您的当前位置:首页正文

2012年福建省厦门市思明区小学数学毕业试卷

2020-04-06 来源:易榕旅网


2012年福建省厦门市思明区小学数学毕业试卷

一、填空:(22分)

(2012•福建省厦门市思明区)4小时30分=4.5时,6.43米=6米4分米3厘米. 考点:时、分、秒及其关系、单位换算与计算;长度的单位换算. 专题:长度、面积、体积单位;质量、时间、人民币单位. 分析:把4小时30分换算成小时数,先把30分换算成小时数,用30除以进率60,得数再加上4; 把6.43米换算成复名数,整数部分就是6米,把0.4米换算为分米数,用0.4乘进率10,把0.03米换算成厘米数,用0.03乘进率100;据此解答即可. 解答:解:4小时30分=4.5时, 6.43米=6米4分米3厘米; 故答案为:4.5,6,4,3. 点评:解决本题关键是要熟记单位间的进率,知道如果是高级单位的名数转化成低级单位的名数,就乘单位间的进率;反之,就除以进率来解决. (2012•思明区)七十八亿五千零四万九千写作7850049000,改成以亿为单位的数是78.50049亿,四舍五入到亿位约是79亿. 考点:整数的读法和写法;整数的改写和近似数. 专题:整数的认识. 分析:这是一个十位数,最高位十亿位上是7,亿位上是8,千万位上是5,万位上是4,千位上是9,写这个数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0; 改写成用“亿”作单位的数,就是在亿位数的右下角点上小数点,然后把小数末尾的0去掉,在数的后面加上“亿”字; 四舍五入到亿位就是省略“亿”后面的尾数把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字. 解答:解:七十八亿五千零四万九千写作:7850049000; 7850049000=78.50049亿; 7850049000≈79亿; 故答案为:7850049000,78.50049亿,79亿. 点评:本题主要考查整数写法、改写和求近似数,注意改写和求近似数时要带计数单位. (2012•思明区)3:5=0.6=3÷5=60%. 考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化. 专题:综合填空题. 分析:解答此题的突破口是0.6,把0.6化成分数并化简是,根据比与分数的关系,5335 =3:5;根据分数与除法的关系,35=3÷5;把0.6的小数点向右移动两位,添上百分号就是60%.由此进行转化并填空. 解答:解:3:5=0.6=3÷5=60%; 故答案为:3,5,3,5,60. 点评:此题考查除式、小数、百分数、比之间的转化,利用它们之间的关系和性质进行转化即可. (2012•思明区)线段比例尺距离80千米. 考点:比例尺. ,表示图上1厘米的距离相当于地面实际专题:比和比例. 分析:依据线段比例尺的意义及题中线段比例尺,知道图上距离1厘米表示实际距离80千米,即可进行解答.

解答:解:由题意可知:此线段比例尺表示图上距离1厘米代表实际距离80千米, 故答案为:80. 点评:本题主要考查了线段比例尺的意义. (2012•思明区)把0.12:45化成最简整数比是3:20. 考点:求比值和化简比. 专题:比和比例. 分析:根据比的基本性质作答,即比的前项和后项同时乘或除以一个数(0除外)比值不变. 解答:解:0.12:45=325:45=(325×25):(45×25)=3:20; 故答案为:3:20. 点评:此题主要考查了化简比的方法,注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数. 。。。把 3.14,3.14,3.14 ,31.4% 和π按照从小到大的顺序排列起来: 。。。31.4%<3.14<3. 14<π<3.14 考点:小数大小的比较. 分析:有几个不同形式的数比较大小,一般情况下,都化为小数进,把循环小数简写形式写成一般形式行比较得出答案. 。解答:解:3.14=3.14444…, 。。3. 14=3.141414…, 31.4%=0.314, π=3.1415926…, 所以0.314<3.14<3.141414…<3.1415926…<3.14444…, 。。。即31.4%<3.14<3. 14<π<3.14, 。。。故答案为:31.4%<3.14<3. 14<π<3.14. 点评:解决有关小数、百分数之间的大小比较,一般都把百分数化为小数,把循环小数简写形式写成一般形式再进行比较,从而解决问题. (2012•思明区)甲数比乙数多100,乙数除甲数的商是3,甲、乙两数的和是200. 考点:整数四则混合运算. 专题:文字题. 分析:乙数除甲数的商是3,即甲数是乙数的3倍,又甲数比乙数多100,则100是乙数的3-1倍,所以乙数为100÷(3-1),求出乙数后即能求出甲乙两数的和为多少. 解答:解:100÷(3-1)+100+100÷(3-1)=100÷2+100+100÷2=50+100+50=200. 故答案为:200. 点评:首根据题意得出100是乙数的2倍是完成本题的关键,完成本题要注意除法中“除与除以”的区别. (2012•思明区)在数轴上表示出下面各数:312、-54、-12. 考点:数轴的认识.

专题:分数和百分数.

分析:数轴就是规定了原点、正方向和单位长度的直线,根据定义即可解决. 解答:解:在数轴上表示如下:

点评:本题主要考查了数轴的定义,是需要熟记的内容,比较简单.

(2012•思明区)在“a÷b=8…1”中,如果把a和b都扩大2倍,那么商是8,余数是2.

考点:有余数的除法;商不变的性质. 专题:运算顺序及法则.

分析:根据在有余数的除法中“被除数和除数都缩小(或都扩大)相同的倍数,商不变,但余数也随着缩小

(或扩大)相同的倍数”可知:a和b扩大了2倍,商是8,但余数也扩大了2倍,原来的余数是1,则现在的余数为:1×2=2;由此解答即可.

解答:解:在“a÷b=8…1”中,如果把A和B同时扩大2倍后,商是8,余数是2;

故答案为:8,2.

点评:解答此题应明确:被除数和除数都缩小(或都扩大)相同的倍数,商不变,但余数也随着缩小(或

扩大)相同的倍数.

(2012•思明区)一个车轮的半径是42厘米,转动一周大约是1米.(保留整数) 考点:圆、圆环的周长.

专题:平面图形的认识与计算.

分析:求车轮转动一周大约是多少米,也就是求车轮的周长,根据圆的周长公式:c=2πr,把数据代入公

式解答.

解答:解:42厘米=0.42米,

3.14×0.42≈1(米),

答:转动一周大约是1米. 故答案为:1.

点评:此题考查的目的是理解掌握圆的周长的意义及周长的计算,直接把数数据代入圆的周长公式解答. 二、判断.(正确的画“√“,错误的画“×”)(5分) (2012•思明区)如果6x=5y,那么x和y成正比例.√. 考点:正比例和反比例的意义. 专题:比和比例. 分析:判断x与y是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例. 解答:解:因为6x=5y, 所以x:y=5:6=56(一定), 即x和y的比值一定, 符合正比例的意义, 所以x和y成正比例, 故判断:√. 点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断. (2012•思明区)如果a为整数,那么它的倒数为1a.错误. 考点:倒数的认识. 专题:分数和百分数.

分析:根据倒数的意义:乘积是1的两个数互为倒数;可知,a为非0自然数,它的倒数即即可. 1a;据此判断解答:解:如果a为整数,那么它的倒数为1a,说法错误,a必须不能等于0,因为0不能作分母,即0没有倒数; 故答案为:错误. 点评:此题主要考查倒数的意义:乘积是1的两个数互为倒数;注意0没有倒数,1的倒数是1. (2012•思明区)5吨的17和1吨的57 重量相等. 正确. 考点:分数大小的比较;分数乘法. 专题:分数和百分数;运算顺序及法则. 分析:根据分数的意义:5吨的解答:解:5吨×=715717为5吨×,1吨的7157为1吨×,求出具体长度比较下即可. 75(吨), 1吨×=7557(吨), 17所以5吨的和1吨的57重量相等; 故答案为:正确. 点评:求一个数的几分之几是多少,用乘法. (2012•思明区)把5米长的电线平均分成8份,每份一定占全长的. 错误. 85考点:分数的意义、读写及分类. 专题:分数和百分数. 分析:把5米长的电线平均分成8份,根据分数的意义可知,即将这根电线的长度当作单位“1”,平均分成8份,则每份占全长的1÷8=. 81解答:解:每份占全长的:1÷8=18. 5则把5米长的电线平均分成8份,每份一定占全长的的说法错误. 8故答案为:错误. 点评:完成本题的依据为分数的意义:即将单位“1”平均分成若干份,表示这样一份或几份的数为分数. 把一段圆柱体切削成一个最大的圆锥,削去部分的体积是圆柱的23.正确. 考点:圆柱的侧面积、表面积和体积;圆锥的体积. 分析:根据把“一段圆柱体切削成一个最大的圆锥”,实际是把一段圆柱体切削成一个和它等底等高的圆锥;根据等底等高的圆锥体是圆柱体的13,得出削去部分的体积是圆柱的23. 解答:解:因为,把一段圆柱体切削成一个最大的圆锥,就是把一段圆柱体切削成一个和它等底等高的圆锥,根据等底等高的圆锥体的体积是圆柱体的体积的13,

所以,削去部分的体积是圆柱的23; 故答案为:正确. 点评:解答此题的关键是,知道如何把一段圆柱体切削成一个最大的圆锥,得出削成的圆锥与圆柱的关系,进而得出削去部分的体积与圆柱的关系. 三、选择正确的答案(5分)

(2012•思明区)把10克糖放入40克水中,糖占糖水的( )。 A.25% B.20% C.10% D.5% 考点:百分数的实际应用. 专题:分数百分数应用题. 分析:先求出糖水的总重量,然后用糖的重量除以糖水的总重量乘100%即可. 解答:解:10÷(10+40)=10÷50=20%; 答:糖占糖水的20%. 故选:B. 点评:本题是求一个数是另一个数的百分之几,关键是看把谁当成了单位“1”,单位“1”的量为除数. (2012•思明区)某班男生人数是女生人数的56,女生人数与男生人数的比是( )。 A.5:6 B.6:5 C.36:25 D.25:36 考点:分数的意义、读写及分类;比的意义. 专题:分数和百分数;比和比例. 分析:男生人数是女生人数的56,根据分数的意义可知,即将全部人数分成6+5=11份,男生占其中的5份,女生占其中的6份,则根据比的意义可知,女生人数与男生人数的比为:6:5. 解答:解:女生人数与男生人数的比:6:5. 故选:B. 56点评:本题也可根据分数的意义将女生人数当做单位“1”,得出女生与男生人数的比为1:=6:5. (2012•思明区)一个圆锥体的体积是a立方米,与它等底等高的圆柱体积是( )立方米. A.13a B.a C.3a D.2a 考点:用字母表示数;圆柱的侧面积、表面积和体积;圆锥的体积. 专题:用字母表示数;平面图形的认识与计算. 分析:根据等底等高的圆柱的体积是圆锥的体积的3倍,进行解答即可. 解答:解:a×3=3a(立方米); 故选:C. 1点评:此题是求圆柱的体积,可利用“等底等高的圆柱和圆锥体积之间3倍或的关系”来解答. 3(2012•思明区)由于圆是轴对称图形,因此半圆就一定有( )条对称轴. A.1 B.2 C.3 D.无数 考点:确定轴对称图形的对称轴条数及位置. 专题:图形与变换. 分析:依据轴对称图形的定义:把一个图形沿一条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的对称轴,由此即可作答. 解答:解:根据轴对称图形的定义可知:半圆有1条对称轴, 故选:A. 点评:此题主要考查如何确定轴对称图形的对称轴条数及位置.

(2012•思明区)能够使方程左右两边相等的未知数的值叫做( )。 A.等式 B.方程 C.解方程 D.方程的解

考点:方程的解和解方程. 专题:简易方程.

分析:含有等号的式子叫做等式;含有未知数的等式叫方程;解方程就是求出方程中未知数的值;使方程

左右两边相等的未知数的值,叫做这个方程的解.据此解答.

解答:解:能够使方程左右两边相等的未知数的值叫做方程的解. 故选:D.

点评:明确等式、方程、解方程、方程的解的概念,是解答此题的关键.

四、计算:(28分) (2012•思明区) 直接写得数: 14-1514= 0.48÷1.2= 2.5×8= 135185×9= 0.1÷0.001= 491÷2= 2.7÷= 1-0.875÷= 26÷1587= 349+238+159= 考点:分数的加法和减法;运算定律与简便运算;分数乘法;小数乘法;小数除法;小数四则混合运算. 专题:运算顺序及法则;运算定律及简算. 分析:①通分计算;②把被除数和除数分别扩大10倍,注意小数点对齐;③把8看做4×2,运用乘法结合律简算;④把带分数化为假分数,约分计算;⑤把被除数和除数分别扩大1000倍即可;⑥⑦⑨除以一个数等于乘这个数的倒数;⑧把分数化为小数是0.875;⑩运用加法交换律与结合律简算. 解答:解: 14-1514==12049 0.48÷1.2=0.4; 2.5×8=0; 1378518×9=111249 0.1÷0.001=100; =8; 3491÷2 2.7÷=4.5; 1-0.875÷=0; 26÷15+238+159=738 点评:此题综合考察了通分、约分、数的转化、运算定律等知识. (2012•思明区)计算(能简算的要简算) ①18.4× 37+18.4 ②378-12.6-27.4 ③(800-15718÷29+12)÷24 89④0.25×8×0.16×12.5 ⑤×[34-(716-0.25)]⑥917+ 817÷(49+23×) 65考点:整数、分数、小数、百分数四则混合运算;整数四则混合运算;运算定律与简便运算;分数的四则混合运算. 专题:运算顺序及法则;运算定律及简算. 分析:①运用乘法分配律简算; ②运用减法的性质简算; ③先算括号内的除法,再算括号内的减法和加法,最后算括号外的除法; ④运用乘法交换率和结合律简算; ⑤把0.25化为分数 1437,中括号内运用减法的性质以及加法交换律与结合律简算,最后算括号外的乘法; ⑥先算括号内的乘法,再算括号内的加法,然后算括号外的除法,最后算括号外的加法. 解答:解:①18.4× +18.4=925×(37+1)=925×107=2627; ②378-12.6-27.4=378-(12.6+27.4)=378-40=338; ③(800-15718÷29+12)÷24=(800-542+12)÷24=270÷24=11.25;

④0.25×8×0.16×12.5=0.25×0.16×(12.5×8)=0.25×4×0.04×100=4; ⑤⑥89×[34-(817716-0.25)]= 4989×[34-(+716-14)] =4989×[34+1416-7]=89×916=12; 917+ ÷(+23×)=65917817÷(+59)=917+817÷1=917+817=1. 点评:此题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律或运算性质进行简便计算. 五、列式计算(4分) (2012•思明区)120的34比它的25多多少? 考点:分数的四则混合运算. 专题:文字题. 分析:依据分数乘法意义分别求出120的解答:解:120×-120×=90-48=42; 453234和120的25分别是多少,再用它们所得的积相减即可解答. 答:多42. 点评:本题主要考查学生依据分数乘法的意义解决问题的能力. (2012•思明区)一个数的23减去4.5的5倍,差是18,这个数是多少?(用方程解) 考点:整数、分数、小数、百分数四则混合运算. 专题:文字题. 分析:设这个数为x,则这个数的由此可得方程:2323为23x,4.5的5倍为4.5×5,这个数的23 减去4.5的5倍,差是18,x-4.5×5=18. 解答:解: 232323x-4.5×5=18 x-22.5=18, x=40.5, x=60.75. 答:这个数是60.75. 点评:完成本题要注意条件中“减去、差”等此类体现数据之间关系及运算顺序的词语. 六、解决问题(36分) (2012•福建省厦门市思明区)水果店有300千克香蕉,比桔子多20%,水果店里有桔子多少千克?

考点:百分数的实际应用. 专题:分数百分数应用题.

分析:把桔子的重量看成单位“1”,它的(1+20%)对应的数量是香蕉的重量300千克,求桔子的重量用

除法.

解答:解:300÷(1+20%)=300÷120%=250(千克);

答:水果店里面有桔子250千克.

点评:本题的关键是找出单位“1”,并找出单位“1”的百分之几对应的数量,用除法就可以求出单位“1”的量. (2012•思明区)益民制鞋厂实际用20天制作1200双女式凉鞋,实际每天比计划多制作10双,原计划多少天制作出这些凉鞋?

考点:有关计划与实际比较的三步应用题. 专题:简单应用题和一般复合应用题. 分析:先用实际生产的总量除以实际用的天数求出实际的工作效率,然后减去10求出计划的工作效率,再用总数量除以计划的工作效率即可. 解答:解:1200÷20-10=60-10=50(双);1200÷50=24(天); 答:原计划24天制作出这些凉鞋. 点评:本题考查了工作量、工作效率和工作时间三者的关系,找清对应的关系,然后根据这三者的关系求解. (2012•福建省厦门市思明区)一辆汽车从甲地开往乙地,2.5小时行驶了160千米.照这样的速度,再行驶4小时才能到达乙地.甲乙两地间的公路长多少千米?(用比例知识解答) 考点:比例的应用. 专题:比和比例应用题. 分析:根据速度一定,路程与时间成正比例,由此列出比例解决问题. 解答:解:设甲、乙两地间的公路长x千米, 160:2.5=x:(4+2.5), 2.5x=160×(4+2.5), 2.5x=1040, x=416; 答:甲、乙两地间的公路长416千米. 点评:解答此题的关键是,根据题意及路程,速度与时间的关系,判断路程与时间成正比例,注意4小时是在前面2.5小时行驶后又行驶的时间,不是总路程对应的时间. (2012•思明区)用汽车运一批水泥,第一次运了168吨,占水泥总数的正好运完.这批水泥有多少吨? 4514,第二次运的是第一次的,考点:分数四则复合应用题. 专题:分数百分数应用题. 分析:把水泥的总量看成单位“1”,它的445对应的数量是168吨,用除法求出这批水泥的总重量. 解答:解:168÷=210(吨);答:这批水泥有210吨. 5点评:本题关键是找出单位“1”,已知一个数的几分之几是多少,求这个数用除法;注意题目给出的第二次运的量用不到. (2012•思明区)用2500千克大豆可以榨出550千克豆油,这批大豆的出油率是多少? 考点:百分率应用题. 专题:分数百分数应用题. 分析:出油率是指出油的重量占大豆重量的百分之几,计算方法是:即可. 出油重量大豆重量 ×100%,代入数据计算解答:解:5502500×100%=22%;答:这批大豆的出油率是22%. 点评:此题属于百分率问题,是用出油的重量除以大豆的重量乘百分之百,由此代入数据求解. (2012•福建省厦门市思明区)印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本? 考点:比例的应用. 专题:比和比例应用题.

分析:根据题意知道一批纸的数量一定,每本的页数×本数=一批纸的数量(一定),所以每本的页数与装

订的本数成反比例,由此列出比例解答即可.

解答:解:设可以装订x本,

32x=36×4000,

32x=144000, x=4500,

答:可以装订4500本.

点评:关键是根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.

因篇幅问题不能全部显示,请点此查看更多更全内容