您的当前位置:首页正文

ABSTRACT On the Interdependence of Routing and Data Compression in Multi-Hop Sensor Network

2021-04-12 来源:易榕旅网
OntheInterdependenceofRoutingandDataCompressioninMulti-HopSensorNetworks

SchoolofElectricalAnnaandScaglione

ComputerEngineering

CornellUniversity

http://people.ece.cornell.edu/scaglione/ABSTRACT

Weconsideraproblemofbroadcastcommunicationinamulti-hopsensornetwork,inwhichsamplesofarandomfieldarecollectedateachnodeofthenetwork,andthegoalisforallnodestoobtainanestimateoftheentirefieldwithinaprescribeddistortionvalue.Themainideaweexploreinthispaperisthatofjointlycompress-ingthedatageneratedbydifferentnodesasthisinformationtravelsovermultiplehops,toeliminatecorrelationsintherepresentationofthesampledfield.Ourmaincontributionsare:(a)weobtain,us-ingsimplenetworkflowconcepts,conditionsontherate/distortionfunctionoftherandomfield,soastoguaranteethatanynodecanobtainthemeasurementscollectedateveryothernodeinthenet-work,quantizedtowithinanyprescribeddistortionvalue;and(b),weconstructalargeclassofphysically-motivatedstochasticmod-elsforsensordata,forwhichweareabletoprovethatthejointrate/distortionfunctionofallthedatageneratedbythewholenet-workgrowsslowerthantheboundsfoundin(a).Atrulynovelaspectofourworkisthetightcouplingbetweenroutingandsourcecoding,explicitlyformulatedinasimpleandanalyticallytractablemodel—tothebestofourknowledge,thisconnectionhadnotbeenstudiedbefore.

Keywords

Multi-hopnetworks,sensornetworks,sourcecoding,routing,cross-layerinteractions

1.INTRODUCTION1.1

ProblemSetup

Considerthefollowingdatatransmissionproblem.Nnodesviareplacedontheclosedset[0,1]×[0,1],atlocations(xi,yi).EachviobservesasampleSiofsomespatialstochasticprocesswithrate/distortionfunctionRS(D)(seeAppendixB),havingthe∗grantWorkCCR-0227676supportedinpartandbyONRtheContractNationalN00014-00-1-0564.

ScienceFoundationunderPermissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.

MOBICOM’02,September23–26,2002,Atlanta,Georgia,USA.Copyright2002ACM1-58113-486-X/02/0009...$5.00.

SchoolofElectricalSergioandD.ComputerServetto

Engineering

CornellUniversity

http://people.ece.cornell.edu/servetto/

propertythatthecorrelationbetweensamplesincreasesasthedis-tancebetweentheminthegriddecreases.Eachviwantstocom-municateanapproximationofitsSitoeveryothernodeinthenet-work.EachvicanonlysendmessagestoandreceivemessagesfromnodeswithindistanceCN,wherethisconnectivityradiusischosensoastoensurethatthenetworkwillbeconnectedwithhighprobability[8].LinkshaveafixedfinitecapacityL,independentofnetworksize.Giventheseassumptions,weareinterestedinde-terminingunderwhatconditionsitispossibleforeachnodevitoobtainanestimateofthesampleobservedateverynetworkloca-tionvk,k=1,...,N,suchthatvihasanestimatefieldofsampleswhosetotaldistortionE(d(S,S

ˆoftheentire

))ˆisidentical,eachsamplewillhaveaveragedistortion

i))Toprovidethesoughtconditions,thefirstthingweneedtodois

findouthowmuchtrafficdoesthisnetworkgenerate.Veryclearlythisquestiondependsonthestatisticsofthesenseddata.Foril-lustrationpurposesandwithoutlossofgenerality,considerasim-pleexample:supposethatSiisuniformintherange[0,1],thateachnodeusesascalarquantizerwithBbitsofresolution(i.e.,thequantizationstepis2−B),andthatdistortionismeasuredinthemean-squaresense.Awellknownresultfrombasicquantizationtheorystatesthattheaveragedistortionachievedbysuchaquan-tizeronthisparticularsourceis1−2B

122[6].Addingdistortions

overallnodesinthenetworkwethenhavethat󰀄Ni=1d(Sij,Sˆi)=

1N2−2B,andhence,solvingforBinD=1−2Bovertheentire12N2,wegetthat12tomaintainatotaldistortionnetworkofDeach

samplerequiresB=󰀎1log2(N

12)󰀏bits.Asaresult,theto-talamountoftrafficgenerated2byDthewholenetworkscaleslikeO(NlogN)innetworksize.Furthermore,itisimportanttoem-phasizethatalthoughwithmoresophisticatedquantizationstrate-giesthanthesimpleuniformquantizerconsideredinthismotiva-tionalexampleonecouldcertainlyreducethenumberofbitsgener-atedforafixeddistortionlevelD,thisreductionwouldonlyaffectconstantshiddenbythebig-ohnotation,buttheO(NlogN)scal-ingbehaviorofnetworktrafficwouldremainunchanged[3](exam-plesofanalysesofthistypecanbefoundin[12,Sec.3]and[14,Sec.7]).

Oncewehavedeterminedhowmuchdataourparticularcodingstrategy(independentquantizersateachnode)produces,weneedtoknowifthenetworkhasenoughcapacitytotransportallthatdata.Andtheanswerisno[9].Toseehowthisisso,considerapartitionofthenetworkasshowninFig.1.

Figure1:Nnodesarespreaduniformlyovertheunitsquare[0,1]×[0,1](Nlarge).Takeadifferentialvolumeofsize∆×∆(∆small).Withhighprobability,thenumberofnodesinadifferentialvolumeis≈N∆2,andsothenumberofnodesinastripasshowninthefigureis≈N∆.SincethetotalnumberofnodesisN,wemusthaveN=N∆×N∆(becausethetotalareaoftheunitsquareistheproductoftheareasoftwostripsasshowninthefigure,onehorizontalandonevertical),andhencewe∆=O(√musthavethatthenumberofnodesinastripasshownisNN).

Inthesensorbroadcastproblemofinterestinthiswork,allthenodesinthenetworkmustreceiveinformationaboutthemeasure-mentscollectedbyallothernodes.Asaresult,allthetrafficgener-atedontheleftportionofthenetworkmustbecarriedtotheright,andallthetrafficgeneratedontherightportionofthenetworkmustbecarriedtotheleft.Thatis,accordingtoourcalculationabove,thenodeswithinthestripmarkedinFig.1mustsharetheloadofmovingO(NlogN)bitsacrossthisnetworkcut.Butsincelinkshave√finitecapacityL,thecapacityofthiscutcannotbelargerthanO(LN).Butfromthemax-flow/min-cuttheorem[4,Ch.27],weknowthatthevalueofanyflowinthisnetworkisupperboundedbythecapacityofanynetworkcut,andtherefore,theofthisnetworkcannotbehigherthanO(L√totaltransportcapacityN).Andnowweseewhattheproblemis:O(NlogN)bitsmustacrossacutofcapacityO(L√

goN).Thatis,evenoptimalvectorquantizationstrategiescannotcompressthedataenoughsothatthenetworkcancarryit—thenetworkdoesnotscaleup.1

CorrelatedSamples

Thescalinganalysisforindependentencoderspresentedaboveignoresonefundamentalaspect:increasingcorrelationsinsensordataasthedensityofnodesincreases.Andindeed,ifthedataissohighlycorrelatedthatallsensorsobserveessentiallythesamevalue,atleastintuitivelyitseemsclearthatalmostnoexchangeofinformationatallisneededforeachnodetoknowallothervalues:knowledgeofthelocalsampleandoftheglobalstatisticsalreadyprovideafairamountofinformationaboutremotesamples.Andthisnaturallyraisesthequestion:arethereothercodingstrategiesthatcancompresssensordataenough?

1.2

RoutingandDataCompression

Weconsidertwoapproachestotheproblemofdatacompressionformulti-hopsensornetworks.Oneoftheseistheideaofusing1

reticTechniquesbasedonCh.capacityproblemsflowsinnetworksandcutshavetoanalyzebeenproposedinformationin[1],theo-interpretation14.10],Inforthisthecontext,Gupta/Kumarthosetechniques[5,results[9].

provideanalternativedistributedsourcecodingtechniques,thathasattractedsomeatten-tionrecently[11,12,15],asmulti-hopsensornetworksappeartobethe“killerapplication”forsomeofthesewell-establishedtheo-reticalresults.Thesecondoneisacombinationofclassicalsourcecodingmethodsandroutingalgorithmswhich,tothebestofourknowledge,hasnotbeenexploredbefore.

DistributedSourceCoding

Undersomemildtechnicalassumptions,recentworkhasestab-lishedthepossibilityofusingdistributedsourcecodingtechniquestoovercometheproblemofvanishingthroughputsof[9],thatren-dersestimationimpossibleinthecaseofindependentsources[12].Thisresultisveryinterestingfromatheoreticalpointofview,sinceitprovesthatitispossibleforeachnodevitogetridofallcorrela-tioninthedatawithoutrequiringnodestoexchangeasinglebitofinformation.

Whereascertainlyinterestingintheirownright,fromthepointofviewofanengineerengagedinthedesignofapracticalsensornetwork,theresultsof[12]arenotveryrelevant.Thisisbecausetheproofdevelopedin[12]toshowthatarbitrarilyaccurateesti-mationoftheremotevaluesispossible—evenwithoutanyformofcooperationamongsensingnodes—involvestheuseofcodesfortheproblemofrate/distortionwithsideinformation[5,Ch.14.9].Efficientcodesforthisproblemarecharacterizedbythefactthattheprobabilityofallcodewordsisnearlyuniform,irrespectiveofthestatisticsofthesourceandofthelengthoftheblocksused.Asaresult,forpractical,shortcodes(e.g.,scalarquantizers),gainsduetoentropycodingarenegligible.Fromatheoreticalpointofviewthisisnotaproblem:byconsideringergodicsourcesandlargeblocksofdata,theAsymptoticEquipartitionPropertyguaranteesthattheseblockswillbeuniformlydistributedanyway,andhencenoentropycodingisneeded[5,Ch.3].Butfromapracticalpointofview,high-dimensionalvectorquantizersarenotalwaysfeasi-ble,andsoinpractical,short-blocksettings,itisunclearhowmuchofthegainsobtainedbythesecodesbymeansofexploitingcorre-lationsamongsamplesarelostduetotheinabilityofthesecodestotakefulladvantageofentropycodinggains.

RoutingandSourceCoding

Whereasrequiringthatnodescompressalltheirdatawithoutex-changinganyinformationatallwouldcertainlybeavalidwaytogoaboutsolvingthisproblem,wesubmitthatthisapproachmaybeneedlesslyrestrictive.Afterall,inmulti-hopnetworks,ames-sagedoesvisitmultiplenodesbeforeitreachesitsdestination,andthereforeonemaywonderwhynotuseclassicalsourcecodes,andthenre-encodethedataasithopsaroundthenetworktoremovecorrelationsamongsamples.Twoexamples(amongmanymorepossibilities)ofsuchaschemeareshowninFig.2.

WeseefromtheexamplesinFig.2that,attheexpenseofin-creasedtransmissiondelays,wecancommunicateallsamplestoallnodesgeneratinganamountoftrafficwhichisessentiallythesameasifonenodehadcollectedallthesamplesandencodedthemjointly,andthenthisinformationhadbeenbroadcasttoallothernodes.Alternatively,bysacrificingsomecompressionefficiency,itisalsopossibletoincurinlowertransmissiondelays.Thatis,thereisaninherenttradeoffbetweenbandwidthuseanddecodingdelay,andthesetwoquantitiesarelinkedtogetherbytheroutingstrategyemployed.

Contrarytothecomplicatedvectorquantizersrequiredbydis-tributedsourcecoding,whenroutingandsourcecodingarecom-binedtheprocessingateachnodecanbedoneusinganyofthestan-dardcompressiontechniquewhichareusednormallytocompresssequencesfromanalogsources(DPCM,Σ−∆,subband-coding

(a) 1(a) 11(e) 3|1,221(b) 2|1(b) 2|12(h) 4|1,2,3(g) 4|1,2,3(d) 3,4|1,2(d) 3,4|1,2(d) 3|1,2(c) 1,2(f) 1,2,3(c) 1,2(c) 1,23(g) 4|1,2,343(a) 3(b) 4|34Figure2:Consideranetworkwith4nodes,eachofwhichobservesa

variableXi(i=1...4),withjointentropyH(X1,X2,X3,X4).Twopossiblewaysofschedulingtransmissionsareshown.Thenotationusedinthefigureisthat(a)isthefirsttransmission,(b)thesecond,(c)thethird,andsoon;iftwotransmissionshavethesameletterlabel,theycanbeperformedinparallel;i|jmeansthatthesampleofnodeiisencodedwhenknowledgeofthesampleofnodejisavailable.Us-ingchainrulesforentropies,weseethatinthetransmissionscheduleoftheleftfigurewegenerateatotaltrafficof3H(X1,X2,X3,X4),andittakes8timeslotstocomplete.Inthescheduleoftherightfig-ure,wegeneratemoretraffic(2H(X1,X2,X3,X4)+H(X1,X2)+H(X3,X4)bits),butnowweonlyrequire4timeslotstocompletealltransmissions.

suchasJPEG,etc.).Aninterestingalternativeisusingascalarquantizerlocallyandthenforwardthedatainfilescompressedus-inguniversalsourcecodingalgorithms,suchasLempel-Ziv.Thelatteroptionwouldbeeffectiveinmoregeneralcontextsthantheoneofsensorsnetworks:indeed,webelievethattheideaofcom-biningroutingwithdatacompressioniskeytothemostgeneralmulti-hopnetworksnotonlycomposedofsensors.Infact,often-timesdistributedcommunicationandroutingprotocolsthemselvesgeneratecorrelatedandredundantdatathatarebroadcastedthroughthenetworkandthatcaneasilycausecongestion.Clearlythecom-pressionratiowillbehigherasmoreandmoreredundantdataarepooledtogetherateachnode,butthismechanismwouldpreciselybetheonethatpreventscongestion.

Ourgoalinthisfirstpaperonthesubjectistoprovideasolidthe-oreticalframeworkbasedonratedistortiontheory(seeAppendixB)whichsupportstheseintuitions.

1.3

MainthePaper

ContributionsandOrganizationofIntheframeworkdefinedabove,weseethattherearetwofun-damentalquestionsthatneedanswers:

1.Underwhatconditionsonthestatisticsofthesourcecananetworkofthetypeconsideredinthisworktransportallthedatageneratedbythesources?2.Whatarethetradeoffsbetweenbandwidthrequirementsandtransmissiondelays?Thispaperfocusesonthefirstquestion,andourmainresultsare:(a)ProofoftheexistenceofroutingalgorithmsandsourcecodesthatrequirenomorethanO(R(D))bitsinO(√

S1...SNN)transmissions,whereRS1...SN(D)isthejointrate/distortionfunctionofallsamplesinthefield.Thiswouldprovethat,evenunderdecentralizationconstraints,classicalsourcecodescanstillachieveoptimalcompressionefficiency.Andfur-thermore,attainingthatoptimalperformancerequiresanum-beroftransmissionsthatissub-linearinthenumberofnodesinthenetwork.

(b)ProofthatRS1...SN(D)≤O(log(N/D)),undersomeex-tremelymildregularityconditionsontherandomfield.Thatis,iftheaveragedistortionpersampleD/Niskeptcon-stant,thefieldgeneratesaboundedamountofinformation,independentlyofitssize.Andifthetotaldistortioniskeptconstant,thegrowthofRisonlylogarithmicinN,wellbe-lowthetotal√transportcapacityofthenetwork,whichgrowslikeO(LN)(asarguedinSection1.1and[9]).Thesecondquestionhoweverisoutsidethescopeintendedforthispaper,andwillbedealtwithelsewhere.

Sincethesensorsarecontinuousandnotdiscretesourcesthethe-oreticaltooltoanalyzetheproblemisRateDistortionTheory[5,Ch.13],whichallowsustodeterminetheminimumnumberofbitsrequiredtorepresentthesourcesamplestoachievethedesiredlevelofaveragedistortion.ThenumberofbitsisobtainedasafunctionofthejointstatisticsoftheprocessSonly,withoutmakingrefer-encetoaspecificquantizationalgorithmandusingthenotionofjointdifferentialentropyratherthanjointentropy.Tokeepthispaperself-containedthereadernotfamiliarwithRateDistortionTheorycanfindasuccinctdescriptionofitinAppendixB.

Therestofthispaperisorganizedasfollows.InSection2wecomputeboundsonthetransportcapacityofournetwork,andweusetheseboundstoimposeconstraintsontheratesatwhichtherandomfieldsensedcangenerateinformation.Then,inSection3,weproposeamodelforthegenerationofsensordata,basedonwhichweprovethatindeed,theamountofdatageneratedbythenetworkiswellbelownetworkcapacity.ConcludingremarksarepresentedinSection4.

2.TRANSPORTCAPACITY

Usingsimplenetworkflowconcepts,inSection1.1wearguedthatanupperboundonthetransportcapacityofanetworkofsizeNisO(L√

N).Ourgoalinthissectionistoconstructoneparticularflow:fromtheamountofdatathatthisflowneedstopushacrossthenetwork,andfromtheupperboundonthecapacityofthenetwork,wederiveaconstraintontheamountofdatathatthesourcecangenerateifitistobebroadcastoverthewholenetwork.

2.1ANetworkFlowonaRegularGrid

Weconsiderfirstthecaseofaregulargrid,asitnaturallypre-cedestheconstructionforageneralrandomgrid.

SupposethatwewanttoachieveanaveragedistortionDinthereproductionsofSu.Letq(Si)denoteaquantizedversionofSi,wherethequantizerqissuchthatE(d(Si,q(Si))≤D.Theen-tropyinducedonthecodewordsofqbyquantizationofthesourceSisdenotedbyHq(S).

Weconstructaflowrecursively.Forsimplicity,assumeN22k

=,forsomeintegerk≥0.Whenk=0,wehavethetrivialcaseofanetworkofsizeN=1,inwhichallnodes(i.e.,v1)knowthevalueofallsamples(i.e.,S1)withoutanytransferofinformation.Considernowapartitionofnodesviinto4groups:PULcon-tainingallthenodesintheupper-leftcornerofsize1×1,Pnodesintheupper-rightcorner,P2P2UR

LLlower-left,andLRlower-right.SPdenotesthesetofvariablesobservedbynodesinasetP.ThispartitionisillustratedinFig.3.

WehavethatPUL,PUR,PLL,PLRareallsubnetsofsizeN=22(k−1),andsofromourrecursionwegetthatallnodeswithineachsubnetknowthevaluesofallvariableswithintheirsubnettowithindistortionD.Butnow,wehavereducedourproblemtotheproblemwithfournodesconsideredinFig.2,andweknowthatexchangingatotalof3Hq(SPUL,SPUR,SPLL,SPLR)bits,inatotalof8transmissionsacrosscuts(plusO(√

N)transmissionsto

ULUR

LL

LR

Figure3:Partitionofanetworkofsize4×4intofoursubnets.spreaddatawithincuts),isenoughtoensurethateverynodeinthenetworkofsizeN=22kknowseveryvaluetowithindistortionD.ThisconstructionisillustratedinFig.4.

Figure4:Sinceeachnodeontheboundaryofacuthasknowledgeof

allsampleswithinitssubnet,󰀀each󰀀

oneofthemcanencodeallthesesam-plesjointlyandsend2√1N-thofthisdataacrossthecut.Then,inO(√

N)moretransmissions,allthesepiecescanbespreadthroughoutthesubnettoreachallnodes.

Forreference,comparetheperformanceofthisflowagainstan

idealone,inwhicheachviholds1

N-thofajointencodingofS1...SNcomputedbysome“genie”:thetaskinthiscaseistobroadcastthepieceheldbyeachnodetoallothernodes,sothatallnodescanobtainthevaluesofallmeasurements.Thatidealizedsystemstillmustgenerateatotalof3RS1...SN(D)bitsandstillrequiresO(√

oftraffic,N)transmissionstocompletethebroadcast(bothfollowfromstraightforwardcalculations).Therefore,weseethattheonlypenaltythattheflowconstructedabovetakeswithre-specttothegenie-aidedflowistheneedtore-encodemessagesatintermediatenodes.

2.2TheCaseofaRandomGrid

Theonlydifferencebetweenthecaseofarandomgridandthecaseofaregulargridasconsideredaboveisthefactthat,intherandomcasethereisanon-zeroprobabilitythat,intherecursivedefinitionoftheflowabove,wemayencounteranemptysubnet.Butinthatcase,onlytrivialmodificationscantakecareofthisproblem.Forexample,intheleftscheduleofFig.2,ifnode3wasnotthere,anappropriatescheduleoftransmissionswouldbe:(a)X1sentfrom1to2,(b)X2|X1sentfrom2to1,(c)X1,X2sentfrom2to3,(d)X3|X1,X2sentfrom3to2,(e)X3|X1,X2sentfrom2to1.Inthiscase,againusingthechainrulesforentropieswegetthatthetotalnumberofbitssentis2H(X1,X2,X3).So

withsimplemodificationslikethisone,thecaseofarandomgridiseasilyreducedtothecaseofaregulargriddescribedabove.

2.3

GeneralConstraints

Weknowthefollowingfacts:

•Since{SPUL,SPUR,SPLL,SPLR}={S1...SN},

O(Hq(S1...SN))bitsmustgoacrossthe4-waycutdefinedbySUL,SUR,SLL,SLR.

•Thecapacityofthe4-waycutisO(L√

N).

•Fromrate/distortiontheory[5,Ch.13],weknowthatHq(S1

...SN)≥RS1...SN(D),sinceqisaquantizerwithmeandistortionD.Therefore,aslongas

󰀀(R√󰀀

OS1...SN(D))≤OLN,

(1)

thereexistcodesandroutessuchthateverynodecanhaveenoughinformationtoformanestimateofthesampleavailableateveryothernodewithinaprespecifieddistortionvalueD.

3.AMODELFORSENSORDATA

InSection2wesawthat,byappropriateroutingandre-encodingalongroutes,wecancompressallthedatageneratedbytheen-tirenetworkdowntoO(RS1...SN(D)).Ourgoalinthissectionistoverifythat,forreasonablemodelsofsensordata,wehavethateqn.(1)issatisfied,sothatthebroadcastproblemcanbeeffectivelysolved.

Tobeabletotalkabout“therate/distortionfunctionofthedatageneratedbytheentirenetwork”weneedamodelforthisdata.Themainideathatwewouldliketocaptureinourmodelsforsen-sordataisthat,ifthisdatacorrespondstomeasurementsofaran-domprocesswithsomekindofregularityconditions(aswouldbethecaseforalmostanyphysicalprocessonecouldconceive),thenthesemeasurementshavetobecomeincreasinglycorrelatedasthedensityofnodesbecomeslarge.Weproposetothisendafairlygeneralclassofsuchmodels,undertwoassumptions:(a)thedataareGaussianrandomvariables(b)thecorrelationamongsamplesisanarbitraryspatiallyhomogeneousfunction;and(c),asweletthenumberofnodesinthenetworkgrow,thecorrelationmatrixconvergestoasmoothtwo-dimensionalfunction.

Assumption(a)isaworsecasescenarioasfarascompressionisconcerned,asaconsequenceofTheorem4inAppendixB.Spatialstationarity,eventhoughnottotallygeneralisatechnicalassump-tioncommontomanystatisticalanalysisandcaptureswelllocalpropertiesofrandomprocesses.

3.1SourceModel

Thissectionestablishesthebasicmodeluponwhichwewillbaseourasymptoticanalysis.LetS(t)denotetherandomvector{S(t)}i=Si(t)ofthesamplescollectedbythesensorsattimet.Ourfirstassumptionis:

(a)S(t)isaspatiallycorrelatedrandomGaussianvector∼N(0,R).Thesamplesaretemporallyuncorrelated.

Thetemporalindependencecanbeobtainedifweassumethatthepowerspectrumofthedatacollectedintimeisband-limitedandthedataaresampledattheNyquistrate.Inanycase,itisnotarestrictiveassumptionandfurthergainsintermsofcompressioncouldbeobtainedexploitingthetemporaldependenceofthesam-ples.Becauseofthetemporalindependence,wewillfocusonone

vectorofsamplesonlyS,andfromnowonwewilldropthetimeindex.

Consideringi.e.d(S,S

ˆasdistortionmeasurethemeansquareerror(MSE),

)=󰀓S−Sˆ󰀓2,andputtingtheconstraintE(󰀓S−S

ˆ󰀓2)rate/distortionfunctionis

R(D)=󰀂N1󰀀λ󰀀n

n=12logD(2)

nwhere

󰀅

DKifK<λn,n=

λ(3)

notherwise.

andKissuchthat

󰀂NDn=D.(4)

n=1

For󰀄

N¯≤NsuchthatK<≥λn=1λn≥D,thereexistsannλn¯andKn¯+1,therefore:

K=D−󰀄Nn=¯n+1λn

n¯(5)

and

󰀀R(D)=󰀂n¯1λ󰀀n

2logK.

(6)

n=1

Assumingagivencorrelationstructureamongsamples,compu-tationoftherate/distortionfunctionjustrequirescalculatingnu-mericallytheeigenvaluesofR.Thecovariancematrixisformed

withthesamplesofthecontinuousmultivariatefunctionthatrepre-sentsthecorrelationbetweenthesamplestakentwoarbitrarypointsinthenetwork:

{R}i,k󰀁E{SiSk}=R(xi,xk,yi,yk).

(7)

Theeigenvaluesu,withentries{u}i=u(xi,yi)satisfythefol-lowingequation:

λ(N)u(N)(x󰀂Ni,yi)=

R(xi,xk,yi,yk)u(N)(xk,yk)

(8)

k=1

Thechallengesare:1)provingthattheeigenvalueofthecorrela-tionmatrixformedwiththissamplestendtotheeigenvaluesofthecontinuousintegralequation:

󰀃󰀃

λ(∞)u(∞)(x,y)=R(x,ξ,y,ν)u(∞)(ξ,ν)dξdν;(9)2)providingareasonablemodelforthecontinuousintegralequa-tionthatallowstoobtaintheasymptoticratedistortionbound.Tothisend,wepostulatethat

(b)thecorrelationbetweenpointsin(7)isspatiallyhomogeneous:

R(x,ξ,y,ν)=R(x−ξ,y−ν),

(10)

TheconsequentstructureofRonaregulargridisalsoknownasdoublyToeplitz,i.e.RisablockToeplitzmatrixwithblocksthatareToeplitzthemselves.

Assumption(b)impliesthat

λ

(N)u(N)

(x󰀂

Ni,yi)=

R(xi−xk,yi−yk)u(N)(xk,yk)(11)

󰀃k󰀃

=1

λ(∞)u(∞)(x,y)=R(x−ξ,y−ν)u(∞)(ξ,ν)dξdν.(12)TheadvantageofthismodelisthattheempiricaldistributionoftheeigenvaluesofRconvergesundermildassumptionstothe2-DFourierSpectrumof(10),asweseenext.

3.2

Asymptoticues

DistributionoftheEigenval-Toaddressthefirstissuewehavefirsttorewrite(8)asaquadra-tureformulawhichapproximatetheintegralequation(9).Forageneralintegral,therewillbequadraturecoefficientsαisuchthattheapproximationof(9)holds:

󰀂NR(xi,xk,yi,yk)u(N)(xk,yk)αk

(13)

k=1

󰀃󰀃

R(x,ξ,y,ν)u(∞)(ξ,ν)dξdν.

Inourcase,sincewewanttoexploretheconvergenceoftheeigen-valuesof(8)ratherthanhavinganaccuratenumericalintegration,

wecansetαi=1/N.Infact,normalizingbyNbothsidesof(8)onecannotethatwhen(13)isvalidalsothefollowingapproxima-tionholds

λ(N)/N≈λ(∞).

(14)

Theassumptionsfortheapproximation(13)thatsetupthelimitsoftheapproximationin(14)arespecifiedinthefollowingtheoremderivedfrom[10,Sec.5.4]:

LEMMA1.Denotingbyλ(∞)anarbitraryeigenvalueof(9)andbyu(∞)(ξ,ν)thecorrespondingnormalizedeigenvector,forNsufficientlylargethereexistaneigenvalueofRsuchthat:

󰀄N|λ(N)−Nλ(∞)|21

≤Ni=1EN{R(xi,yi,ξ,ν)u(ξ,ν)}1+E{u2(ξ,ν)},(15)

NwhereEN{f(x,y)}denotesthequadratureerror,i.e.:

󰀃󰀃Nf(x,y)dxdy=󰀂

f(xi,yi)αi+EN{f(x,y)}.

i=1

Assumingthat:

(c.I)Foranycontinuousf(x,y)thegrid(xi,yi)issuchthatwith

αi=1/NthequadratureerrorEN{f(x,y)}→0;then(15)impliesthat:

Nlim→∞

λ(N)/N=λ(∞).

Besideprovidingthenecessaryassumptiononthegridfortheasymptoticanalysistohold,usingthetriangularinequalitythepre-viousLemmaallowsustoeasilyprovethefollowing:

COROLLARY1.TheeigenvaluesofRandR󰀄correspondingtotwodifferentgridsaresuchthat

󰀄|λ(N)−λ󰀁(N)1

N|2≤Ni=1

EN{R(xi,yi,ξ,ν)u(ξ,ν)}

1

󰀄1+EN{u2(ξ,ν)}N+NEN{R(x󰀄i,y󰀄i=1i,ξ,ν)u(ξ,ν)}1+E,(16)

N{u2(ξ,ν)}

Corollary1impliesthatwecanrelyonanygridthathasthesameasymptoticbehavior,suchasforexamplearegularlattice,andex-trapolatetheasymptoticbehavioroftheeigenvaluesfromthelatter.Undertheassumptionofecandefine:

ψ(ξi,k,νi,k)󰀁R(xi−xk,yi−yk)={R}i,k,

(17)

Adoptingaregulargridcoveringthesquare√ofarea1,thespacingbetweenthemisxi−xk=ξi,k=(i−k)/Nandlike-wiseνi,k.Szeg¨o’stheorem[7]establishesthatasymptoticallytheeigenval-uesofaToeplitzmatrixconvergetothespectrumofthecorrelationfunction.Essentially,Szeg¨o’stheoremestablishesthattheeigen-functionsofanhomogeneouskerneltendtobetheFourierbasisofcomplexexponentials.Theresultcanbegeneralizedtothetwodimensionalcasewhen󰀃󰀃thematrixisdoublyToeplitz,i.e.:

limλ(R)=ψ(ξ/√N,ν/√N)e−j2π(fξ+f󰀁

nν)N→∞

dξdν(18)=NΨ(√Nf,√

Nf).(19)Beforeproceeding,asecondmodelingassumptionthereforeis:(c.II)Ψ(f,f󰀄)idbandlimitedwithrespecttof,f󰀄bandwidth≤

W,i.e.Ψ(f,f󰀄)=0for|f,f󰀄|>W.

Withthisassumption,wecapturethenotionthatthelimitcovari-ancefunctionvariessmoothlyinspace.

3.3AsymptotictheNetwork

RateDistortionFunctionof

Theasymptoticrate/distortionfunctionisobtainedreplacingthesummationsin(5)and(6)withintegralsover(fx,fy).Specifically,becausetheeigenvaluesbecometion,therewillbepoints(fx󰀄,fy󰀄asymptoticallyacontinuous)whereK=NΨ(√Nfx󰀄,√func-󰀄denotethesetsofpointsf√

Nfy).

√Letusxandfywhere0≤NΨ(Nfx,Nfy)≤KasI,i.e.:

I󰀁{(fNΨ(√Nf√

x,fy):0≤x,Nfy)≤K}(20)andsimilarlyforI.LetusalsointroducethesetI

¯I

¯󰀁{(f√

√x,fy):NΨ(Nfx,Nfy)>K}(21)D

K≈

N−

󰀁󰀁

INΨ(√√󰀁󰀁Nfx,Nfy)dfxdfy(22)

¯I

dfxdf.

yTherate/distortionfunctionis:R(D)=N󰀃󰀃

󰀀NΨ(√Nf√)

󰀀x,Nfy2¯log

Kdfxdfy.(23)

I

Becauseof(c.II)theareasofbothIandI

¯aresmallerthan4W2/N.Thus,wehavethefollowinglowerboundonK(alsoillustratedinFig.5):

D2

K≥

N−K4W

N4W2⇒K≥

D

N8W2

,(24)

Togetherwith(c.II),thisjustifiesthefollowingupper-boundontherate/distortionfunction:

R(D)≤

N

󰀃󰀃

󰀀2logNΨ(√Nf√󰀀x,Nfy)dfxdfy.I

¯D/8W2≤

2W2log(ND−1sup(Ψ(fx,fy))8W2).

(25)

So,weseethatthetotalrate/distortionfunctionovertheentire

networkisO(log(N/D)).Thisisverysignificant.D/Nisthe

Ψ( N f)KII2WFigure5:OnedimensionalillustrationofhowthelowerboundonK

fromeqn.(24)isobtainedbyboundingtheintegralsthatdefineKineqn.(22).

averagedistortionpersample.Ifkeptfixed,thenthetotalamountoftrafficgeneratedbythenetworkisupperboundedbyaconstant,irrespectiveofnetworksize.Alternatively,ifwekeepthetotaldis-tortionDfixed,byconsideringincreasinglylargeNwelettheaveragedistortionD/N→0.Andtheamountoftrafficgener-atedbydoingthisgrows(L√onlylogarithmicallyinN,wellbelowthecapacityboundON)provedineqn.(1).

3.4

CompressiontheNodes

Efficiencyvs.ComplexityatMotivatedbyhowmuchbelowcapacityisR(D)in(25),wearepromptedtoconsideraspecialcase:jointcompressiononlyalongroutesconsistingofstraightlines,insteadofjointcompressionovertheentirenetwork(asillustratedinFig.6).Theamountoftrafficgeneratedwillbeclearlyhigher,sincenowweareignoringallcor-relationsacrosslines.Buttheschemeisinherentlylesscomplex,andthereforeofinterestaswell.

Figure6:Partitionofthenetworkintoindependentrows.Nodesre-encodetheirmessagesonlyiftheyareinthesamerow—acrossrows,dataisroutedwithoutanyformofprocess-ing.Notethattherowsarerepresentedonaregulargridforsimplicity[cf.Section2.2].

LetRIR(D)denotetherate/distortionfunctionofthedatagen-eratedbythewholenetwork,butundertheconstraintthatjointcompressionisperformedonlyacrossrows,ignoringdependenciesalongcolumns.Clearlywemusthave

RIR(D)≤√NR(D)=O(√

N),sinceinthis(necessarilyloose)upperboundwepretendthateachrowproducesasmuchinformationastheentirenetworkdoes,andassumingtheaverageper-sampledistortioniskeptconstant.ThisisinterestingbecausewestillgetthegrowthrateofRIR(D)tomatchthatinthecapacityexpressionofeqn.(1).Therefore,weseethatwecansacrificesomecompressionefficiencytogainapo-tentiallybigreductionincomplexity,byhavingeachnodeprocess

atmost√

NsamplesinsteadofN.Notealsothatbesidescom-pressionefficiency,whatweloseaswellistheabilitytoreducetheaverageper-sampledistortionbykeepingDfixedandincreas-ing√N,sincethisresultsinanextralogarithmictermmultiplyingNintheamountoftrafficgenerated,thusviolatingthecapacityconstraint.

4.CONCLUSIONS

Inrecentworkonthetransportcapacityoflarge-scalewirelessnetworks,ithasbeenestablishedthattheper-nodethroughputofthesenetworksvanishesasthenumberofnodesbecomeslarge.Thisresultposesaseriouschallengeforthedesignofsuchnetworks—somehaveevenarguedthatlargenetworksarenotfeasible,pre-ciselybecauseofthisreason[9].Previousworkhoweverpointedoutthat,inthecontextofsensornetworks,theamountofinfor-mationgeneratedbyeachnodeisnotaconstant,butinsteadde-caysasthedensityofsensingnodesincreases—thiswasillustratedwithanexamplebasedonthetransmissionofsamplesofaBrow-nianprocess,witharbitrarilylowdistortion(evenwithvanishingper-nodethroughput),bymeansofusingdistributedsourcecodingtechniques[12].

Inthisworkwehaveshownanalternativeapproachtoworkaroundthevanishingper-nodethroughputconstraintsof[9].Thisnewapproachisnotbasedondistributedcodingtechniques,butin-steadisbasedontheuseofclassicalsourcecodescombinedwithsuitableroutingalgorithmsandre-encodingofdataatintermediaterelaynodes.Tothebestofourknowledge,thesearethefirstresultsinwhichinterdependenciesbetweenroutinganddatacompressionproblemsarecapturedinasystemmodelthatisalsoanalyticallytractable.Andakey(andenabling)stepinourderivationwastheconstructionofafamilyofspatialprocessessatisfyingsomefairlymild(andeasilyjustifiablefromaphysicalpointofview)regularityconditions,forwhichwewereabletoshowthattheamountofdatageneratedbythesensornetworkiswellbelowitstransportcapac-ity.Thisprovidesfurtherevidencethatlarge-scalemulti-hopsen-sornetworksareperfectlyfeasible,evenunderthenetworkmodelconsideredin[9].

APPENDIXA.

ENTROPYANDCODING

TheentropyofarandomvariableXwithprobabilitymassfunc-tionP(x)isdefinedas:

H(X)=E{−log󰀂

2P(x)}=−P(x)log2P(x).(26)

x

Formultivariaterandomvariablesthegeneralizationisstraightfor-ward:

H(X1,...,Xn)=E{−log2P(x1,...,xn)}.

(27)

Notealsothat,theentropyofavectorcanbedecomposedaccord-ingtothesocalledchainrule,resultingfromtheiteratedapplica-tionofthechainruleforprobabilityP(x,y)=P(x|y)P(y):H(X1,...,Xn)=

H(X1)+H(X2|X1)+...+

H(X,...,X󰀂

(28)

n|X1n−1)≤H(Xi)

i

whichwasusedinFigure2.Theimportanceofthedefinitionof

entropyliesinthefactthatitprovidesaveryaccurateanswertothefollowingquestionregardingdiscretedatasources(i.e.sourcesproducingsymbolsdrawnformadiscretealphabet):

Whatistheminimumnumberofbitsnecessarytorep-resentthedatafromadiscretesourcesothattheycanbereconstructedwithoutdistortion?

Theanswerisgivenbythethefollowingtheorem[5,Ch.5]:THEOREM1.TheexpectedlengthLofanyinstantaneousD-arycodeforarandomvariableXis:

H(X)≤L(29)

Theproofofthetheoremisbasedontheexistenceofacodingtech-nique,Huffmancoding,isknowntoachievetheentropywithinonebitifonesymbolisencodedand,ifmultiplesymbolsareencodedtogether,theefficiencyofHuffmancodingtendstobe100%[5].Thistheorycannotbedirectlygeneralizedtohandlethecaseofanalogsourcesbecausetheirentropyisinfiniteevenifthesignalisadiscrete-timesequence.Infact,thesourcesignalcantakeanyrealvaluesothateachsamplestillrequiresinfiniteprecisiontoberepresentedexactly.However,onceacertainlevelofdistortionisaccepted,theminimumnumberofbitsnecessarytorepresentthesourcecanbecalculatedjustasrigorouslyasinthecaseofdiscretesources,resortingtotheparalleltheoryforanalogsourceswhichiscalledRateDistortionTheory.

B.

RATEDISTORTIONTHEORYINANUT-SHELL

RateDistortionisbasedontheseminalcontributionofClaudeShannonwhotriedtoprovidedatheoreticalframeworkfortherep-resentationofacontinuoussourcethroughdiscretesymbols[13].Supposeamemorylesscontinuoussourceproducesarandomsam-pleSwithdensityp(S):thequantizationproblemboilsdownto

representingSthroughdiscreteˆsothat,ifourmeasureofthedistortionisd(S,S

ˆvaluesS

),ourmappingS→SˆissuchthatE{d(S,S

ˆ)}≤D.ToquantifyhowmanybitsareneededtorepresentS

ˆ,inhis1959paperShannondefinedthesocalledratedistortionfunction:

R(D)=

ˆmin

I(S,S

ˆ)(30)

p(S

|S):E{d(S,Sˆ)}≤Dwhere:

󰀃

I(S,S

ˆ)=󰀂p(S,S

ˆ)logp(S,Sˆ

)S

ˆp(S)P(S

ˆ)dS(31)

istheaveragemutualinformationbetweenSandS

ˆ.Inthesamepaperheprovedthefollowingtwofundamentaltheorems:THEOREM2.Theminimuminformationratenecessarytorep-resenttheoutputofadiscrete-time,continuous-amplitudememory-lessGaussiansourcebasedonamean-squaredistortionmeasurepersymbol(singleletterdistortionmeasure)is:

󰀅

1

Rlog(σ2S/D)if0≤D≤σ2g(D)=2S,0D>σ2(32)S.

whereσ2

SisthevarianceoftheGaussiansourceoutput.

THEOREM3.ThereexistsanencodingschemethatmapsthesourceoutputintocodewordssuchthatforanygivendistortionD,theminimumrateR(D)bitspersymbol(sample)issufficienttoreconstructthesourceoutputwithanaveragedistortionthatisarbitrarilyclosetoD.

TheimplicationofthetwotheoremsaboveisthatR(D)isthemin-imumnumberofbitsthatcanrepresentSwithintheprescribedmean-squareerrorifthediscretecodeS

ˆsourceisGaussian.Inotherwordsany

thatrepresentsaGaussiansourceSwithamean-quaredistortion≤Dhas

H(S

ˆ)≥RS(D),(33)

andthelowerboundisasymptoticallyachievable.Thefollowing

importanttheorem,provenbyBergerin1971[2],generalizestheresultsbyShannon:

THEOREM4.Therate-distortionfunctionofamemoryless,con-tinuous-amplitudesourcewithzeromeanandfinitevarianceσ2

Swithrespecttothemean-square-errordistortionmeasureisupper-boundedas:

R(D)≤12

2log(σS

/D)if0≤D≤σ2S.(34)Berger’stheoremimpliesthattheGaussiansourceistheonethere-quiresthemaximumencodingrate,ifthedistortionfunctionistheMSE.Hence,ifourdistortionmetricisthemean-squareerror,thecaseofaGaussiansourcehastobeseenasaworsecasescenario.Thetheoremsabovehavebeenextendedtomultivariatesourceswhichareanalogoustotheonesweconsiderinthispaper.Inpar-ticular,thesocalledinversewater-fillingresultusedinSection3isthedirectgeneralizationofTheorem2tothemultivariateGaussiansource.

3.REFERENCES

[1]R.Ahlswede,N.Cai,S.-Y.R.Li,andR.W.Yeung.Network

InformationFlow.IEEETrans.Inform.Theory,46(4):1204–1216,2000.

[2]T.Berger.RatedistortionTheory,PrenticeHall,Englewood

Cliffs,NJ.

[3]J.H.ConwayandN.J.A.Sloane.SpherePackings,Lattices

andGroups.SpringerVerlag,3rdedition,1998.

[4]T.Cormen,C.Leiserson,andR.Rivest.Introductionto

Algorithms.MITPress,1990.

[5]T.M.CoverandJ.Thomas.ElementsofInformationTheory.

JohnWileyandSons,Inc.,1991.

[6]A.GershoandR.M.Gray.VectorQuantizationandSignal

Compression.KluwerAcademicPublishers,1992.[7]U.GrenanderandG.Szeg˝o.ToeplitzFormsandtheir

Applications.UniversityofCaliforniaPress,1958.

[8]P.GuptaandP.R.Kumar.CriticalPowerforAsymptotic

ConnectivityinWirelessNetworks.InW.M.McEneany,G.Yin,andQ.Zhang,editors,StochasticAnalysis,Control,OptimizationandApplications:AVolumeinHonorofW.H.Fleming.Birkhauser,1998.

[9]P.GuptaandP.R.Kumar.TheCapacityofWireless

Networks.IEEETrans.Inform.Theory,46(2):388–404,2000.

[10]H.B.KellerNumericalMethodsForTwo-Point

Boundary-ValueProblems.DoverPublicationsInc.,1992.[11]S.S.PradhanandK.Ramchandran.DistributedSource

Coding:SymmetricRatesandApplicationstoSensorNetworks.InProc.IEEEDataCompressionConf.(DCC),Snowbird,UT,2000.

[12]S.D.Servetto.LatticeQuantizationwithSideInformation.

InProc.IEEEDataCompressionConf.(DCC),Snowbird,UT,2000.Anextendedjournalversion,withtitleQuantizationwithSideInformation:LatticeCodes,

Asymptotics,andApplicationsinWirelessNetworks,hasbeensubmittedforpublication,andisavailablefrom

http://people.ece.cornell.edu/servetto/.[13]C.E.Shannon,CodingTheoremsforaDiscreteSourceWith

aFidelityCriterionInstituteofRadioEngineers,InternationalConventionRecord,Vol.7(Part4),pp.142–163,1959.

[14]V.A.Vaishampayan,N.J.A.Sloane,andS.D.Servetto.

MultipleDescriptionVectorQuantizationwithLatticeCodebooks:DesignandAnalysis.IEEETrans.Inform.Theory,47(5):1718–1734,2001.

[15]Q.ZhaoandM.Effros.OptimalCodeDesignforLossless

andNearLosslessSourceCodinginMultipleAccessNetworks.InProc.DataCompressionConf.(DCC),Snowbird,UT,2001.

因篇幅问题不能全部显示,请点此查看更多更全内容