.Beens,J.Chromatogr.,A1045(2004)265.[145]P.Marriott,R.Kinghorn,LC.GCEur.(June)(2000)428.

[146]M.Pursch,P.Eckerle,J.Biel,R.Streck,H.Cortes,K.Sun,

B.Winniford,J.Chromatogr.,A1019(2003)43.

[147]J.Harynuk,T.Go

´recki,J.Chromatogr.,A1019(2003)53.[148]Zoex,TechnicalNoteKT030606-1(www.zoex.com).

[149]P.J.Marriott,M.Dunn,R.A.Shellie,P.Morrison,Anal.Chem.

75(2003)5532.

[150]M.Adahchour,J.Beens,U.A.Th.Brinkman,Analyst

(Cambridge,UK)128(2003)213.[151]M.Kallio,T.Hyo¨tyla¨inen,M.Jussila,K.Hartonen,S.Palonen,

M.Shimmo,M.-L.Riekkola,Anal.Bioanal.Chem.375(2003)725.

[152]R.W.LaClair,P.A.Bueno,J.V.Seeley,J.Sep.Sci.27(2004)389.[153]J.W.Diehl,F.P.DiSanzo,J.Chromatogr.,A1080(2005)157.[154]J.N.Primeau,J.D.McCurry,J.V.Seeley,J.Chromatogr.,A1086

(2005)115.

TrendsinAnalyticalChemistry,Vol.25,No.5,2006

[155]A.E.Sinha,B.J.Prazen,C.G.Fraga,R.E.Synovec,J.Chromatogr.,

A1019(2003)79.

[156]A.E.Sinha,K.J.Johnson,B.J.Prazen,S.V.Lucas,C.G.Fraga,

R.E.Synovec,J.Chromatogr.,A983(2003)195.

[157]J.Harynuk,T.Go

´recki,J.Sep.Sci.27(2004)431.[158]H.Cai,S.D.Stearns,Anal.Chem.76(2004)6064.

[159]B.V.Burger,T.Snyman,W.J.G.Burger,W.F.vanRooyen,J.Sep.

Sci.26(2003)123.

[160]M.Libardoni,J.H.Waite,R.Sacks,Anal.Chem.77(2005)

2786.

[161]E.M.Kristenson,P.Koryta

´r,C.Danielsson,M.Kallio,M.Brandt,J.Ma¨kela¨,R.J.J.Vreuls,J.Beens,U.A.Th.Brinkman,J.Chroma-togr.,A1019(2003)65.

[162]R.B.Gaines,G.S.Frysinger,J.Sep.Sci.27(2004)380.

[163]J.C.Hamilton,A.C.Lewis,K.D.Bartle,J.Sep.Sci.26(2003)578.[164]D.Cavagnino,P.Magni,G.Zilioli,S.Trestianu,J.Chromatogr.,

A1019(2003)211.

[165]H.-U.Baier,LC.GCEur.(December)(2003)67.

[166]L.L.P.vanStee,J.Beens,R.J.J.Vreuls,U.A.Th.Brinkman,

J.Chromatogr.,A1019(2003)89.

[167]R.Hua,Y.Li,W.Liu,J.Zheng,H.Wei,J.Wang,X.Lu,H.Kong,

G.Xu,J.Chromatogr.,A1019(2003)101.

[168]F.C.-Y.Wang,W.K.Robbins,F.P.DiSanzo,F.C.McElroy,

J.Chromatogr.Sci.41(2003)519.

[169]R.Hua,J.Wang,H.Kong,J.Liu,X.Lu,G.Xu,J.Sep.Sci.27

(2004)691.

[170]J.Blomberg,T.Riemersma,M.vanZuijlen,H.Chaabani,

J.Chromatogr.,A1050(2004)77.

[171]F.C.Y.Wang,W.K.Robbins,M.A.Greaney,J.Sep.Sci.27(2004)

468.

[172]D.Ryan,[173]J.Zrostlı´P.Marriott,J.Sep.Sci.(2006)inpress.

kova´,J.Hajsˇlova

´,T.Cˇajka,J.Chromatogr.,A1019(2003)173.

[174]W.Welthagen,J.Schnelle-Kreis,R.Zimmermann,J.Chroma-togr.,A1019(2003)233.

[175]X.Lu,J.Cai,H.Kong,M.Wu,R.Hua,M.Zhao,J.Liu,G.Xu,

Anal.Chem.75(2003)4441.

[176]C.Hao,J.V.Headley,K.M.Peru,R.Frank,P.Yang,

K.R.Solomon,J.Chromatogr.,A1067(2005)277.

[177]P.Koryta

´r,J.Parera,P.E.G.Leonards,F.J.Santos,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A1086(2005)71.[178]M.Kallio,T.Hyo¨tyla¨inen,M.Lehtonen,M.Jussila,K.Hartonen,

M.Shimmo,M.-L.Riekkola,J.Chromatogr.,A1019(2003)251.[179]M.Shimmo,T.Hyo¨tyla¨inen,M.Kallio,P.Antifa,M.-L.Riekkola,

LC.GCEur.17(2004)640.

[180]C.Debonneville,A.Chaintreau,J.Chromatogr.,A1027(2004)

109.

[181]R.A.Shellie,P.J.Marriott,Analyst(Cambridge,UK)128(2003)

879.

[182]S.M.Song,P.J.Marriott,P.Wynne,J.Chromatogr.,A1058

(2004)223.

[183]R.A.Shellie,P.J.Marriott,C.W.Huie,J.Sep.Sci.26(2003)

1185.

[184]M.Adahchour,M.Brandt,H.-U.Baier,R.J.J.Vreuls,

A.M.Batenburg,U.A.Th.Brinkman,J.Chromatogr.,A1067(2005)245.

[185]L.Mondello,A.Casilli,P.Q.Tranchida,G.Dugo,P.Dugo,

J.Chromatogr.,A1067(2005)235.

[186]P.Koryta

´r,J.Parera,P.E.G.Leonards,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A1067(2005)255.

[187]J.H.Wahl,D.M.Reichers,M.E.Vucelick,B.W.Wright,J.Sep.Sci.

26(2003)1083.

[188]R.A.Shellie,P.J.Marriott,M.Leus,J.-P.Dufour,L.Mondello,

G.Dugo,K.Sun,B.Winniford,J.Griffith,J.Luong,J.Chromatogr.,A1019(2003)273.

[189]C.Vendeuvre,F.Bertoncini,D.Thie

´baut,M.Martin,M.-C.Hennion,J.Sep.Sci.28(2005)1129.

Trends

[190]X.Xu,L.L.P.vanStee,J.Williams,J.Beens,M.Adahchour,

R.J.J.Vreuls,U.A.Th.Brinkman,J.Lelieveld,Atmos.Chem.Phys.3(2003)665.

[191]Y.J.Shao,P.J.Marriott,R.Shellie,H.Hu¨gel,Flav.Frag.J.18

(2003)5.

[192]J.B.Phillips,J.Xu,OrganohalogenCompd.31(1997)199.[193]W.Welthagen,R.A.Shellie,J.Spranger,M.Ristow,

R.Zimmermann,O.Fiehn,Metabolomics(2005).

[194]J.-F.Focant,G.Eppe,M.-L.Scippo,A.-C.Massart,C.Pirard,

G.Maghuin-Rogister,E.dePauw,J.Chromatogr.,A1086(2005)45.

[195]J.-F.Focant,C.Pirard,G.Eppe,E.dePauw,J.Chromatogr.,

A1067(2005)265.

[196]D.G.Patterson,J.R.Barr,E.S.DiPietro,J.Granger,V.E.Green,

C.R.Lapeza,V.L.Maggio,P.C.McClure,S.Sirimanne,W.E.Turner,Organohalogen.Compd.27(1996)309.

[197]E.M.Kristenson,H.C.Neidig,R.J.J.Vreuls,U.A.Th.Brinkman,

J.Sep.Sci.28(2005)1121.[198]J.-F.Focant,A.Sjo¨din,W.E.Turner,D.G.Patterson,Anal.Chem.

76(2004)6313.

[199]V.G.vanMispelaar,A.C.Tas,A.K.Smilde,P.J.Schoenmakers,

A.C.vanAsten,J.Chromatogr.,A1019(2003)15.

[200]D.Ryan,P.Watkins,J.Smith,M.Allen,P.Marriott,J.Sep.Sci.

28(2005)1075.

[201]R.Ong,S.Lundstedt,P.Haglund,P.Marriott,J.Chromatogr.,

A1019(2003)221.

[202]R.J.Western,P.J.Marriott,J.Chromatogr.,A1019(2003)3.[203]V.G.vanMispelaar,Ph.D.Thesis,Amsterdam,TheNetherlands,

(2005).

[204]S.E.Reichenbach,V.Kottapalli,M.Ni,A.Visvanathan,

J.Chromatogr.,A1071(2005)263.

[205]L.Xie,P.J.Marriott,M.Adams,Anal.Chim.Acta500(2003)

211.

[206]V.G.vanMispelaar,H.-G.Janssen,A.C.Tas,P.J.Schoenmakers,

J.Chromatogr.,A1071(2005)229.

[207]A.E.Sinha,C.G.Fraga,B.J.Prazen,R.E.Synovec,J.Chromatogr.,

A1027(2004)269.

[208]A.E.Sinha,J.L.Hope,B.J.Prazen,C.G.Fraga,E.J.Nilsson,

R.E.Synovec,J.Chromatogr.,A1056(2004)145.

[209]A.E.Sinha,J.L.Hope,B.J.Prazen,E.J.Nilsson,R.M.Jack,

R.E.Synovec,J.Chromatogr.,A1058(2004)209.

[210]L.J.Hope,A.E.Sinha,B.J.Prazen,R.E.Synovec,J.Chromatogr.,

A1086(2005)185.

[211]K.J.Johnson,B.J.Prazen,D.C.Young,R.E.Synovec,J.Sep.Sci.

27(2004)410.

[212]N.J.Micyus,S.K.Seeley,J.V.Seeley,J.Chromatogr.,A1086

(2005)171.

[213]M.Ni,S.E.Reichenbach,A.Visvanathan,J.TerMaat,

E.B.Ledford,J.Chromatogr.,A1086(2005)165.[214]J.M.Davis,J.Sep.Sci.27(2004)417.[215]J.M.Davis,J.Sep.Sci.28(2005)347.

[216]R.A.Shellie,W.Welthagen,J.Zrostlikova

´,J.Spranger,M.Ristow,O.Fiehn,R.Zimmermann,J.Chromatogr.,A1086(2005)83.

[217]H.Kong,F.Ye,X.Lu,L.Guo,J.Tian,G.Xu,J.Chromatogr.,

A1086(2005)160.

[218]Z.Zhu,J.Harynuk,T.Go

´recki,J.Chromatogr.,A1105(2005)17.

[219]J.Harynuk,T.Go

´recki,J.deZeeuw,J.Chromatogr.,A1071(2005)21.

[220]X.Lu,H.Kong,H.Li,C.Ma,G.Xu,J.Chromatogr.,A1086

(2005)175.

[221]J.Beens,Ph.D.Thesis,Amsterdam,TheNetherlands,

(1998).

[222]P.Schoenmakers,J.Blomberg,S.Kerkvliet,LC.GCInt.

(November)(1996)718.

[223]J.Blomberg,Ph.D.Thesis,Amsterdam,TheNetherlands,(2002).

http://www.elsevier.com/locate/trac

453

Trends

[224]C.Vendeuvre,F.Bertoncini,L.Duval,J.-L.Duplan,D.Thie

´baut,M.-C.Hennion,J.Chromatogr.,A1056(2004)155.

[225]R.Edam,J.Blomberg,H.-G.Janssen,P.J.Schoenmakers,

J.Chromatogr.,A1086(2005)12.

[226]M.vanDeursen,Ph.D.Thesis,Eindhoven,TheNetherlands,

(2002).

[227]J.-M.D.Dimandja,Am.Lab.35(2003)42.

[228]C.Vendeuvre,F.Bertoncini,D.Espinat,D.Thie

´baut,M.-C.Hennion,J.Chromatogr.,A1090(2005)116.

[229]J.-M.D.Dimandja,J.Grainger,D.G.Patterson,W.E.Turner,

L.L.Needham,J.Expos.Anal.Environ.Epidem.10(2000)761.

[230]M.Harju,C.Danielsson,P.Haglund,J.Chromatogr.,A1019

(2003)111.

[231]C.Danielsson,K.Wiberg,P.Koryta

´r,S.Bergek,U.A.Th.Brinkman,P.Haglund,J.Chromatogr.,A1086(2005)61.

[232]J.-F.Focant,E.J.Reiner,K.MacPherson,T.Kolic,A.Sjo¨din,

D.G.PattersonJr.,S.L.Reese,F.L.Dorman,J.Cochran,Talanta63(2004)1231.[233]J.-F.Focant,A.Sjo¨din,D.G.PattersonJr.,J.Chromatogr.,

A1019(2003)143.

[234]P.Koryta

´r,A.Covaci,P.E.G.Leonards,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A1100(2005)200.

[235]J.Beens,R.Tijssen,J.Blomberg,J.HighResol.Chromatogr.21

(1998)63.

[236]J.-F.Focant,A.Sjo¨din,D.G.Patterson,J.Chromatogr.,A1040

(2004)227.

[237]P.Koryta

´r,L.L.P.vanStee,P.E.G.Leonards,J.deBoer,U.A.Th.Brinkman,J.Chromatogr.,A994(2003)179.

[238]H.-J.deGeus,Ph.D.Thesis,Amsterdam,TheNetherlands,

(2002).

[239]M.Biedermann,K.Grob,FoodSci.Tech.39(2006)633.[240]M.Biedermann,K.Grob,FoodSci.Tech.39(2006)647.

[241]E.Jover,M.Adahchour,J.M.Bayona,R.J.J.Vreuls,

U.A.Th.Brinkman,J.Chromatogr.,A1086(2005)2.

[242]M.Adahchour,J.Wiewel,R.Verdel,J.Beens,R.J.J.Vreuls,

A.M.Batenburg,U.A.Th.Brinkman,J.Chromatogr.,A1086(2005)99.

[243]K.Sun,W.Winniford,J.Griffith,K.Colura,S.Green,M.Pursch,

J.Luong,J.Chromatogr.Sci.41(2003)506.

[244]R.A.Shellie,P.J.Marriott,A.Chaintreau,Flav.Fragr.J.19

(2004)91.

[245]Y.Shao,P.Marriott,H.Hu¨gel,ChromatographiaSuppl.57

(2003)S-349.

[246]R.Shellie,P.Marriott,P.Morrison,J.Chromatogr.Sci.42

(2004)417.

[247]M.Z.O

¨zel,F.Gogus,A.C.Lewis,FoodChem.82(2003)381.[248]M.Z.O

¨zel,F.Gogus,J.F.Hamilton,A.C.Lewis,Chromatographia60(2004)79.

[249]G.Eyres,J.-P.Dufour,G.Hallifax,S.Sotheeswaren,P.Marriott,

J.Sep.Sci.28(2005)1061.

[250]Ch.Ruan,G.Xu,X.Lu,R.Hua,H.Kong,K.Xiao,G.Yong,

ChromatographiaSuppl.57(2003)S-265.

[251]X.Di,R.A.Shellie,P.J.Marriott,C.W.Huie,J.Sep.Sci.27(2004)

451.

454

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.25,No.5,2006

[252]C.A.Zini,T.F.DeAssis,E.B.LedfordJr.,C.Dariva,J.Fachel,

E.Christensen,J.Pawliszyn,J.Agric.FoodChem.51(2003)7848.

[253]Sh.Zhu,X.Lu,L.Dong,J.Xing,X.Su,H.Kong,G.Xu,C.Wu,

J.Chromatogr.,A1086(2005)107.

[254]Sh.Zhu,X.Lu,J.Xing,Sh.Zhang,H.Kong,G.Xu,C.Wu,Anal.

Chim.Acta545(2005)224.

[255]M.Z.O¨zel,F.Go¨u¨,J.F.Hamilton,A.C.Lewis,Anal.Bioanal.Chem.382(2005)115.[256]S.Morales-Mun˜oz,R.J.J.Vreuls,M.D.LuquedeCastro,

J.Chromatogr.,A1086(2005)122.

[257]C.G.Johnson,G.S.Frysinger,R.K.Nelson,R.B.Gaines,

N.Ohkouchi,C.M.Reddy,T.I.Eglinton,Mar.Chem.83(2003)5.

[258]X.Xu,J.Williams,C.P.Du¨lmer,H.Berresheim,G.Salisbury,

L.Lange,J.Lelieveld,Atmos.Chem.Phys.3(2003)1461.

[259]J.F.Hamilton,A.C.Lewis,Atmos.Environ.37(2003)

589.

[260]J.F.Hamilton,P.J.Webb,A.C.Lewis,J.R.Hopkins,S.Smith,

P.Davy,Atmos.Chem.Phys.4(2004)1279.

[261]J.Schnelle-Kreis,W.Welthagen,M.Sklorz,R.Zimmermann,

J.Sep.Sci.28(2005)1648.

[262]Z.Parsi,T.Go

´recki,J.Poerschmann,LC.GCEur.18(2005)582.[263]X.Lu,J.L.Cai,J.F.Wu,H.W.Kong,M.Y.Zhao,R.X.Hua,

J.F.Liu,G.W.Xu,ActaChim.Sin.62(2004)804.

[264]X.Lu,M.Zhao,H.Kong,J.Cai,J.Wu,M.Wu,R.Hua,J.Liu,

G.Xu,J.Sep.Sci.27(2004)101.

[265]X.Lu,M.Zhao,H.Kong,J.Cai,J.Wu,M.Wu,R.Hua,J.Liu,

G.Xu,J.Chromatogr.,A1043(2004)265.

[266]W.Welthagen,J.Schnelle-Kreis,R.Zimmermann,J.Aeros.Sci.

35(2004)17.

[267]S.M.Song,P.J.Marriott,A.Kotsos,O.H.Drummer,P.Wynne,

Forens.Sci.Int.143(2004)87.

[268]J.L.Hope,B.J.Prazen,E.J.Nilsson,M.E.Lidstrom,R.E.Synovec,

Talanta65(2005)380.

[269]M.Moeder,C.Martin,D.Schlosser,J.Harynuk,T.Go

´recki,J.Chromatogr.1107(2006)233.

[270]P.Koryta

´r,P.Haglund,J.deBoer,U.A.Th.Brinkman,TrendsAnal.Chem.25(2006)373.

[271]M.Zakaria,M.-F.Gonnord,G.Guiochon,J.Chromatogr.,A271

(1983)127.

[272]G.Schomburg,J.Chromatogr.,A703(1995)309.

[273]W.Bertsch,J.HighResolut.Chromatogr.22(1999)647.

[274]M.Dunn,R.Shellie,P.Morrison,P.Marriott,J.Chromatogr.,

A1056(2004)163.

[275]J.C.Giddings,Anal.Chem.56(1984)1258A.

[276]J.C.Giddings,J.HighResolut.Chromatogr.10(1987)

31.

[277]H.Boer,P.VanArkel,Chromatographia4(1971)300.

[278]P.G.Wester,H.-J.Geus,J.deBoer,U.A.Th.Brinkman,

Chemosphere35(1997)1187.

[279]P.G.Wester,H.-J.deGeus,J.deBoer,U.A.Th.Brinkman,

Chemosphere35(1997)2857.

[280]V.A.Nikiforov,V.G.Tribulovich,V.S.Karavan,Organohalogen

Compd.26(1995)393.

因篇幅问题不能全部显示,请点此查看更多更全内容