您的当前位置:首页正文

Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles

2024-04-21 来源:易榕旅网
NanoscaleResLett(2010)5:1039–1044DOI10.1007/s11671-010-9599-9

NANOEXPRESS

SynthesisandMagneticPropertiesofNearlyMonodisperseCoFe2O4NanoparticlesThroughaSimpleHydrothermalCondition

Xing-HuaLi•Cai-LingXu•Xiang-HuaHanLiangQiao•TaoWang•Fa-ShenLi

Received:5January2010/Accepted:31March2010/Publishedonline:16April2010ÓTheAuthor(s)2010.ThisarticleispublishedwithopenaccessatSpringerlink.com

AbstractNearlymonodispersecobaltferrite(CoFe2O4)nanoparticleswithoutanysize-selectionprocesshavebeenpreparedthroughanalluringmethodinanoleylamine/ethanol/watersystem.Well-definednanosphereswithanaveragesizeof5.5nmhavebeensynthesizedusingmetalchlorideasthelawmaterialsandoleicamineasthecap-pingagent,throughageneralliquid–solid-solution(LSS)process.Magneticmeasurementindicatesthattheparticlesexhibitaveryhighcoercivityat10Kandperformsuper-paramagnetismatroomtemperaturewhichisfurtherillu-minatedbyZFC/FCcurves.Thesesuperparamagneticcobaltferritenanomaterialsareconsideredtohavepoten-tialapplicationinthefieldsofbiomedicine.Thesynthesismethodispossibletobeageneralapproachfortheprep-arationofotherpurebinaryandternarycompounds.KeywordsMonodisperseÁCobaltferriteÁSuperparamagneticÁNanoparticlesÁMagneticÁBiomedcine

Introduction

CoFe2O4,asatypeofmagneticmaterials,haslongbeenofintensiveimportanceinthefundamentalsciencesandtechnologicalapplicationsinvariousfieldsofelectronics[1],photomagnetism[2],catalysis[3],ferrofluids[4],hyperthermia[5],cancertherapy[6],andmolecularimagingagentsinmagneticresonanceimaging(MRI)[7].TheapplicationsofCoFe2O4arestronglyinfluencedbyitsmagneticproperties.Forbiomedicalapplications,CoFe2O4nanoparticlesarerequiredtohaveanarrowsizedistribu-tion,highmagnetizationvalues,auniformsphericalshape,andsuperparamagneticbehavioratroomtemperature.Sofar,varioussyntheticrouteshavebeenexploredforthepreparationofCoFe2O4nanoparticles,suchashydrother-mal[8],coprecipitation[9,10],microemulsion[11],forcedhydrolysis[12],reduction–oxidationroute[13].However,themaindifficultyofthesetraditionalmethodsisthattheas-preparednanoparticlesareseverelyagglomeratedwithpoorcontrolofsizeandshapeinmostcases,whichgreatlyrestricttheirapplications[14].Inordertosolvetheaboveproblems,thermaldecompositionoforganometallicpre-cursorsinhigh-boilingorganicsolutionhasbeenexplored[15,16]forthepreparationofsize-andshape-controlledmonodisperseCoFe2O4nanoparticles[14,17–19].How-ever,themajordisadvantagesofthismethodaretheneedoftoxicandexpensivereagents,highreactiontemperature,andcomplexoperations.Toaddresstheseconcerns,Lietal.adoptedageneralliquid–solid-solution(LSS)phasetransferandseparationmethod[20].Thisstrategyisbasedonageneralphasetransfermechanismoccurringattheinterfacesoftheliquid,solid,andsolutionphasespresentduringthesynthesis.Throughthisgeneralmethod,Lietal.successfullysynthesizedFe3O4dopedwithCo,whichhasacoercivityabout250Oeatroomtemperature[21].

X.-H.LiÁC.-L.XuÁX.-H.HanÁL.QiaoÁT.Wang(&)ÁF.-S.Li(&)

InstituteofAppliedMagnetics,KeyLaboratoryofMagnetismandMagneticMaterialsofMinistryofEducation,LanzhouUniversity,730000Lanzhou,People’sRepublicofChinae-mail:wtao@lzu.edu.cnF.-S.Li

e-mail:lifs@lzu.edu.cn

C.-L.Xu

KeyLaboratoryofNonferrousMetalChemistryandResourcesUtilizationofGansuProvince,LanzhouUniversity,730000Lanzhou,People’sRepublicofChina

123

1040However,thesynthesisofCoFe2O4nanoparticleswithasuperparamagneticbehavioratroomtemperaturehasnotbeenreported.Inthisletter,wereportasignificantimprovementofthemethodofLietal.[20]tosynthesizenearlymonodispersedCoFe2O4nanoparticlesandsystem-aticallyinvestigatethemagneticpropertiesoftheas-pre-parednanomaterials.Atroomtemperature,theseas-preparednanoparticleswerefoundtohavehighsaturationmagnetizationvaluesof50emu/gandsuperparamagneticbehaviorwithnegligiblecoercivity,whichisexpectedtohavepotentialapplicationinbiomedicine.

Experimental

SynthesisofCoFe2O4SphericalNanoparticles

TheprocessforsynthesizingnearlymonodisperseCoFe2O4withsuperparamagneticbehavioratroomtemperaturewascarriedoutasfollows:Inatypicalsynthesis,1.6g(6mmol)ofFeCl3Á6H2Oand0.7gof(3mmol)CoCl2Á6H2Oweredissolvedinthesolventcomposedof80mlofwaterand40mlofethanol.Afterthat,7.3g(24mmol)ofsodiumoleateand7mlofoleicaminewereaddedintotheabovesolutionwithstronglystirringatroomtemperaturefor2h.Then,thereactionprecursorwastransferredintoaTeflon-linedstainlessautoclavewithacapacityof150ml.Inordertocrystallizetheparticles,thereactiontemperatureoftheautoclavewasincreasedandmaintainedat180°Cfor12h.Then,thesystemwascooleddowntoroomtemperaturenaturally.Theproductswereseparatedfromthefinalreactionsolutionbytheadditionofhexane.TheredsupernatantliquorcontainingCoFe2O4nanoparticleswasseparatedbyaseparatingfunnel.Theas-preparedcobaltferritecouldbedepositedbyaddingetha-nolandobtainedbycentrifugatingatahighspeed(10,000rpm)withoutanysize-selectingprocess.Theas-preparedsamplescouldbewellredispersedinahexanesolventandstoredforseveralmonthswithoutdelamination.Characterization

Propertiesoftheas-synthesizedsampleswerecharacteredthroughseveraltechniques.ThephasecontentsandcrystalstructuresofthesampleswereanalyzedbyX-raydiffrac-tion(XRD)withCuKaradiationonaPhilipsX’pertdif-fractometer.ElementalanalysisformetalironwasmeasuredbyanIRISER/Sinductivelycoupledplasmaemissionspectrometer(ICP-ES).High-resolutionTEM(HRTEM)analysiswascarriedoutonaJEM-2010trans-missionelectronmicroscopewithanacceleratingvoltageof200kV.OnedropletofhexanedispersionofCoFe2O4123

NanoscaleResLett(2010)5:1039–1044

nanoparticleswasdroppedonacarbon-coatedcoppergridandthendriednaturallybeforerecordingthemicrographs.FTIRspectraofthesamplescappedwitholeicaminewereperformedona170SXspectrometerintherangeof500–4,000cm-1.MagneticpropertiesoftheproductswerecharacterizedatroomtemperaturewithaLakeShore7,304vibratingsamplemagnetometer(VSM).TemperatureandfielddependencesofthesampleswererecordedonaQuantumDesignMPMS-XLsuperconductingquantuminterferencedevice(SQUID).ZFC/FCmeasurementswerecarriedoutinthetemperaturerangeof10–330Kwithanappliedfieldof100Oe.

ResultsandDiscussion

TheX-raypatternoftheas-synthesizedsamplesisdepictedinFig.1.Thepositionsandrelativeintensitiesofallthepeaksindicatethatthecrystallinestructureoftheproductsfavorstheformationofcubicspinelphaseonly,whichisaccordanttoJCPDScardNO.22-1086.Nootherimpurityphasesareobserved.Additionally,itclearlyshowsthattheas-synthesizedCoFe2O4samplesrevealbroadeningdif-fractionpeak,whichisduetothereducedparticlesize.Theaveragegrainsizeoftheas-synthesizednanoparticlescal-culatedbyScherer’sformula[10]is6nm.Basedofthehighestintensitypeakof(311),thecalculatedlatticeparameteris0.8456nm,whichislargerthanthebulkCoFe2O4valueof0.8391nm.Theenhancementofthecalculatedlatticeparameterprobablyresultsfromdifferentdistributionofmetalcationscomparedwiththebulkspinelcobaltferriteandthesurfacedistortionofparticlesinducedbythesizeeffectofnanoparticles[13].

Thechemicalcompositionoftheas-synthesizedprod-uctsisfurtheranalyzedbytheinductivelycoupledplasma

Fig.1XRDpatternoftheas-synthesizedCoFe2O4nanoparticles

NanoscaleResLett(2010)5:1039–1044atomicemissionspectroscopy(ICP-AES).TheresultrevealsthatthemolarratioofCoandFeis1:2.05,whichisnearlyconsistentwiththeexpectedstoichiometryofCoFe2O4.

Figure2showsTEMimagesoftheCoFe2O4nanopar-ticlesobtainedwithoutanysize-sortingprocess.Itrevealsthattheas-synthesizednanoparticleswerenearlymono-dispersewithsphericalshape.TheparticlesizewithanarrowdistributionisgivenintheinsetofFig.2a.Theaverageparticlessizeis5.5nm,whichisingoodagree-mentwiththeparticlesizesestimatedbyScherer’sfor-mula.Thissuggeststhateachindividualparticleisasinglecrystal[19].Figure2bperformsthehigh-resolution(HR)TEMcharacterizationsoftheparticles,andthehighlycrystallinenatureofthesamplesisrevealedintheinsetofFig.2b.

FTIRspectraofthesamplescappedwitholeicaminewereperformedintherangeof500–4,000cm-1(Fig.3).Thewidepeakaround3,374cm-1isascribedtothecomplexationbetween-NH2and-OHonthesurfaceofCoFe2O4.Thepeakat3,007cm-1isassignedtothe

Fig.2TEMimageoftheas-synthesizedCoFe2O4nanoparticles

1041

Fig.3FTIRspectraoftheas-synthesizedCoFe2O4nanoparticles

stretchingofthevinylgroup.Thepeaksat2,921and2,850cm-1areattributedtotheasymmetricandsymmet-ricstretchingoftheCH2groups,respectively.Thesharppeaksareduetothelonghydrocarbonchainofoleicamine.Thepeaksat1,409and1,307cm-1correspondtoC–HbendingofCH2group.Thepeakat965cm-1isattributedtotheO–Houtplanevibration.Thepeakat593cm-1isowingtothepresenceofferritenanoparticles.TheFTIRspectrumconfirmsthattheas-synthesizednanoparticlesarecoatedbyoleicamine,whichcanproviderepulsive(elec-trostaticrepulsionandstericrepulsion)forcestobalancetheattractiveforces(dipole–dipoleinteraction,exchangeinteraction,andvanderWaalsforce.)betweenthenano-particles.Thus,onaccountoftherepulsion,theas-preparedCoFe2O4samplesareeasilydispersedinthenonpolarsolventsandstabilizedinthesuspensionwithoutagglomeration.

Thefielddependenceofthemagnetizationofas-syn-thesizedparticlesmeasuredat300and10KisshowninFig.4.Magneticmeasurementsindicatethattheas-pre-paredparticlesexhibitsuperparamagneticbehaviorwithnegligiblecoercivity(about11Oe)andremanenceatroomtemperature.

Thesaturationmagnetizationvalueis50emu/gatroomtemperature,whichislessthanthebulkvalueof74emu/g[10].Fornanoscalednanoparticles,thelossofthesatura-tionmagnetizationisduetosurfacespincantingeffect[22]andthepresenceofamagneticdeadorantiferromagneticlayeronthesurface[13,23],whichiscausedbyfinite-sizeeffectofthesmallmagneticnanoparticles.Additionally,themagneticperformanceoftheferrite-structurednanomaterialsisalsoinfluencedbythedistributionofmetalcations,whichisdifferentfromthebulkferrite.Asummaryofthemagneticpropertiesbetweentheas-syn-thesizedproductsandthereportedCoFe2O4isgiveninTable1.Inourbestknowledge,CoFe2O4nanoparticles

123

1042Fig.4Hysteresisloopoftheas-synthesizedCoFe2O4nanoparticlesmeasuredata300K,b10K

preparedinthisworkhaveahighersaturationmagnetiza-tionvaluecomparedwiththereportedsampleswithsu-perparamagneticbehaviorsintheappliedfieldof12,000Oeatroomtemperature.Thesaturationmagneti-zationvalue(73.8emu/g)measuredat10KisclosetothevalueofbulkCoFe2O4(74emu/g).

Theparticlesexhibitsuperparamagneticbehaviorwithnegligiblecoercivity(about11Oe)atroomtemperature,whichismuchlowercomparedwiththevalue(250Oe)reportedbyLietal.[21].Themagneticpropertiesofsamplesaregreatlyrelatedtomanyfactors,suchasshape,size,andstructure,whichareinfluencedbythesyntheticmethodandexperimentalparameters.Thisgreatlyreducedcoercivityisunderstoodasfollows:Theas-synthesizedCoFe2O4nanoparticlesaresphericalinshape,well-iso-lated,andtheparticlesizeoftheproductisfoundintherangeofthecriticalsizeofCoFe2O4forsuperparamagneticlimitreportedinliterature[24],whichisabout4–9nm.Additionally,thedecreaseofcoercivityinoursamplesilluminatesthatthecoercivityhasaparticle-size-dependentcharacter[29].Whereas,thecoercivityofthesamplesas-synthesizedreaches14.55kOe,muchlargerthanthevalueofbulkCoFe2O4(about5kOeat5K).Thecomparisonsof

123

NanoscaleResLett(2010)5:1039–1044

Table1Comparisonofmagneticpropertiesoftheas-synthesizedcobaltferritesandthereportedCoFe2O4measuredatroomtemperatureReferenceParticlesize(nm)Hc(Oe)Ms(emu/g)Thiswork5.51150[9]14.624337[10]20–30519About55[21]15.7250About50[24]83936304.2[12]2–60About40[25]40040[13]9030[26]30Negligible30[27]4–10018[28]

6

0

9

Thesaturationmagnetizationsarecomparedatanappliedmagneticfieldof12,000Oe

Table2Themagneticpropertiesoftheas-synthesizedCoFe2O4measuredatdifferenttemperature

Temperature(K)Ms(emu/g)Hc(Oe)Mr(emu/g)R(=Mr/Ms)30050120.50.0110

73.8

14,550

50.7

0.69

themagneticpropertiesmeasuredat300and10KforoursamplesaresummarizedinTable2.

Figure5showsthezero-field-cooledandfield-cooled(ZFC/FC)curvesoftheas-preparedCoFe2O4samplesmeasuredattemperaturesbetween10and330Kwithanappliedfieldof100Oe.Asthetemperaturerisesfrom10to330K,theZFCmagnetizationincreasesfirstandthendecreasesafterreachingamaximumat240K,whichiscorrespondtotheblockingtemperature(TB).ThisresultfurtherprovesthattheCoFe2O4samplesas-prepareddis-playasuperparamagneticbehavioratroomtemperature.WhereastheFCmagnetizationdecreasedendlesslyasthetemperatureincreased.ItisimaginedthatthedifferencebetweenZFCmagnetizationandFCmagnetizationbelowTBiscausedbyenergybarriersofthemagneticanisotropy[30].ThemagneticanisotropyconstantKofthesamplesas-preparedcanbecalculatedbythefollowedformula[30,31]:

K¼25kBTBVÀ1

ð1Þ

wherekBistheBoltzmanconstant,TBistheblockingtemperatureofthesamples,andVisthevolumeofasingleparticle.ThecalculatedmagneticanisotropyconstantKofoursamplesis3.89106ergs/cm3,whichisslightlylarger

NanoscaleResLett(2010)5:1039–1044Fig.5Zero-field-cooled(ZFC)andfield-cooled(FC)curvesfortheas-synthesizedCoFe2O4nanoparticlesunderanappliedmagneticfieldof100Oe

thanthatoftheKvaluesofbulkCoFe2O4[(1.8–3.0)9106ergs/cm3].

Thedistributionfunctionofthemagneticanisotropyenergybarriersf(T)canbeobtainedthroughthefollowingequation[13,30]:

fðTÞ¼d󰀂MZFC

󰀃dTMð2Þ

FCwhereMFC(FCmagnetization)involvesthetotalmagne-tizationfromthecontributionofallparticles,MZFC(ZFCmagnetization)isdeterminedbythemagnetizationfromonlythecontributionofthenanoparticleswhoseenergybarriersareovercomedbythethermalenergy(kBT)atthemeasuringtemperature,andf(T)reflectsaquantitativecharacterizationforsuperparamagnetismofthemagneticnanoparticles.

Figure6revealsthecalculatedanisotropyenergydis-tributionfortheas-synthesizedCoFe2O4nanoparticles.Generally,thevolumeandshapedistributionofthe

Fig.6Energybarrierdistributionsofmagneticanisotropyfortheas-synthesizedCoFe2O4nanoparticles

1043

samplesdeterminethemagneticanisotropyenergydistri-bution.Therefore,theresultimpliesthatthethermalenergiesofmostparticleshaveexceededtheenergybar-riersbeyondTB(about240K).Sotheas-synthesizedsamplesdisplaysuperparamagneticbehavioratroomtemperature.Inaddition,thenarrowmagneticanisotropyenergydistributionrevealsthattheas-preparedCoFe2O4nanoparticlespossessuniformsizes[13,30].Thesuper-paramagneticbehaviorandnarrowsizedistributionimplythatthesamplepreparedinthisworkisagoodcandidateforthepossiblebiomedicalapplications.

Conclusions

Inconclusion,nearlymonodispersedCoFe2O4nanoparti-cleswerepreparedunderasimplehydrothermalcondition.Theas-synthesizedsamplesareconsideredtohavepoten-tialapplicationsinbiomedicineforitsnarrowparticlesizedistribution,highsaturationmagnetizations,andsuper-paramagnetizationatroomtemperature.Thesimplesyn-thesisrouteusedinthisworkisexpectedtobeageneralapproachforthepreparationofbinaryandternarymetaloxide,especiallyspinelferrite.

AcknowledgmentsThisworkissupportedbyChinaPostdoctoralScienceFoundationFundedProjectandtheNationalNaturalScienceFoundationofChinaunderGrantNos.50602020.

OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionNoncommercialLicensewhichper-mitsanynoncommercialuse,distribution,andreproductioninanymedium,providedtheoriginalauthor(s)andsourcearecredited.

References

1.M.Sugimoto,J.Am.Ceram.Soc.82,269(1999)

2.A.K.Giri,E.M.Kirkpatrick,P.Moongkhamklang,S.A.Majetich,Appl.Phys.Lett.80,2341(2002)

3.T.Mathew,S.Shylesh,B.M.Devassy,M.Vijayaraj,C.V.V.Satyanarayana,B.S.Rao,C.S.Gopinath,Appl.Catal.A-Gen.273,35(2004)

4.G.V.M.Jacintho,A.G.Brolo,P.Corio,P.A.Z.Suarez,J.C.Ru-bim,J.Phys.Chem.C113,7684(2009)

5.P.Pradhan,J.Giri,G.Samanta,H.D.Sarma,K.P.Mishra,J.Bellare,R.Banerjee,D.Bahadur,J.Biomed.Mater.Res.PartBAppl.Biomater.81B,12(2007)

6.M.Sincai,D.Ga

ˆngaˇ,D.Bica,L.Ve´ka´s,J.Magn.Magn.Mater.225,235(2001)

7.J.H.Lee,Y.M.Huh,Y.W.Jun,J.W.Seo,J.T.Jang,H.T.Song,S.Kim,E.J.Cho,H.G.Yoon,J.S.Suh,J.Cheon,Nat.Med.13,95(2007)

8.B.Baruwati,M.N.Nadagouda,R.S.Varma,J.Phys.Chem.C112,18399(2008)

9.S.Y.Zhao,D.K.Lee,C.W.Kim,H.G.Cha,Y.H.Kim,Y.S.Kang,Bull.KoreanChem.Soc.27,237(2006)

10.Z.F.Zi,Y.P.Sun,X.B.Zhu,Z.R.Yang,J.M.Dai,W.H.Song,J.

Magn.Magn.Mater.321,1251(2009)

123

1044

11.Y.Lee,J.Lee,C.J.Bae,J.G.Park,H.J.Noh,J.H.Park,T.Hyeon,

Adv.Funct.Mater.15,503(2005)

12.N.Hanh,O.K.Quy,N.P.Thuy,L.D.Tung,L.Spinu,PhysicaB

327,382(2003)

13.Z.J.Gu,X.Xiang,G.L.Fan,F.Li,J.Phys.Chem.C112,18459

(2008)

14.S.Bhattacharyya,J.P.Salvetat,R.Fleurier,A.Husmann,T.

Cacciaguerra,M.L.Saboungi,Chem.Commun.38,4818(2005)

15.A.H.Lu,E.L.Salabas,F.Schu

¨th,Angew.Chem.Int.Ed.46,1222(2007)

16.J.Park,J.Joo,S.G.Kwon,Y.J.Jang,T.Hyeon,Angew.Chem.

Int.Ed.46,4630(2007)

17.Q.Song,Z.J.Zhang,J.Am.Chem.Soc.126,6164(2004)

18.N.Z.Bao,L.M.Shen,W.An,P.Padhan,C.H.Turner,A.Gupta,

Chem.Mater.21,3458(2009)

19.S.H.Sun,H.Zeng,D.B.Robinson,S.Raoux,P.M.Rice,S.X.

Wang,G.X.Li,J.Am.Chem.Soc.126,273(2004)

20.X.Wang,J.Zhang,Q.Peng,Y.D.Li,Nature437,121(2005)21.X.Liang,X.Wang,J.Zhuang,Y.T.Chen,D.S.Wang,Y.D.Li,

Adv.Funct.Mater.16,1805(2006)

123

NanoscaleResLett(2010)5:1039–1044

22.Q.A.Pankhurst,R.J.Pollard,Phys.Rev.Lett.67,248(1991)23.M.Zheng,X.C.Wu,B.S.Zou,Y.J.Wang,J.Magn.Magn.Mater.

183,152(1998)

24.Y.I.Kim,D.Kim,C.S.Lee,PhysicaB337,42(2003)

25.N.Z.Bao,L.M.Shen,Y.H.A.Wang,J.X.Ma,D.Mazumdar,A.

Gupta,J.Am.Chem.Soc.131,12900(2009)

26.C.Q.Hu,Z.H.Gao,X.R.Yang,J.Magn.Magn.Mater.320,L70

(2008)

27.R.P.Pant,V.Kumar,S.K.Halder,S.K.Gupta,S.Singh,Int.J.

Nanoscience.6,515(2007)

28.M.Rajendran,R.C.Pullar,A.K.Bhattacharya,D.Das,S.N.

Chintalapudi,C.K.Maijumdar,J.Magn.Magn.Mater.232,71(2001)

29.D.L.L.Pelecky,R.D.Rieke,Chem.Mater.8,1770(1996)

30.T.Hyeon,Y.Chung,J.Park,S.S.Lee,Y.W.Kim,B.H.Park,J.

Phys.Chem.B106,6831(2002)

31.J.Park,E.Lee,N.M.Hwang,M.Kang,S.C.Kim,Y.Hwang,

J.G.Park,H.J.Noh,J.Y.Kim,J.H.Park,T.Hyeon,Angew.Chem.Int.Ed.44,2872(2005)

因篇幅问题不能全部显示,请点此查看更多更全内容