地基承载力特征值计算公式探讨
贾文华1
【摘要】 在现有的理论计算公式基础上,结合我国现行的建筑勘察设计体制,推导出适用于岩土工程师的承载力计算公式,在基础宽度和埋置深度未定情况下,直接计算天然地基承载力特征值。
关键词 承载力特征值 载荷试验 计算公式 适用条件 1 概述
在岩土工程勘察中,确定地基土承载力是一个核心问题,也是勘察专业必须向结构设计提供的重要设计参数,其数值的大小,关系到能否利用天然地基、采用的基础形式以及有无必要进行地基加固处理,直接影响建构筑物的安全和工程投资。
确定地基土承载力有多种途径,可大致归纳为三种:载荷试验或其他原位测试、理论公式计算、工程实践经验。其中载荷试验最直接准确,对地基基础设计等级为甲级的建筑是要求必须做的试验项目,而对于其他大量勘察对象,由于试验条件以及工期费用等因素,还不能普遍采用。另一方面,在新颁布的国标《建筑地基基础设计规范》(GB50007-2002)中,取消了与土的物理性质指标相对应的承载力表,这就使得理论计算这一传统方法重新引起人们的重视。但是,在具体工程应用时,岩土工程师注意到,现有的计算公式中存在若干不确定性,一些参数难以准确取值,计算结果可信度不高。本文试图就这个问题进行探讨,寻求适用于岩土工程师的理论计算公式。 2 计算公式推演
在土力学理论发展过程中,不少学者从不同角度提出地基承载力计算公式,具有代表性的主要有Terzaghi、Vesic、Hanson等。现行的国家和行业规范中,有《建筑地基基础设计规范》和《高层建筑岩土勘察规程》推荐的计算公式;前者以控制地基中塑性变形区即P1/4理论为基础,后者则定位于极限平衡理论。这些公式形式有所不同,在承载力系数取值以及计算参数选取上有差异,但都给出了极限平衡或一定的塑性变形状态下地基土的承载能力,具有代表性的是Vesic公式,形式如下:
fu
1NrrbNqqodNCcCk(1) 2式中:fu :地基极限承载力(kPa);
1. 中国兵器工业北方勘察设计研究院
岩土工程与勘察 第15卷 第2期(总第24期) 2003年12月
Nr、 Nq 、Nc :承载力系数;
ζr、ζq、ζc : 基础形状修正系数,与基础长度、宽度以及土的内摩擦角φ有关; b、d :分别为基础宽度、埋置深度(m);
γ、γo :基础底面以上和基底以下直接持力层的平均有效重度(KN/m3); Ck :由持力层组合条件下确定的粘聚力标准值(kPa),一般可取基底下一倍基础宽度范围内的加权平均值。
公式①是目前国内外最常见的地基极限承载力计算公式之一,我国《高层建筑岩土勘察规程》中亦被引用。从其构成来看,等式右边第一项是基础下与基础宽度有关的三角形楔体部分的抗力,另一项为基底以上由土的超载而产生的抗力,与基础的埋置深度有关,其次是滑动面上对数螺旋线段的抗力;这三部分构成了基础在一定宽度和埋深时极限平衡状态下地基土承载力,即通常所说的极限承载力。在该式的计算参数中,与地基土性质直接相关的是土的抗剪强度和重度,其余的均与基础设计有关,其中最主要的是基础的宽度和埋深。但是,在岩土工程勘察阶段,具体的基础设计方案尚不够明确,结构设计需要勘察专业提供承载力特征值计算基础宽度,至于基础埋深,除考虑使用功能和抗震要求外,也需要参考勘察报告提供的地层结构,选择适宜的基础持力层。所以,该公式比较适合于结构设计人员,岩土工程师使用则有诸多不便。
目前,在我国地基基础设计规范中,按照地基基础设计准则,将承载力分为二大类,一是承载力特征值fak,由勘察报告提供;另一个是修正后的地基承载力特征值fa,是结构设计按基础宽度和埋深对特征值进行修正后的承载力;前者由地基土的性质所决定,与基础设计无直接关系;而理论公式计算得出的承载力,由于包括了基础的宽度和埋深,并且在其中已经发挥了作用,所以,其计算结果是修正后的承载力特征值。那么,如何在基础埋深和宽度尚不确定条件下,用理论公式计算天然地基的承载力特征值,笔者认为,应按理论公式的计算条件,从承载力特征值的基本定义进行推导。按照其定义,地基承载力特征值是指由载荷试验地基压力变形关系线性变形段内不超过比例界限点的地基压力值,实际即为地基承载力允许值,也就是说,承载力特征值的确定与载荷试验取值及试验条件之间存在对应关系。从这个角度出发,参照载荷试验条件,将基础宽度对应于标准载荷板(0.5m2)的边长,即0.707m,埋深d在载荷试验中是按半无限空间体,即超载为零考虑的,对应于这一边界条件d=0;消去这二个参数,将①式转换成:
fu0.3535NrrNccCk(2)
当基础宽度b为常数时,基础形状系数也就失去意义;另外,将安全系数K带入②式,
岩土工程与勘察 第15卷 第2期(总第24期) 2003年12月
则计算地基极限承载力fu公式就转换成地基承载力特征值fak计算公式:
fak=1/K[0.3535·Nr·γ+ Nc·Ck ]… ③
公式③即为地基承载力特征值fak计 算公式,其承载力关系曲线见图1。图1 中的六条曲线自下而上分别代表粘聚力 标准值为10、20、30、40、50、60kPa 时的承载力特征值。该公式可应用于岩 土工程勘察阶段理论公式计算。其中的 安全系数K可根据工程重要性和地区经 验确定,取值范围2~3。 3 公式的分析及对比
7006005004003002001000
图1 承载力特征值曲线14710131619222528内摩擦角(度)31承载力特征值(kpa) 载荷试验P-S曲线图在③式构成中,Nr、 Nc二项系数为内摩擦角φk的函数,在φk<34º时Nc>Nr,超过34º则Nr>Nc。对于一般粉土和粘性土层而言,φk>34º极为罕见。所以,正常情况下这两项0系数的对应关系应是Nc>Nr。对典型的粉土和粉质粘土,二者的关系大致为Nc=2~4Nr。由-10-5此可见,在公式③中,第二项的贡献要比第一项大的多。另一方面,粘聚力标准值Ck与Nc-15-20互为倍数,但Ck的绝对值较大,从这个意义上讲,抗剪强度指标φk、Ck两个参数值的大小,-25)对计算结果影响非常大,这就要求剪切试验结果准确可靠;对一般的土层,若出现φk>30º或Ck>60 kPa的异常情况,则计算出的承载力特征值就会出现失真。 以石家庄市某商城地基土为例进行试算,该场地第②层黄土状粉质粘土中进行了一组载荷试验,试验前,在试坑的底部和两侧共采取9件Ⅰ级土样,进行常规试验和三轴剪切试验(不固结不排水剪),主要试验指标平均值如下:天然含水量23.1%,重度18.2KN/m3,孔隙比0.84,液性指数0.53。粘聚力标准值Ck=46 kPa,内摩擦角标准值φk=13º;按公式③计算(K取3),承载力特征值fak =154 kPa。载荷试验取比例界限作为承载力特征值,其平均值=140 kPa。比较二者的结果,公式③计算值与载荷试验结果是比较接近的。
作为对公式③适用性的检验,笔者曾对不同的抗剪强度指标进行试算,得出的初步结论是:该公式对山前冲洪积平原正常固结的非饱和土比较适用,其计算结果与地方经验基本相同或比较接近,但对于φ值小于5º的饱和软粘土和砂土则不太适用;从理论上讲,砂土的粘聚力
c=0(尽管实际情况并非完全如此),对应③式中的第二项为零,而单靠等式右边的
第一项来表达承载力则与公式的物理意义不符,况且在实际勘察中,砂土的内摩擦角一般是由标贯击数推算得出,所以,直接用N值推算承载力比用理论公式计算更为合理。 4 小结
岩土工程与勘察 第15卷 第2期(总第24期) 2003年12月
在岩土工程勘察中,提供准确合理的地基承载力特征值,是岩土工程师的重要工作。用地区经验、原位测试和理论公式计算几种方法综合确定该参数是一种比较适宜的工作途径,但现有的理论计算公式由于都涉及到基础尺寸和埋置深度,在岩土工程勘察阶段不方便使用。本文试图对传统的理论计算公式推演,给出公式③的形式,可直接计算天然地基承载力特征值。由于是初步探讨,加之对比数据有限,不足之处敬请指正。
因篇幅问题不能全部显示,请点此查看更多更全内容