酚醛树脂泛指酚(苯酚、甲酚、二甲酚、间苯二酚等)与醛(甲醛、乙醛、糠醛等)合成的树脂,其中以苯酚与甲醛合成的苯酚甲醛树脂最为重要,它的产量占酚醛类树脂的首位,应用也最广泛。本书在以后的论述中,多以苯酚甲醛树脂为代表。
合成酚醛树脂的催化剂有酸、碱两大类,前者多用盐酸、草酸,有时也用磷酸、硫酸等其他酸;后者多用氨水、氢氧化钠,有时也用氢氧化钡、氧化镁、苯胺等作为辅助催化剂。近年来对采用金属盐类作为酚醛树脂合成的催化剂有了更多的研究和应用。此外还有用酶、其他有机酸作为催化剂的报道。
酚醛树脂在合成反应阶段分子量逐步增长,合成终点维持在线型及带支链的结构,相对分子质量一般均低于1000,特殊应用场合要高一些,甚至高于4000。酚醛树脂在应用于各种制品的成型过程必须要发生交联反应,使之形成三向网络大分子结构,相对分子量可谓无限大。三向网络结构可促进制品使用性能更加理想。促进交联的助剂包含固化剂和固化促进剂,六亚甲基四胺是最常用的固化剂,而固化促进剂可采用对甲苯磺酰氯和苯磺酰氯。 (二)原料
原料 名称 苯酚 混甲酚分子式 相对分子凝固点 沸点 质量 94.11 /℃ 40.9 /℃ 182.2 密度 /g.cm 1.055 -3溶解性 外观 C6H50H 溶于乙醇及一无色或白色结晶 定量水 稍溶于水,溶无色或棕色透明于乙醇 液体 (间位大CH3C6H4OH 108.1 于40% 间甲酚 CH3C6H4OH 108.1 苯胺 甲醛 C6H7N CH2O 93.21 30.03 11~35 191~203 203 1.03~1.047 1.034 12 -6.2 溶于水及乙醇 无色或黄色液体 溶于水及乙醇 无色油状液体 溶于水 水溶液为乳白色液体 溶于乙醇微溶无色或褐色油状于水 液体 184.4 1.0235 糠醛 C5H4O2 CN2O 96.08 -36.5 162 1.159 多聚甲醛
120~170 溶于水并放出白色结晶粉末 甲醛,不溶于乙醇 (三)辅料 物料 分子式 相对分子质量 36.7 外观 黄色或无色透明液体 特性 强酸性、强腐蚀性、溶于水 黄色或无色透明液体 强酸性、强腐蚀性、溶于水 无色或白色结晶颗粒 弱酸性、溶于水、熔点101℃结晶有毒 无色斜方晶体(纯品)磷酸 合成催化剂 氢氧化钠(液碱) 氨水 H3PO4 98.0 或稠厚液体(含H3PO483%~98%) NaOH 40.01 白色或微红色液体 强碱,强腐蚀性 NaOH含量≥30%的水溶液 无色或微黄色液体 弱碱、有强刺激性臭味 无色油状液体 苯胺 C6H7N 93.21 有强臭味及毒性,溶于水与乙醇等 氢氧化钡 Ba(OH)2·8H20 315.5 白色单斜晶体 苯胺含量≥98%,水含量≤1% NH3含量≥20% 中等酸性,溶于水和乙醇 品 含H3PO4≥83% 浓度≥98% 主要指标 HCL含量≥32% 盐酸 HCL 硫酸 H2SO4 98.1 草酸 (COOH)2·2H2O 126.07 NH4OH 35.05 有毒,熔点78℃, 溶于水 氧化镁 固化剂及固化促进剂 二、合成
苯磺酰氯 六亚甲基四胺(乌洛托品) 对甲苯磺酰氯 MgO 40.3 白色粉末 弱碱性,溶于酸不溶于水 无色结晶 (CH2)6NH4 140.9 280℃以上分解,纯度≥99% 263℃升华,水溶液微碱性 CH3C6H4SO2CL 约190 无色结晶 弱酸性、有臭味 纯度≥97% 无色油状液体 C6H5SO2CL 约176 中等酸性有刺激异味 纯度≥95% ( 一)合成反应
酚醛树脂的合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。即: 1、加成反应
在适当条件下,一元羟甲基苯酚继续进行加成反应,就可生成二元及多元羟甲基苯酚:
(2)缩合及缩聚反应
缩合及缩聚反应,随反应条件的不同可以发生在羟甲基苯酚与苯酚分子之间,也可发生在各个羟甲基苯酚分子之间,包括:
等等。
缩合反应不断进行的结果,将缩聚形成一定分子量的酚醛树脂,由于缩聚反应具有逐步的特点,中间产物相当稳定因而能够分离而加以研究。多年来研究分析通常认为,影响酚醛树脂的合成、结构及特性的主要因素为如下四点:
(1)原料的化学结构; (2)酚与醛的摩尔比; (3)反应介质的酸、碱性; (4)生产操作方法。 二、影响因素 1、原料的化学结构
根据高分子化合物合成的基本原理,只有原料的反应官能度为2时才能形成线型大分子,而若要形成支链以及体型(网状)结构高分子,原料的官能团必须大于2。
酚醛树脂的合成原料是酚与醛。由于醛类的反应官能度为2,所以酚的官能度就起了决定性作用。 苯酚的反应官能度为3,即羟基的邻、对位,其他常用酚的官能度数目及它们的活化点(以*记)表示如下:
显然,以上各种酚中,只有反应官能度为3的苯酚、间位取代酚才能与醛类反应获得交联网状结构。如果采用混甲酚为原料,其中间位甲酚所占比例应高于40%,否则难以形成足够交联密度的网状结构,致使树脂性能不佳。
酚上取代基不同,其与醛的反应速率差异显著,如以苯酚的反应速率为基准,设为1,其他酚的相对反应速率分别为:
3,5-二甲酚 间甲酚 苯酚 对甲酚 邻甲酚 7.75 2.88 1 0.35 O.26
醛类中,甲醛具有很高的反应活性,其在酸或碱的水溶液中极易形成甲二醇,并很快达到如下平衡: CH20+H20←HOCH20H
甲二醇是实际的活性双官能团单体。另外一种常用的醛是糠醛,由于其取代基远大于甲醛的-CH2,所以与酚的反应速率较甲醛慢。但糠醛的呋喃基中含有双键,具有多种反应活性,其所制酚醛树脂仍具有很好的交联固化特性。 2、酚与醛的摩尔比
酚醛树脂是酚类与醛类反应合成的产物,所以两者必须有适当的摩尔比,任何一种原料极大的过量,都不可能生成酚醛树脂。
当反应采取酚与醛的摩尔比为1:1时,理想状态下,应可生成线型结构的酚醛树脂,但因没有更多的甲醛分子,苯酚的三个反应活化点并没有充分起作用,故而不能形成交联网状结构的酚醛树脂。
若反应采取酚稍过量,例如醛与酚的摩尔比为2:3,则不能产生足够的羟甲基,缩聚反应达到一定阶段就会停止,只能得到较低分子量的线型结构酚醛树脂:
与上相反,若反应采取醛过量,即两者摩尔比大于1,则反应初期的加成反应,易于形成二元及多元羟甲基酚:
只有醛过量达到一定水平,能够保证生成较多量的三羟甲基苯酚的情况下,反应初期才能有一定支链结构的大分子,也才有可能继续进行交联反应最终形成网状结构。
3、反应介质的酸、碱性
实践得知,当甲醛水溶液(37%~40%)与等体积的苯酚混合后,其体系pH为3.O~3.1,即使加热至沸腾,亦难以发生反应。若在上述混合物系内另加入酸或碱,使pH小于3或大于3.1,则在稍加热的条件下,就可发生一定的反应。
人们根据研究和多年实践,普遍认为酚醛树脂合成的介质pH有两个比较适用的范围,即pH<3和pH=7~11。当pH<3,反应介质呈强酸性,这时酚醛树脂合成的第二步缩合反应速率远高于其第一步加成反应速率,因而更有利于形成线型结构大分子;当pH=7~11,反应介质呈强碱性,与前述情况相反,酚醛树脂合成的第一步产物(一元羟甲基苯酚)继续进行加成反应二元及多元羟甲基苯酚的速率都远比一元羟甲基苯酚生成的速率快,也比一元羟甲基苯酚继续反应速率快,所以更有利于生成二元及多元羟甲基苯酚,它们经缩聚反应就会形成带支链的树脂分子,不加控制情况下甚至会深度反应,形成交联的网状结构,并失去熔融流动性和可加工性。 4、生产操作方法
生产预定结构和性能的酚醛树脂,还应注意生产操作方法的影响,诸如原料和催化剂投入反应釜的时间差;各反应阶段温度、时间控制的调配;脱水干燥的方法、速度等都会影响酚醛树脂产品的相对分子质量及其分布。当然也就影响到树脂的稳定性(保存期)和工艺性能。
以上四方面影响因素就使得酚醛树脂的生产可以按两条具有显著差异的工艺路线来生产,即通称为热塑性树脂(又称二步法树脂、线型树脂、Novolak树脂)路线和热固性树脂(又称一步法树脂、甲阶或A阶树脂、Resole树脂)路线,现将该两条工艺路线汇总示意于图2-1中。
Resol型树脂三个阶段可分别描述为:
①甲阶(或A阶树脂)——可溶解于乙醇、丙酮及碱的水溶液中,加热及加酸可促进其转变至乙阶(或B阶)树脂;
②乙阶(或B阶)树脂——不溶解于碱溶液中,可以部分或全部的溶于丙酮或乙醇中。加热可促进其转变至丙阶(或c阶)树脂。乙阶(或B阶)树脂又称为半熔酚醛树脂;
③丙阶(或C阶)树脂——为不溶不熔的固体状态树脂,已形成网状大分子结构,常被称为固化及硬化的Resoles酚醛树脂。此状态树脂已失去可加工性。 三、固化 (一)定义
酚和醛在合成反应设备中,通过加成和适当缩聚反应所得到的树脂,通常都是分子量不高的低聚物和各种羟甲基酚的混合体系,虽然Novolaks及Resoles以如上节所述,结构上是有差异的,但从物性上它们均应为可溶及可熔。这样的可溶、可熔性使得它们便于浸渍填充增强材料制成各种类型的塑料用于生产形态及性能多种多样的塑料制品,也便于用作黏结剂、成模剂、功能性助剂等应用于耐火材料、铸造造型材料、摩擦材料、涂料、电子封装材料等多种府用领域。
然而,酚醛树脂只有在形成交联网状(或称体型)结构之后才具有优良的使用性能,包括力学性能、电绝缘性能、化学稳定性、热稳定性等。
酚醛树脂的固化就是使其转变为网状结构的过程,表现出凝胶化和完全固化的两个阶段,这一转变不仅是物理过程,更要强调的是,这是一个化学过程。所以酚醛树脂的固化绝不是熔体冷却到熔点以下的一般意义上的固化,而是高分子化学概念上的由线(支)型分子交联(cure)成网状分子导致失去可溶、可熔性的固化。
酚醛树脂固化后,在获得优良物理性质的同时,又失去了可溶、可熔性,不再有可加工性。因而其固化过程必然应在以酚醛树脂(Novolaks或Resoles)为黏结剂组成的塑料、油漆涂料及各种各样工程材料的使用或成型过程中完成。
正由于酚醛树脂的固化过程本质上是一种化学反应过程,所以表现出以下一些特点:
(1)树脂在固化前的结构因素(组成、分子量大小、反应官能度等)影响显著; (2)固化反应受催化剂、固化剂、树脂pH值等的影响显著;(3)固化过程有热效应;(4)固化速率受温度、压力的影响显著;(5)固化过程有副产物(如水、甲醛等)产生;(6)固化反应是不可逆过程。
(二)热塑性酚醛树脂固化
Novolak型树脂的结构,一般可表示为:
n一般为4~12,其值大小与起始反应原料中苯酚过量多少及反应时间有关。工业生产的此类树脂视应用领域不同而控制掌握n的大小,也就是分子量的大小。例如当竹值平均为5时,其平均分子量(Mn)约在500左右。
Novolak型树脂合成的基本条件之一是在摩尔比上,苯酚过量,甲醛不足,所以它的结构中基本不会有未反应的羟甲基存在,这样Novolaks就不可能自行发生交联反应而固化。但是这样树脂结构中的酚核还有未反应的活化点,只要补充甲醛,在加热条件下就可进行交联反应形成网状结构并固化。
为使Novolak型树脂交联固化,最常用的固化剂是六亚甲基四胺(乌洛托品),其他还可用多聚甲醛、Resole型酚醛树脂、苯胺。
六亚甲基四胺(HMTA)是氨与甲醛的加成物,它在超过100℃下发生分解,形成二甲醇胺并释放出甲醛和氨,从而与线型酚醛树脂分子反应,发生交联。六亚甲基四胺的受热分解可表示为:
用HMTA作为Novolak固化剂的固化反应历程至今未研究清楚,不过也有一些初步的研究成果。 (1)HMTA加入到含少量游离酚(约5%)及少于1%水分的Novolak中,加热后HMTA中任何一个氮原子上连接的三个化学键可依次打开与三个Novolak树脂分子上的活性点反应,导致它们的交联:
(2)上述交联结构仅是过渡状态,在进一步的加热交联过程中,继续分解,最后有NH。放出。并有少量的氮保留在交联固化的树脂结构中。
(3)交联过程中可能有多种邻位(o位)和对位(p位)的中间结构,如图2-10所示。
图2-10 Novolak树脂交联过程中的各种结构中间体
(4)交联固化后的Novolak,其结构与所用HMTA的比例及固化前NovoIak树脂起始结构中邻、对位(o,p位)活性点的比例有关。
(5)HMTA用量比对NovoIak交联反应和结构的影响是多方面的。表2-6及图2-11是一些实验结果。
图2-6 HMTA用量比对Novolak交联的影响
Novolak中Novolak/HMTA(质量比) 反应HMTA温度 用量 PH 活性点与HMTA中-CH2的摩尔比 94/6 低 低 较低 4.4/1 较快 反应速度 残余活性点 中间体走向 再反应 保留交联结构中含氮量 X-E下密度 多 低 低 80/20 高 高 低 4.4/1 较慢 无 到205℃ 高 高
图2-11六亚甲基四胺用量对酚醛 图2—12水含量对线型酚醛树
树脂凝胶时间的影响 脂凝胶时间的影响 (150℃) (150℃,10%六亚甲基四胺)
(6)为获得稳定的交联结构,应保证充足的HMTA用量以及最好采用酚核邻位(o位)大量空余的起始Novolak树脂。
(7)高邻位的Novolak(酚核上空余大量对位活性点)与一般的Novolak在同HMTA反应时,有所不同,高邻位者反应温度可低约20℃,说明反应活化能较低。
(8)树脂中游离酚和水含量对凝胶时间有影响,随他们的含量降低,凝胶速度变慢,图2—12显示水分含量对凝胶时间的影响,当水分含量超过1.2 %时,影响较小。图2—13显示游离酚对凝胶时间的影响,当酚含量超过7%~8%时,凝胶时间短。
(9)随交联反应温度上升,凝胶时间缩短,固化速度增加,如图2—14所示。
图2-13游离酚含量对线型酚醛树 图2—14温度对线型酚醛
脂凝胶时间的影响 树脂凝胶时间的影响 (150℃) (10%六亚甲基四胺)
(10)用HMTA作为交联剂,Novolak的交联可划分为两个阶段:凝胶化(第一阶段)和固化(第二阶段),至凝胶化结束,树脂已很难流动,至固化阶段结束,树脂已成网状结构,不溶亦不熔。其全过程的结构变化可示意如图2-15。
(三)热固性酚醛树脂的固化
前已述及,Resoles树脂是在醛与酚摩尔比大于1,碱性催化剂(如NaOH)作用下加热反应合成的,其结构在A(甲)阶段主要是一元、二元及三元羟甲基酚的混合物,有时也含有一定量的二聚体,它实际是缩聚控制在一定程度内的活性中间产物,因此很容易在适当条件下继续进行反应而凝胶化,甚至交联固化成网状结构大分子。虽然常温下和在pH大于7的碱性条件下也可以使Resole化,但大多数场合为了加速其固化而需要适当加热和改变为酸性条件。
Resoles固化机理相当复杂,至今仍不完全清楚,比较一致的观点是主要由羟甲基酚之间的下列反应的不断发生导致Resoles先实现凝胶化,进而交联固化。
上面这(1)、(2)两种反应有下列几点不同:即反应(1)是酚核上的羟甲基与另一羟甲基酚的酚核上的氢脱去一分子水而形成-CH2一桥,而反应(2)是两个羟甲基酚上的羟甲基之间脱去一分子水而形成-CH2-0-CH2一桥;另外,反应(1)生成亚甲基键的活化能较低,为57.4kJ/mol,而反应(2)生成醚键的活化热较高,约为114.7kJ/mol。
固化反应除以上反应外还可发生其他类型的反应,例如酚羟基与羟甲基的缩合:
Resole树脂在低于170℃固化时,在酚核间主要形成亚甲基键及醚键,其中亚甲基键是酚醛树脂固化时形成的最稳定和最重要的化学键。酸和碱都是有效的亚甲基键形成的催化剂,在酸性条件下、中等温度下的固化速率正比于氢离子浓度;强碱条件下,在反应的早期,当pH超过一定的值后,固化速率与碱的浓度无关。在固化过程中形成的醚键既可以是固化结构中的最终产物,也可以是过渡的产物。酚醇在中性条件下加热(低于160℃)很易形成二苄基醚,然而超过160℃,二苄基醚易分解成亚甲基键,并逸出甲醛:
同时在酚醇分子中取代基的大小与性质对醚键的形成也有很大的影响,如表2-7所示。
表2-7酚醇的对位取代基对醚键形成的影响
出水温度 出甲醛温度 温度差 对代取代基 /℃ /℃ /℃ 对代取代基 /℃ /℃ /℃ 出水温度 出甲醛温度 温度差 甲基 乙基 丙基 正丁基 135 130 130 130 145 150 155 150 10 20 25 20 叔丁基 苯基 环己基 苄基 110 125 130 125 140 170 180 170 30 45 50 45 综上,Resole树脂在固化过程中,通常认为亚甲基键和醚链同时生成,两者在固化结构中的比例是与树脂中羟甲基的数目、体系的酸碱性、固化温度和酚环上活泼氢的多少有关。若固化温度低于160℃,对由于取代酚形成的A阶树脂,生成二苄基醚是非常重要的反应,对于三官能度酚合成的树脂,这一反应也可发生,但重要性较小,如果树脂呈碱性,主要生成亚甲基键。在酸性条件下,亚甲基键与醚键同时生成,在强酸性条件下主要生成亚甲基键。
在较高温度下(超过170℃),二苄基醚不稳定,可进一步反应。然而,亚甲基键在低于树脂的完全分解温度时非常稳定,并不断裂。在中性条件下,从三官能度酚合成的A阶树脂的固化结构中,亚甲基键是主要的连接形式。此外还生成亚甲基苯醌和它们的聚合物以及氧化-还原产物。固化过程中产生的4-亚甲基-2,5-环己二烯-1-酮或6-亚甲基-2,4-环己二烯-1-酮具有如下结构:
这些化合物可进一步反应,既可与不饱和键进行Diels-Alder反应,也可与羟甲基苯酚发生氧化还原反应,生成醛产物:
Resoles树脂中添加酸使之固化的反应,在许多方面都与Novolak酚醛树脂合成过程中的反应类似,它们的主要区别在Resole树脂的酸固化过程中醛相对酚有较高的比例,以及当酸添加时醛以化学结合至树脂分子结构之中。因此,其酸固化时的主要反应是在树脂分子间形成亚甲基键。然而,若酸的用量较少、固化温度较低以及树脂分子中的羟甲基含量较高时,二苄基醚也可形成。Resoles酚醛树脂酸固化时的另一特点是反应剧烈,并放出大量的热,酚与醛在酸催化下缩聚反应的高度放热对制备自发泡的酚醛树脂极为有用。反应放热也使树脂温度升高,又加速了固化反应。
Resole型酚醛树脂的固化过程最好在较低的pH值下进行。已经发现对各类型的Resole树脂而言,最稳定的pH值范围与树脂合成时所用酚的类型和固化温度有关。间苯二酚类型的树脂最稳定的pH值
为3,而苯酚类型的树脂最稳定的pH值约为4左右。显然,在pH值低于3时固化反应由氢离子催化,而在较高的pH值时(约从5开始),固化过程由氢氧根离子催化。
影响Resole型树脂固化速率的另一些因素如下。
(1)树脂合成时的酚醛投料比一阶热固性树脂在固化时的反应速度与合成树脂时的甲醛投料量有关,即甲醛含量增加,树脂的凝胶时间缩短(图2-16)。
图2-16在150℃合成一阶固体树脂时开始甲醛/苯酚的摩尔比对反应性的影响
(2)酸碱性Resole型树脂的热固性能受体系酸、碱性的影响很大。当固化体系的pH=4时为中性点,固化反应极慢,增加碱性导致快速凝胶,增加酸性导致极快的凝胶。
(3)温度随固化温度升高,A阶树脂的凝胶时间明显缩短,每增加10℃,凝胶时间缩短一半。
因篇幅问题不能全部显示,请点此查看更多更全内容