interferometricgravitational-wavedetectors
ConstantinBrif∗
LIGOProject,CaliforniaInstituteofTechnology,Pasadena,CA91125
Westudyhowthebehaviorofquantumnoise,presentingthefundamentallimitonthesensitivityofinterferometricgravitational-wavedetectors,dependsonpropertiesofinputstatesoflight.Weanalyzethesituationwithspeciallypreparednonclassicalinputstateswhichreducethephoton-countingnoisetotheHeisenberglimit.Thisresultsinagreatreductionoftheoptimumlightpowerneededtoachievethestandardquantumlimit,comparedtotheusualconfiguration.04.80.Nn,42.50.Dv
999SincethepioneeringworkbyCaves[1,2],itiswell1 understoodthattwosourcesofquantumnoise—therpphoton-countingnoiseandtheradiation-pressurenoise—Aconstitutethefundamentallimitationonthesensitiv-ityofaninterferometricgravitational-wavedetector. 3Theselimitationswillbeofpotentialimportanceinlong-1baselineinterferometricdetectorswhicharecurrentlyun- derconstruction(theLIGOproject[3,4]intheUnited1StatesandtheFrench-ItalianVIRGOproject[5]inEu-v3ropearethelargestones).Forexample,thephoton-5countingshotnoisewilldominateatthegravitational-0wavefrequenciesabove1kHzintheVIRGOdetector4andabove200HzintheinitialLIGOdetector.With0afurtherreductionofthethermalnoise,plannedinthe9advancedLIGOinterferometer,theroleoftheshotnoise9willbeevenmoreimportant.
/hForacoherentlaserbeamoflightpowerP,theshotpnoise-−1/2associatedwithphoton-countingstatisticsscalesastPandtheradiation-pressurenoisescalesasP1/2.nThecontributionsofthesetwosourcesofnoisewillbeauequalforsomeoptimumvaluePoptofthelightpower.Providedthatclassicalsourcesofnoise(suchasthermal:qandseismic)aresufficientlysuppressed,theinterferom-veterwiththeoptimumlightpowerwillworkattheso-iXcalledstandardquantumlimit(SQL).Asimplequantumrcalculation,basedontheuseoftheHeisenberguncer-ataintyprinciple,givestheSQLforthemeasurementoftherelativeshiftz=z2−z1inthepositionsoftwoendmirrors:
(∆z)SQL=
ωτ4
,(2)
whereωisthelightangularfrequency.FortheinitialLIGOconfiguration,themirrormassism≃11kg,thecavitylengthisL≃4km,thefinesseisF≃200,andthewavelengthoftheNd:YAGlaserisλ≃1.064µm(ω≃1.77×1015Hz).Thisgivesthecavitystoragetimeτ≃8.5×10−4sandaneffectivenumberofbouncesb=τc/2L≃32.ThecorrespondingoptimumlaserpowerisPopt≃191kWandtheSQLofthepositionshiftmea-surementis(∆z)SQL≃1.24×10−19m.AchievingthisSQLwillmakepossibletomeasuregravitationalwaveswithamplitudeshgreaterthan∼3×10−23.
Presently,theavailablelaserlightpowerisinsufficientforachievingtheSQL(forexample,intheinitialLIGOconfigurationtheinputlaserpoweris6Wandthepowerrecyclinggainisabout30).Therefore,inadvancedLIGOconfigurations,itisplanned[4]toreducetheshotnoisebyusingmorepowerfullasers,inconjunctionwiththepower-recyclingtechnique[6,7].However,forveryhighlaserpower,oneencountersserioustechnicalproblemsre-latedtononuniformheatingofthecavitymirrorscausedbyabsorptionofevenasmallportionofcirculatinglight.Theresultingthermalaberrationscanseriouslydeterio-ratetheperformanceoftheinterferometer[7].Therefore,itwillbeveryinterestingtostudypossibilitiesforachiev-ingtheSQLwithlowlightpower.
Thegravitational-wavedetectioncommunityisquitefamiliarwiththeintriguingideabyCaves[2]tore-ducethephoton-countingnoisebysqueezingthevacuumfluctuationsattheunusedinputport.Duringthelastdecade,otherinterestingideashasbeendevelopedinthefieldoftheoreticalquantumoptics,basedontheuseofnonclassicalphotonstatesforthequantumnoisereduc-tioninidealizedopticalinterferometers[8–13].Themain
theoreticalmotivationofallthosepaperswastoshowthepossibilityofbeatingtheshot-noiselimitandachievingthefundamentalHeisenberglimitforthephoton-countingnoiseinanidealinterferometricmeasurement.
Theaimofthepresentworkistoshowthattheop-timumlightpowerneededfortheSQLoperationofaninterferometricgravitational-wavedetectorwithmovablemirrorscanbegreatlyreducedbytheuseofnonclassi-calstatesoflightwiththeHeisenberg-limitedphoton-countingnoise.ThisresultmeansthatHeisenberg-limitedinterferometryisnotonlyinterestingforademon-strationofthefundamentaluncertaintyprinciple,butcanbealsoimportantfortheexperimentaldetectionofgrav-itationalwaves.
Letusconsideralong-baselineMichelsoninterferom-eterwhosearmsareequippedwithhigh-finesseFabry-Perotcavities,withendmirrorsservingasfreetestmasses.Inthequantumdescription,twomodesofthelightfieldentertheinterferometerthroughthetwoin-putportsofa50-50beamsplitter.Afterbeingmixedinthebeamsplitter,thelightmodesspenttimeτintheFabry-Perotcavities,andthenleavetheinterferom-eter(throughthesamebeamsplitter,butintheoppo-sitedirection).Thephotonsleavingtheinterferometerintheoutputmodesarecountedbytwophotodetectors.Agravitationalwaveincidentontheinterferometerwillcausearelativeshiftz=z2−z1inthepositionsoftwoendmirrors,whichresultsinthephaseshiftφ=(ωτ/L)zbetweenthetwoarms.
Theperformanceofsuchaninterferometercanbean-alyzedintheHeisenbergpicture,usinganicegroup-theoreticdescriptionproposedbyYurkeetal.[8].Usingthebosonannihilationoperatorsa1anda2ofthetwoinputmodes,oneconstructstheoperators
Jx=Jy=Jz=
†
(a†1a2+a2a1)/2,
†
−i(a†1a2−a2a1)/2,
†
(a†1a1−a2a2)/2.
rotationsinthe3-dimensionalspace[8].Thefirstmixing
inthebeamsplitterproducesarotationaroundtheyaxisby−π/2,withthetransformationmatrixRy(−π/2).Thesecondmixingcorrespondstotheoppositerotation,withthetransformationmatrixRy(π/2).Therelativephaseshiftproducesarotationaroundthezaxisbyφ,withthetransformationmatrixRz(φ).TheoveralltransformationperformedonJistherotationbyφaroundthexaxis,
Rx(φ)=Ry(π/2)Rz(φ)Ry(−π/2).
(5)
Theinformationonthephaseshiftφisinferredfromthephotonstatisticsoftheoutputbeams.Usually,onemeasuresthedifferencebetweenthenumberofphotonsinthetwooutputmodes,
qout=2Jzout=2[(sinφ)Jy+(cosφ)Jz].
(6)
Ifweassumethattherearenolossesintheinterferome-terandtheclassicalsourcesofnoisearewellsuppressed,thentheuncertaintyintherelativepositionshiftzoftheendmirrorsisduetotwofactors[1,2].Thefirstoneisthephoton-countingnoise.Indeed,sincetherearequan-tumfluctuationsinqout,aphaseshiftisdetectableonlyifitinducesachangeinqoutwhichislargerthantheuncertainty∆qout.Consequently,theuncertaintyinthephaseshiftduetothephoton-countingnoiseis
(∆φ)2pc
=
(∆qout)2
Jz2
(3)
,Apc=
L
Theseoperatorsformthetwo-bosonrealizationofthe
su(2)Liealgebra,[Jk,Jl]=iǫklmJm.TheCasimiroper-atorisaconstant,J2=j(j+1),foranyunitaryirre-duciblerepresentationoftheSU(2)group;sotherepre-sentationsarelabeledbyasingleindexjthattakesthevaluesj=0,1/2,1,3/2,....TherepresentationHilbertspaceH|isspannedbythecompleteorthonormalbasis|j,m(m=j,j−1,...,−j).UsingEq.(3),onefinds
†21
N=a†(4)J=1a1+a2a2,2N+1,whereNisthetotalnumberofphotonsenteringthein-terferometer.WeseethatNisanSU(2)invariant;ifthe
inputstateofthetwo-modelightfieldbelongstoH|,thenN=2j.
Theactionsoftheinterferometerelementsonthecolumn-vectorJ=(Jx,Jy,Jz)Tcanberepresentedas
mL
2
.(9)
Considerthestandardcasewhenthecoherentlaserbeamofamplitudeαenterstheinterferometer’sonein-putport,whilethevacuumenterstheother.Thisin-putstate|in=|α1|02(where|0isthevacuumand|α=exp(αa†−α∗a)|0isthecoherentstate),satisfies
Jx=Jy=0,
Jz=|α|2/2,
2
22Jx=Jy=|α|2/4,
¯=|α|2.N≡N
Usingtheseresults,onefinds
2¯−1+ArpN.¯(∆z)2=(∆z)2pc+(∆z)rp=ApcN
(10)
¯,oneobtainsOptimizing(∆z)2asafunctionofN
N¯mL2
opt=
2ξa
†2
−
1
2|Jz|,
oneobtains
(∆φ)pc≥(2∆Jx)−12.Sinceforanyinputstate|in∈Hjtherelation(∆Jx)≤1
theeigenvalueequation
2|Jz|.
Thesestatesaredeterminedby
(ηJx−iJy)|λ,η=λ|λ,η.
(16)
Thespectrumisdiscrete:
λ=im0
Ifthetwo-modelightfieldenteringtheinterferometerispreparedintheJx-Jyintelligentstate,thequantumnoisetakestheform
(∆z)2=Apc(2∆Jx)−2+Arp(2∆Jx)2.
(17)
(∆φ)pc=[2j(j+1)]−1/2.Ofcourse,thisimprovementisonaccountofthecorrespondingincreaseintheradiation-pressurenoise,because(∆Jx)2=1
For|η|<1,theintelligentstatesaresqueezedinJyandanti-squeezedinJx,therebyreducingthephoton-countingnoisebelowtheshot-noiselimit,onaccountofincreasingcontributionoftheradiation-pressurenoise.Forη→0,oneobtains[16]
(2∆Jx)2=2|Jz/η|≃2(j2−m20+j),
(18)
andtheHeisenberglimitforthephoton-countingnoiseis
achievedwhenm0=0.Then,forlargephotonnumbers¯=2j≫1),weobtain(N
¯−2+(∆z)2≃2ApcN
1
hω2τ3¯
1/2
,Popt=
2¯hmL2
(∂S/∂φ)2
=
tan2φ
4j(j+1)
.(21)
Forφ=0(thiscorrespondstoadarkfringeforthemeasurementofS),theHeisenberglimitisachieved:
4
[1][2][3][4]
[5][6]
[7][8][9][10]
C.M.Caves,Phys.Rev.Lett.45(1980)75.C.M.Caves,Phys.Rev.D23(1981)1693.A.Abramovicietal.,Science256(1992)325.
J.K.Blackburn,in:MathematicsofGravitationPartII,GravitationalWaveDetection(BanachCenterPublica-tions,Warsaw,1997),p.95.
B.Caronetal.,Nucl.Phys.B(Proc.Suppl.)54B(1997)167;Class.QuantumGrav.14(1997)1461.
R.W.P.Drever,in:GravitationalRadiation,ed.N.Deru-elleandT.Piran(North-Holland,Amsterdam,1983),p.321.
P.Hello,in:ProgressinOptics,Vol.38,ed.E.Wolf(North-Holland,Amsterdam,1998),p.85.
B.Yurke,S.L.McCallandJ.R.Klauder,Phys.Rev.A33(1986)4033.
M.J.HollandandK.Burnett,Phys.Rev.Lett.71(1993)1355.
B.C.SandersandG.J.Milburn,Phys.Rev.Lett.75
[11][12][13][14]
[15][16][17][18][19]
(1995)2944.
M.HilleryandL.Mlodinow,Phys.Rev.A48(1993)1548.C.BrifandA.Mann,Phys.Rev.A54(1996)4505.
T.Kim,O.Pfister,M.J.Holland,J.NohandJ.L.Hall,Phys.Rev.A57(1998)4004.
D.J.Wineland,J.J.Bollinger,W.M.Itano,F.L.MooreandD.J.Heinzen,Phys.Rev.A46(1992)R6797;
D.J.Wineland,J.J.Bollinger,W.M.ItanoandD.J.Heinzen,Phys.Rev.A50(1994)67;
G.S.AgarwalandR.R.Puri,Phys.Rev.A49(1994)4968.
A.LuisandJ.Peˇrina,Phys.Rev.A53(1996)1886.C.Brif,Int.J.Theor.Phys.36(1997)1651.J.P.Dowling,Phys.Rev.A57(1998)4736.
P.BouyerandM.A.Kasevich,Phys.Rev.A56(1997)R1083.
J.Preskill,privatecommunication.
5
因篇幅问题不能全部显示,请点此查看更多更全内容