1log23,求xx2x3xn的前n项和.
2. 设Sn=1+2+3+…+n,n∈N*,求f(n)
Sn(n32)Sn1的最大值.
3.求和:Sn13x5x27x3(2n1)xn1………………………①
4.求数列
012nn5.求证:Cn3Cn5Cn(2n1)Cn(n1)2
222,42,623,,2n2n,前n项的和.
6.求sin1sin2sin3sin88sin89的值
7.求数列的前n项和:11,
1/ 5
222221a4,1a27,,1an13n2,…
8.求数列{n(n+1)(2n+1)}的前n项和.
9.求数列12,24,38,,(n
10. 求数列
112,123,,1nn1,的前n项和.
11112n),的前
n项和。
11.在数列{an}中,an的和.
12.求5,55,555,…,的前n项和。
1n12n1nn1,又bn2anan1,求数列{bn}的前n项
2/ 5
答案:1解:由log3x1log23log3xlog32x12
1Snxxxx=
23nx(1x)1x12n=2(11121212n)=1-
12n
.2.解:由等差数列求和公式得Sn∴f(n)Sn(n32)Sn1n(n1),Sn(n1)(n2)
=
nn34n642=
1n3464n=(n18n)502150
∴当n88,即n=8时,f(n)max150
3解:由题可知,{(2n1)xn1}的通项是等差数列{2n-1}的通项与等比数列{xn1}的通项
234n之积。设xSn1x3x5x7x(2n1)x……………………….②(设制错位)234n1n(2n1)x(错位相减)再利①-②得(1x)Sn12x2x2x2x2x用等比数列的求和公式得:(1x)Sn12x(2n1)xn11xn11x(2n1)x
n∴Sn(2n1)x(1x)(1x)2n
12n.4.解:由题可知,{设Sn12Sn222222n23n}的通项是等差数列{2n}的通项与等比数列{
2n2n}的通项之积
42262624…………………………………①
………………………………②(设制错位)
24421223222222n2n1①-②得(1212n1)Sn232nn1∴Sn422n22n122n2n2n1(错位相减)
012n5.证明:设SnCn3Cn5Cn(2n1)Cn………………………….. ①
把①式右边倒转过来得
Sn(2n1)Cn(2n1)Cnnn13CnCn(反序)
10mnm01n1n又由CnCn可得Sn(2n1)Cn(2n1)Cn3CnCn………..②
3/ 5
1n1nn①+②得2Sn(2n2)(Cn0CnCnCn)2(n1)2(反序相加)
∴Sn(n1)2n
6.解:设Ssin21sin22sin23sin288sin289………….①
将①式右边反序得Ssin289sin288sin23sin22sin21….②(反序)又因为sinxcos(90x),sin2xcos2x1
①+②得2S(sin21cos21)(sin=89 ∴S=44.5 7.解:设Sn(11)(1a4)(1a222cos2)(sin2289cos89)27)(1an13n2)
将其每一项拆开再重新组合得
Sn(11a1a21n1当a=1时,Snn1a(3n1)n2)(1473n2)(分组)
=
(3n1)n2(分组求和)
1na(3n1)n=aa1a121n当a1时,Sn1(3n1)n2
a328.解:设akk(k1)(2k1)2k3kk
nn3∴Snk(k1)(2k1)=(2kk1k13kk)
2将其每一项拆开再重新组合得
n3n2nSn=2k3kk1k1333k12k(分组)
=2(12n)3(12n)(12n) n(n1)22222=n(n1)(2n1)21118n(n1)21=
n(n1)(n2)22
解:S123(n)n242n9.
1111(123n)(23n)2222n(n1)1n2211
4/ 5
10解:设an1121n123n1n1n(裂项)
则Sn1nn1(裂项求和)
=(21)(311.解: ∵an∴bn2nn122121n122)(n1n)=n11
n1nn1n2
8(1n1n1)(裂项)
∴数列{bn}的前n项和
Sn8[(1)(1n11213)(1314)(1n1n1)](裂项求和)
=8(1)=5 8nn1∴ 原等式成立
n12.解:∵an=9(10-1)
∴Sn=9(10-1)+ 9(102-1) + 9(103-1) + … + 9(10n-1) 5 =9[(10+102+103+……+10n)-n]81n+1= (10-9n-10) 55 5 5 5
5/ 5
因篇幅问题不能全部显示,请点此查看更多更全内容