〖教学过程〗
师:同学们,我们已经学习了平行四边形的面积公式,今天这节课我们要学习三角形的面积计算。(教师板书:三角形的面积计算)
现在我们手上有一个三角形,(教师出示三角形)有没有办法知道它的面积呢?(学生顿时在下面议论纷纷)请拿出你们课前准备的三角形、方格纸、剪刀,每个同学可以利用你们手上的这些学具和工具,四个同学一组进行讨论,用什么办法可以求出你手上的三角形面积。
(学生熟练地四人围成一组,有一组同学刚围成一组,就急着在猜测答案:“这个三角形面积是24平方厘米。”“不对,是18平方厘米。”“这也不对,好像是12平方厘米”“我们把它放在方格纸上数一数,看看到底是多少?”另一组同学却十分安静地在议论:“把这个三角形剪开来,一小块一小块计算。”“但剪出来还有小三角形怎么办?”“这个办法也不行,那怎么办?”“我有一个办法,把它拼成平行四边形。”“怎么拼呢?”还有一组同学把三角形摆来摆去。“把它与平行四边形比看。”大约3分钟后,教师在巡视各组同学们的讨论后,发现有5组同学已经找到了答案,还有3组同学还在讨论。)
师:同学们,刚才我在巡视时,已发现有5个小组同学已经知道了三角形的面积,现在我们一起来讨论。
生:我们小组知道这个三角形的面积是12平方厘米。
师:你们是怎么知道这个答案的?
生:我们把这个三角形放到平行四边形的上面,发现它的面积是平行四边形的一半。(学生边说,边演示给大家看。如图2―3)
图2―3
师:你们怎么知道三角形的面积是平行四边形面积的一半呢?
生:我们刚才把平行四边形沿着对角线剪开,然后把它们叠放在一起,正好能重合。
师:这组同学说得好,答案是12平方厘米。那么还有不同方法吗?
生:我们小组有个简单办法,只要把三角形放在方格纸上,马上就可以数出这个三角形的面积。
师:那么请你在投影仪上演示一下。
生:(走到讲台边的投影仪旁,将方格纸放在投影仪上,然后放上三角形。如图2―4)因为每小方格代表1平方厘米,不满一格的都按半格算,所以我们数出来一共是12格,也就是12平方厘米。
图2―4
师:这组同学是通过数方格得到答案,还有不同的方法吗?
生:我们小组的方法与上面二组同学不同。我们是把这个三角形剪开来,拼成一个平行四边形。(拿着剪拼的图形进行演示。如图3―5)
图2―5
师:那你们怎么知道剪下来的三角形一定可以拼成平形四边形呢?
生2:我们开始剪的时候,也发现拼不成平形四边形,后来剪了几次,发现只要沿着中间的一条线剪,就可以拼成平行四边形。
师:这个小组的办法不错,还有不同的方法吗?
生:我们小组也是数出来的,开始把三角形放在方格纸上,发现数不准确,有好几个答案。后来知道要把三角形的底边的两个顶点与方格纸内的小正方形顶点对齐,就数出12格。
师:同学们刚才讨论的很好,回答问题也是有根有据。请大家再想一想,虽然刚才我们讨论出四、五种不同的方法得出答案,但这些不同的方法如果把它的思路归纳一下,那么哪些方法的思路是相同的?
生:在这些方法中一共有两种思路,一种是数格子,还有一种是把三角形转化成平行四边形。
师:说得好。虽然刚才有很多种不同的方法,但把这些方法整理一下,我们就可以发现这些方法的基本思路是两种:一种是数格子,通过一格一格地数,知道了三角形的面积;还有一种是转化成平行四边形,通过计算平行四边形的面积,再得出三角形的面积。
〖案例点评〗
在本案例中,教师创设了一个学生自主探索三角形面积的平台,课前教师请学生准备了一些三角形、平行四边形、方格纸与剪刀等工具,然后向学生提出了具体的探索要求――计算手上三角形的面积。从课堂学生的表现来看,由于教师放手给学生进行探索,因此,他们探索的各种途径也是不同的,有的通过数格子获得面积,有的通过拼图知道面积,也有的通过剪拼后得到面积,这充分说明,只要放给学生进行探索,相信学生会有能力完成。
〖思考与讨论〗
1.教师直接为学生提供一些开展探索活动的工具,让他们探索三角形面积的计算方法对学生探索能力的培养起什么作用?
2.你认为在学生充分地探索活动中,后续应如何组织学生归纳三角形的面积计算公式?
因篇幅问题不能全部显示,请点此查看更多更全内容