您的当前位置:首页正文

2021届高考数学(理)考点复习:等比数列及其前n项和(含解析)

2020-07-26 来源:易榕旅网


2021届高考数学(理)考点复习

等比数列及其前n项和

1.等比数列的有关概念

(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数an+1

列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为=q(n∈N*,

anq为非零常数).

(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即G是a与b的等比中项⇒a,G,b成等比数列⇒G2=ab. 2.等比数列的有关公式 (1)通项公式:an=a1qn1. (2)前n项和公式:

na1q=1,

Sn=a11-qna1-anq

=q≠11-q1-q3.等比数列的常用性质 (1)通项公式的推广:an=am·qn

-m

(n,m∈N*).

2. (2)若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=ak

1an

(3)若数列{an},{bn}(项数相同)是等比数列,则{λan},a,{a2bn},b(λ≠0)仍然是等比数n},{an·

n

n

列.

(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.

4.在等比数列{an}中,若Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n也成等比数列(n为偶数且q=-1除外). 概念方法微思考

1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?

提示 仍然是一个等比数列,这两个数列的公比互为倒数. 2.任意两个实数都有等比中项吗?

提示 不是.只有同号的两个非零实数才有等比中项.

3.“b2=ac”是“a,b,c”成等比数列的什么条件?

提示 必要不充分条件.因为b2=ac时不一定有a,b,c成等比数列,比如a=0,b=0,c=1.但a,b,c成等比数列一定有b2=ac.

1.(2020•新课标Ⅰ)设{an}是等比数列,且a1a2a31,a2a3a42,则a6a7a8(

) A.12 【答案】D

【解析】{an}是等比数列,且a1a2a31, 则a2a3a4q(a1a2a3),即q2,

B.24

C.30

D.32

a6a7a8q5(a1a2a3)25132, 故选D.

2.(2020•新课标Ⅱ)记Sn为等比数列{an}的前n项和.若a5a312,a6a424,则

Sn( an) A.2n1 【答案】B

【解析】设等比数列的公比为q, a5a312, a6a4q(a5a3),

B.221n C.22n1 D.21n1

q2,

a1q4a1q212, 12a112, a11,

12nSn2n1,an2n1,

12Sn2n1n1221n, an2故选B.

3.(2019•全国)3333532n1( ) A.3(9nn121)

B.3(91)

C.328(9n1)

D.38(9n11)

【答案】D

【解析】数列3,33,35,,32n1是首项为3,公比为32的等比数列; 且32n1是第n1项;

3333532n13(132n2)13238(9n11).

故选D.

4.(2019•浙江)设a,bR,数列{a2n}满足a1a,an1anb,nN*,则( A.当b12时,a1010 B.当b14时,a1010 C.当b2时,a1010 D.当b4时,a1010

【答案】A

【解析】对于B,令x2x1140,得x2,

取a112,a1122,,an210, 当b14时,a1010,故B错误; 对于C,令x2x20,得x2或x1, 取a12,a22,,an210,

当b2时,a1010,故C错误;

对于D,令x2x40,得x1172, 取a11712,a11711722,,an210, 当b4时,a1010,故D错误;

对于A,a232a21122,a113(a22)24, a(a4a231911744)22162161,

an1an0,{an}递增,

)

1a13当n4时,n1an21,

anan22a53a24a63a52a3729,10()6,a1010.故A正确.

a2644a103a92故选A.

5.(2019•新课标Ⅲ)已知各项均为正数的等比数列{an}的前4项和为15,且a53a34a1,则a3(

) A.16 【答案】C

【解析】设等比数列{an}的公比为q(q0), 则由前4项和为15,且a53a34a1,有

23a11a1a1qa1qa1q15,, 42q2aq3aq4a111B.8 C.4 D.2

a3224.

故选C.

6.(2020•江苏)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{anbn}的前n项和Snn2n2n1(nN*),则dq的值是__________. 【答案】4

【解析】因为{anbn}的前n项和Snn2n2n1(nN*),

因为{an}是公差为d的等差数列,设首项为a1;{bn}是公比为q的等比数列,设首项为b1, 所

{an}的通项公式

ana1(n1)d,所以其前n项和

Sann[a1a1(n1)d]d2dn(a1)n,

222当{bn}中,当公比q1时,其前n项和Sbnnb1, 所以{anbn}的前n项和SnSanSbn现2n,所以q1,

d2d显然没有出n(a1)nnb1n2n2n1(nN*),

22b1(qn1)b1qnb1, 则{bn}的前n项和为Sbnq1q1q1b1qnbd2d1n2n2n1(nN*), 所以SnSanSbnn(a1)n22q1q1d21ad112由两边对应项相等可得:解得:d2,a10,q2,b11, q2b11q1所以dq4, 故答案为:4.

7.(2020•新课标Ⅰ)数列{an}满足an2(1)nan3n1,前16项和为540,则a1__________. 【答案】7

【解析】由an2(1)nan3n1, 当n为奇数时,有an2an3n1, 可得anan23(n2)1,

a3a1311,

累加可得ana13[13(n2)][1(n2)]32n1 2n12n1(n1)(3n5);

24当n为偶数时,an2an3n1,

可得a4a25,a8a617,a12a1029,a16a1441. 可得a2a4a1692. a1a3a15448.

8a1(084096176280408560)448,

148a156,即a17.

故答案为:7.

8.(2019•上海)已知数列{an}前n项和为Sn,且满足Snan2,则S5__________. 【答案】

31 16【解析】由Snan2,① 得2a12,即a11, 且Sn1an12(n2),② 1①②得:anan1(n2).

2数列{an}是等比数列,且a11,q1. 211[1()5]231. S511612故答案为:

31. 163,则S4__________. 49.(2019•新课标Ⅰ)设Sn为等比数列{an}的前n项和.若a11,S35【答案】

8【解析】等比数列{an}的前n项和,a11,S31q33, q1,

1q43, 4整理可得,q2q1解可得,q,

210, 4

11q165. 则S41q1182415故答案为:.

811212a6,则S5 10.(2019•新课标Ⅰ)记Sn为等比数列{an}的前n项和.若a1,a4 .

33【答案】

2a6,得q6a12q5a10, 【解析】在等比数列中,由a4即q0,q3, 1(135)121则S53, 133故答案为:

121. 311.(2020•北京)已知{an}是无穷数列.给出两个性质:

ai2am; ①对于{an}中任意两项ai,aj(ij),在{an}中都存在一项am,使得ajak2②对于{an}中任意一项an(n3),在{an}中都存在两项ak,al(kl),使得an.

al(Ⅰ)若ann(n1,2,),判断数列{an}是否满足性质①,说明理由;

(Ⅱ)若an2n1(n1,2,),判断数列{an}是否同时满足性质①和性质②,说明理由; (Ⅲ)若{an}是递增数列,且同时满足性质①和性质②,证明:{an}为等比数列.

a329a32N*,不存在一项am使得am. 【解析】(Ⅰ)不满足,理由:

a22a2(Ⅱ)数列{an}同时满足性质①和性质②,

ai222ij1,因为iN*,jN*且ij,所以2ijN*,则理由:对于任意的i和j,满足aj必存在m2ij,此时,2m1ai2{ai}且满足22ij1am,性质①成立,

aj

对于任意的n,欲满足an2n1ak222kl1,满足n2kl即可,因为kN*,且kl, lN*,alak2所以2kl可表示所有正整数,所以必有一组k,l使n2kl,即满足an,性质②成立.

al(Ⅲ)首先,先证明数列恒正或恒负, 反证法:假设这个递增数列先负后正,

那么必有一项al绝对值最小或者有al与al1同时取得绝对值最小, al2如仅有一项al绝对值最小,此时必有一项am,此时|am||al|

aj与前提矛盾,

al2如有两项al与al1 同时取得绝对值最小值,那么必有am,

al1此时|am||al|,与前提条件矛盾, 所以数列必然恒正或恒负,

在数列恒正的情况下,由②知,存在k,l且kl, ak2a3ak, 因为是递增数列,akal0,使得ala22a3,此时a1,a2,a3成等比数列, 即3kl,所以a1数学归纳法:

(1)已证n3时,满足{an}是等比数列,公比qa2, a1a2, a1(2)假设nk时,也满足{ak}是等比数列,公比qak2qak等于数列的某一项am,证明这一项为ak1即可, 那么由①知ak1反证法:

ak2qakak1, 假设这一项不是ak1,因为是递增数列,所以该项amak1那么akak1qak,由等比数列{ak}得a1qk1ak1a1qk,

由性质②得a1qk1am2am2ka1q,同时ak1amal,s所以k1ml, alal所以am,al分别是等比数列{ak}中两项,即ama1qm1,ala1ql1, 原式变为a1qk1a1q2ml1a1qk,

所以k12ml1k,又因为kN*,mN*,lN*,不存在这组解,所以矛盾, ak2qakak1,{ak1}为等比数列, 所以知ak1由数学归纳法知,{an}是等比数列得证, 同理,数列恒负,{an}也是等比数列.

12.(2020•天津)已知{an}为等差数列,{bn}为等比数列,a1b11,a55(a4a3),b54(b4b3). (Ⅰ)求{an}和{bn}的通项公式;

2(Ⅱ)记{an}的前n项和为Sn,求证:SnSn2Sn1(nN*);

3an2bn,n为奇数,anan2(Ⅲ)对任意的正整数n,设cn求数列{cn}的前2n项和.

an1,n为偶数bn1【解析】(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q, 由a11,a55(a4a3),则14d5d,可得d1, an1n1n, b11,b54(b4b3),

q44(q3q2), 解得q2,

bn2n1;

(Ⅱ)证明:法一:由(Ⅰ)可得Snn(n1), 211SnSn2n(n1)(n2)(n3),(Sn1)2(n1)2(n2)2,

44

12, SnSn2Sn1(n1)(n2)022SnSn2Sn1(nN*);

法二:数列{an}为等差数列,且ann, Snn(n1)(n2)(n3)(n1)(n2),Sn2,Sn1, 222SnSn2n(n3)n23n21, 2Sn1(n1)(n2)n3n22SnSn2Sn1(nN*);

(3an2)bn(3n2)2n12n12n1(Ⅲ),当n为奇数时,cn,

anan2n(n2)n2n当n为偶数时,cnan1n1n, bn12nk1对任意的正整数n,有c2k1和c2kk1nn22k22k222n()1,

2k12k12n1k1n2k11352n1,①, k23n44444k11n132n32n11由①可得c2k23n1,②,

4k1444n443n122212n1①②得c2k23nn1,

4k1444444c2kk12nn56n5, 994nnn4n6n54因此c2kc2k1c2k.

2n194n9k1k1k14n6n54数列{cn}的前2n项和.

2n194n913.(2020•海南)已知公比大于1的等比数列{an}满足a2a420,a38. (1)求{an}的通项公式;

(2)求a1a2a2a3(1)n1anan1.

【解析】(1)设等比数列{an}的公比为q(q1), a2a4a1qa1q320则, 2aaq813

a2, q1,1q2an22n12n.

(2)a1a2a2a3(1)n1anan1

23252729(1)n122n1,

2n323[1(22)n]8n2. (1)21(2)5514.(2020•新课标Ⅰ)设{an}是公比不为1的等比数列,a1为a2,a3的等差中项. (1)求{an}的公比;

(2)若a11,求数列{nan}的前n项和. 【解析】(1)设{an}是公比q不为1的等比数列, a1为a2,a3的等差中项,可得2a1a2a3,

即2a1a1qa1q2, 即为q2q20, 解得q2(1舍去), 所以{an}的公比为2; (2)若a11,则an(2)n1,

nann(2)n1,

则数列{nan}的前n项和为Sn112(2)3(2)2n(2)n1,

2Sn1(2)2(2)23(2)3n(2)n,

两式相减可得3Sn1(2)(2)2(2)3(2)n1n(2)n 1(2)nn(2)n, 1(2)1(13n)(2)n化简可得Sn,

91(13n)(2)n所以数列{nan}的前n项和为.

9

15.(2020•山东)已知公比大于1的等比数列{an}满足a2a420,a38. (1)求{an}的通项公式;

(2)记bm为{an}在区间(0,m](mN*)中的项的个数,求数列{bm}的前100项和S100. 【解析】(1)a2a420,a38,

88q20, q1(舍去), 2解得q2或qa12,

an2n,

(2)记bm为{an}在区间(0,m](mN*)中的项的个数, 2nm, nlog2m,

故b10,b21,b31,b42,b52,b62,b72,

b83,b93,b103,b113,b123,b133,b143,b153,b164,,

可知0在数列{bm}中有1项,1在数列{bm}中有2项,2在数列{bm}中有4项,,

1(126)1(127)由63100,127100

1212可知b635,b64b65b1006.

数列{bm}的前100项和S1000122438416532637480.

16.(2020•新课标Ⅲ)设等比数列{an}满足a1a24,a3a18. (1)求{an}的通项公式;

(2)记Sn为数列{log3an}的前n项和.若SmSm1Sm3,求m. aaq4【解析】(1)设公比为q,则由121,

aqa811可得a11,q3,

所以an3n1.

(2)由(1)有log3ann1,是一个以0为首项,1为公差的等差数列, 所以Sn所以

n(n1), 2m(m1)(m1)m(m3)(m2),m25m60, 222解得m6,或m1(舍去), 所以m6.

17.(2020•浙江)已知数列{an},{bn},{cn}满足a1b1c11,cnan1an,cn1bn (nN*).cn,

bn2(Ⅰ)若{bn}为等比数列,公比q0,且b1b26b3,求q的值及数列{an}的通项公式; (Ⅱ)若{bn}为等差数列,公差d0,证明:c1c2c3cn1【解析】(Ⅰ)由题意,b2q,b3q2, b1b26b3,1q6q2,

1,nN*. d整理,得6q2q10,

11解得q(舍去),或q,

23b111cn1ncncn2cnc4cn,

bn212nbn2q()2bn数列{cn}是以1为首项,4为公比的等比数列,

cn14n14n1,nN*. an1ancn4n1, 则a11, a2a11,

a3a241,

anan14n2, 各项相加,可得

14n14n12. an114441143b(Ⅱ)证明:依题意,由cn1ncn(nN*),可得

bn212n2bn2cn1bncn,

两边同时乘以bn1,可得 bn1bn2cn1bnbn1cn, b1b2c1b21d,

数列{bnbn1cn}是一个常数列,且此常数为1d,

bnbn1cn1d,

cn1d1dd1bb111(1)n1n(1)(), bnbn1dbnbn1dbnbn1dbnbn1又b11,d0, bn0, c1c2cn

111111111(1)()(1)()(1)()

db1b2db2b3dbnbn11111111(1)()

db1b2b2b3bnbn1111(1)()

db1bn111(1)(1)

dbn111, d1,故得证. dc1c2cn118.(2020•上海)已知各项均为正数的数列{an},其前n项和为Sn,a11. (1)若数列{an}为等差数列,S1070,求数列{an}的通项公式;

1(2)若数列{an}为等比数列,a4,求满足Sn100an时n的最小值.

8【解析】(1)数列{an}为公差为d的等差数列,S1070,a11, 41可得10109d70,解得d,

32441则an1(n1)n;

3331(2)数列{an}为公比为q的等比数列,a4,a11,

811可得q3,即q,

2811()n122(1)n1, 则an()n1,Sn1221211Sn100an,即为2()n1100()n1,

22即2n101,可得n7,即n的最小值为7.

119.(2019•全国)数列{an}中,a1,2an1anan1an0.

3(1)求{an}的通项公式;

(2)求满足a1a2a2a3an1an1的n的最大值. 7【解析】(1)2an1anan1an0.

1112,又3,

a1an1an1}是以3为首项,2为公差的等差数列, an数列{

11; 2n1,anan2n1(2)由(1)知,an1an1111()(n2),

(2n1)(2n1)22n12n11111111111a1a2a2a3an1an[()()()](),

235572n12n1232n1a1a2a2a3an1an11111,(), 7232n174n242,n10,nN*, n的最大值为9.

20.(2019•浙江)设等差数列{an}的前n项和为Sn,a34,a4S3.数列{bn}满足:对每个nN*,

Snbn,Sn1bn,Sn2bn成等比数列.

(Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)记cnan,nN*,证明:c1c2cn2n,nN*. 2bn【解析】(Ⅰ)设数列{an}的公差为d, a2d4由题意得1,

a3d3a3d11解得a10,d2, an2n2,nN*.

Snn2n,nN*,

数列{bn}满足:对每个nN*,Snbn,Sn1bn,Sn2bn成等比数列.

(Sn1bn)2(Snbn)(Sn2bn), 1解得bn(Sn12SnSn2),

2解得bnn2n,nN*. (Ⅱ)证明:cnan2bn2n22n(n1)n1,nN*,

n(n1)用数学归纳法证明:

①当n1时,c102,不等式成立;

②假设nk,(kN*)时不等式成立,即c1c2ck2k, 则当nk1时,

c1c2ckck12kk12k (k1)(k2)k12k2k1k2k2(k1k)2k1,

即nk1时,不等式也成立.

由①②得c1c2cn2n,nN*.

21.(2019•新课标Ⅱ)已知数列{an}和{bn}满足a11, b10,4an13anbn4,4bn13bnan4.(1)证明:{anbn}是等比数列,{anbn}是等差数列; (2)求{an}和{bn}的通项公式.

【解析】(1)证明:4an13anbn4,4bn13bnan4; 4(an1bn1)2(anbn),4(an1bn1)4(anbn)8;

1即an1bn1(anbn),an1bn1anbn2;

2又a1b11,a1b11, {anbn}是首项为1,公比为

1的等比数列, 2{anbn}是首项为1,公差为2的等差数列;

1(2)由(1)可得:anbn()n1,

2anbn12(n1)2n1;

11an()nn,

2211bn()nn.

2222.(2019•新课标Ⅱ)已知{an}是各项均为正数的等比数列,a12,a32a216. (1)求{an}的通项公式;

(2)设bnlog2an,求数列{bn}的前n项和. 【解析】(1)设等比数列的公比为q, 由a12,a32a216,得2q24q16, 即q22q80,解得q2(舍)或q4.

ana1qn124n122n1;

(2)bnlog2anlog222n12n1, b11,bn1bn2(n1)12n12,

数列{bn}是以1为首项,以2为公差的等差数列,

则数列{bn}的前n项和Tnn1n(n1)22n2. 23.(2019•上海)已知数列{an},a13,前n项和为Sn. (1)若{an}为等差数列,且a415,求Sn;

(2)若{an}为等比数列,且limnSn12,求公比q的取值范围.

【解析】(1)a4a13d33d15,d4, Sn(n1)n3n242n2n; (2)S3(1qn)n1q,limSn存在,1q1,

n存在,3(1qnlimnS1q1且q0,lim)3nnSnlim1q1q, n

31q12,q34,1q0或0q34, 公比q的取值范围为(1,0)(0,34).

1.(2020•兴庆区校级四模)等比数列{a1n}中,a24,q2,则a4与a8的等比中项是( A.4 B.4

C.14

D.

14 【答案】A 【解析】

a124,q2,

aa162q44244.

又a24a8a616. a4与a8的等比中项是4.

故选A.

2.(2020•德阳模拟)已知等比数列{aa7a9n}中,a53,a4a745,则aa的值为( )67A.30 B.25

C.15

D.10

【答案】A

)

【解析】根据题意,等比数列{an}中,设其公比为q, 若a53,a4a745,则a4a7a4a6q(a5)2q45,则q5,

a37a9aqqq(1q)30; 6a71q故选A.

3.(2020•南岗区校级模拟)已知数列{an}是等比数列,a312,a5a66a11,则a9( A.242 B.48 C.192 D.768

【答案】B

【解析】设等比数列的公比为q, 由于a312,可得:a1q212,①

由于a25a66a11,可得:a1q96a1q10,可得a16q, 代入①可得:q32,

所以a9a1q86q962348. 故选B.

4.(2020•九龙坡区模拟)已知实数12,a,b,c,8成等比数列,则abc( )A.8 B.8 C.8 D.16

【答案】A

【解析】根据题意,实数12,a,b,c,8成等比数列,

则有b2ac(12)(8)4,则b2ac4,

又由b0,则b2, 则abc8; 故选A.

5.(2020•南岗区校级四模)在等比数列{an}中,a11,a3a22,则a5( ) A.16 B.1

C.16或1

D.16或1

【答案】D

)

【解析】根据题意,设等比数列{an}的公比为q,

若a11,a3a22,则有q2q2,解可得q2或1, 若q2,则a5a1q416, 若q1,则a5a1q41, 故a516或1; 故选D.

6.(2020•鼓楼区校级模拟)已知正项等比数列{an}的首项和公比相等,数列{bn}满足bnlog2an,且b1b2b312,则a4( ) A.4 【答案】D

【解析】正项等比数列{an}的首项和公比相等, 故anqn;

312; 由题可得:b1b2b3log2a1log2a2log2a3log2a2B.32 C.108 D.256

3a2212(24)3,

a22442; q4;

a444256, 故选D.

7.(2020•碑林区校级模拟)在等比数列{an}中,a316,a2a529,则an( ) A.2n1 【答案】A

【解析】在等比数列{an}中,a316,a2a529, a1q216,解得a14,q2, 49aqaq211B.2n1 C.4n1 D.4n1

an42n12n1. 故选A.

8.(2020•榆林四模)已知数列{an}为等比数列,若a31,a9125,则a5( ) A.5 【答案】D

【解析】设等比数列{an}的公比为q,a31,a9125,

B.25

C.5

D.5

1q6125,解得q25. a5a3q25. 故选D.

9.(2020•香坊区校级一模)设Sn为正项递增等比数列{an}的前n项和,且2a32a2a4,a1a516,则S6的值为( ) A.63 【答案】A

216,则a34, 【解析】根据题意,正项递增等比数列{an}中,a1a516,即a3B.64 C.127 D.128

又由2a32a2a4,则a2a4414q10,解可得q2或, q2又由数列{an}为正项递增等比数列,则q2; 又由a34,则a11,

a1(1q6)63; 则S61q故选A.

10.(2020•安徽模拟)等差数列{an}的首项为5.公差不等于零.若a2,a4,a5成等比数列,则a2020(

) A.

1 2B.3 2C.3 2D.2014

【答案】D

【解析】等差数列{an}的首项为5,公差d不等于零,

2a2a5, 若a2,a4,a5成等比数列,则a4即为(53d)2(5d)(54d), 解得d1,

则a202052019(1)2014. 故选D.

11.(2020•道里区校级模拟)设公比为3的等比数列{an}的前n项和为Sn,若S31,则a4a5a6(

) A.3 【答案】C

【解析】公比为3的等比数列{an}的前n项和为Sn,S31, a1(133)S31,

131解得a1,

13a4a5a61(2781243)27. 13B.9 C.27 D.81

故选C.

12.(2020•靖远县模拟)已知数列{an}是等比数列,数列{bn}是等差数列,若a1a6a1133,

b1b6b116,则

b3b9的值是( ) a4a8A.23 3B.2 C.

2 3D.

4 3【答案】D

【解析】在等差数列{bn}中,由b1b6b116,得3b66,即b62, b3b92b64,

在等比数列{an}中,由a1a6a1133,得a6333,即a63,

a4a8a623.

b3b94. a4a83故选D.

113.(2020•道里区校级模拟)设公比为3的等比数列{an}前n项和为Sn,且S3,则a5a6a7(

3) A.3 【答案】C

11【解析】根据题意,等比数列{an}公比为3,且S3,即a1a2a3,

33B.9 C.27 D.81

则a5a6a7q4(a1a2a3)3327; 故选C.

2an2,n为奇数14.(2020•永康市模拟)已知数列{an}满足a10,a21,an则数列{an}n3,

2a,n为偶数n1的前10项和为( ) A.48 【答案】D

2an2,n为奇数【解析】由a10,a21,当n3时,an,

2a,n为偶数n1B.49 C.50 D.61

可得a32,a4224,a5224,a6248,a7246, a82612,a9268,a102816,

则S10(a1a3a5a7a9)(a2a4a6a8a10) (02468)(1481216)204161.

故选D.

15.(2020•全国四模)在等比数列{an}中,a12,a664,则数列{an}前7项的和S7( ) A.253 【答案】B

【解析】由等比数列的性质可知,q53225, 故q2,

B.254

C.255

D.256

2(127)S7254.

12故选B.

16.(2020•吉林四模)已知nN*,则22232425n1( ) A.25n4 【答案】C

【解析】nN*,则22232425n1

B.25n136

C.32n4

D.25n112

2225n1225n432n4.

12故选C.

17.(2020•吉林模拟)已知等比数列{bn},b1b2(1)求数列{bn}的通项公式;

1a(2)若数列n是首项为b1,公差为b2的等差数列,求数列的前n项和.

nan33,且b2b3. 483bbq114【解析】(1)设数列{bn}的公比为q,则,

3bqbq21181b112解得,所以bn()n.

2q12n11n111a(2)数列n是首项为,公差为的等差数列,所以(n1)],

an24424nn2n1411得到an,4(),

ann(n1)nn14111111114n数列的前n项和S4[()()(. )]4(1)a1223nn1n1n1n18.(2020•武汉模拟)已知等比数列{an}是递增的数列,且前n项和为Sn,S37,又a13,3a2,

a34成等差数列.

(1)求数列{an}的通项公式; (2)令bnlog2an1,求|b1||b2||bn|. 64【解析】(1)设公比为q的等比数列{an}是递增的数列,且前n项和为Sn,S37,又a13,

3a2,a34成等差数列.

S37所以2(3a2)a1a334a22,解得1q2或2,

由于数列{an}是递增的数列, 所以q2.

所以an22n22n1. (2)由(1)得bnlog2当n6时,bn0, 所以|b1||b2||bn|n(11n). 2an1,n6, 64n211n60当n7时,|b1||b2||bn|(b1b2bn)2(b1b2b6).

2n(11n)(1n6)2故|b1||b2||bn|2.

n11n60(n7)219.(2020•道里区校级一模)已知数列{an}的前n项和为Sn,nN*,且a11,an1(1)证明:数列{an}是等比数列; n1n2 an.

2n2(2)求数列{an}的通项公式与前n项和Sn. 【解析】(1)an1n2an, 2n2n2anan11a2n2n, n2n22n1又

a11, 112数列{ana11}是首项、公比均为的等比数列,且n()n;

2n12n1an1()n, n12(2)由(1)知:ann1. 2n111n1又Sn23243n,

2222

111nn1Sn2233nn1, 2222211n1[1()]21111n1n13n322n1n1, 两式相减得:Sn123nn1112222222212Sn3n3. 2n20.(2020•镜湖区校级模拟)已知正项等比数列{an}的前n项和为Sn,且满足关于x的不等式

a1x2S2x20的解集为(1,2). (Ⅰ)求数列{an}的通项公式;

(Ⅱ)若数列{bn}满足bn2log2an2an1,求数列{bn}的前n项和Tn. 【解析】(Ⅰ)设等比数列{an}的公比为q. 因为关于x的不等式a1x2S2x20的解集为(1,2), 所以

22,a11, a1S2123,得S23, a1又易知

所以S2a1a2a31qq23,解得q2或q1(舍). 所以数列{an}的通项公式为an2n1,nN*. (Ⅱ)由(1)可得,an2n1.

因为bn2log2an2an1,所以bn2n2n1,

所以数列{bn}的前n项和Tn(21222n)2(12n)n

2(12n)n(n1)2n

1222n1n22.

21.(2020•东湖区校级三模)已知数列{an},{bn}满足a1b11,对任意nN*均有

2222,bn1anbnan, an1anbnanbnbn(1)证明:数列{anbn}和数列{anbn}均为等比数列;

(2)设cn(n1)2n(11),求数列{cn}的前n项和Tn. anbn【解析】(1)证明:由a1b11,可得a1b12,a1b11,

2222对任意nN*均有an1anbnan,bn1anbnan, bnbn22bn)2anbn, 可得an1bn12(anbn),an1bn1(anbn)2(an则数列{anbn}是首项和公比均为2的等比数列; 数列{anbn}为首项为1,公比为2的等比数列;

n11nanbnn2(n1)2n1(n1)2n1, (2)cn(n1)2()(n1)2anbnanbn2n可得Tn222323n2n(n1)2n1,

2Tn223324n2n1(n1)2n2,

上面两式相减可得Tn823242n2n1(n1)2n2

8(12n1)8(n1)2n2,

12化简可得Tnn2n2.

22.(2020•天津二模)已知等差数列{an}的前n项和为Sn,且a12,S530,数列{bn}的前n项和为Tn,且Tn2n1.

(1)求数列{an},{bn}的通项公式; (2)设cnbn,数列{cn}的前n项和为Mn,求Mn;

(bn1)(bn11)(3)设dn(1)n(anbnlnSn),求数列{dn}的前n项和. 【解析】(1)等差数列{an}的公差设为d, S55a154d1010d30, 2解得d2,

所以an22(n1)2n,nN*; 对数列{bn},当n1时,b1T12111;

当n2时,bnTnTn12n2n12n1, 上式对n1也成立. 所以bn2n1,nN*;

bn2n12n1(2n11)11n1(2)cn,

(bn1)(bn11)(21)(2n1)(2n11)(2n1)2n112n1所以Mn(11111111. )()()2012112112212n112n122n1(3)dn(1)n(anbnlnSn)(1)nanbn(1)nlnSn. 因为Snn(22n)n(n1),所以lnSnlnn(n1)lnnln(n1), 2而(1)nanbn(1)n2n2n1n(2)n,

设数列{(1)nanbn}的前n项和为An,数列{(1)nlnSn}的前n项和为Bn, 则An1(2)2(2)23(2)3n(2)n,

2An1(2)22(2)33(2)4n(2)n1,

上面两式相减可得3An(2)(2)2(2)3(2)nn(2)n1 2[1(2)n]n(2)n1,

1(2)23n1化简可得An(2)n1.

99当n为偶数时,

Bn(ln1ln2)(ln2ln3)(ln3ln4)[lnnln(n1)]ln(n1)ln1ln(n1);

当n为奇数时,Bn(ln1ln2)(ln2ln3)(ln3ln4)[lnnln(n1)]ln(n1); 综上可得Bn(1)nln(n1).

所以数列{dn}的前n项和为AnBn(1)nln(n1)23n1(2)n1. 9923.(2020•唐山二模)已知等比数列{an}的各项均为正,且a1a212,a4a272. (1)求数列{an}的通项公式; (2)若bnlog3an,cn1,求数列{cn}的前n项和Tn. bnbn1

【解析】(1)设数列{an}的公比为q, aaq12,依题意有,131(3分)

aqaq72,11两式相比,整理得q(q1)6,解得q3或q2.(5分) 因为{an}的各项均为正,所以q3,a13, 所以an3n.(6分)

(2)bnlog3anlog33nn,cn所以Tn11111,(8分) bnbn1n(n1)nn1111111n.(12分) 1223nn1n1n124.(2020•内江三模)已知数列{an}是等差数列,且满足a66a3,a61是a51与a81的等比中项.

(1)求数列{an}的通项公式;

(2)已知数列{bn}满足bn2nan,求数列{bn}的前n项和Sn. 【解析】(1)设等差数列{an}的公差为d,由题设可得: a15d6a12da15,解得:, 2(a5d1)(a4d1)(a7d1)d2111an52(n1)2n7;

(2)由(1)知:an2n7,bn2nan(2n7)2n.

Sn52322123(2n7)2n①, 2Sn522323(2n9)2n(2n7)2n1②, 由①②可得:

Sn102(222)(2n7)223nn122(12n1) 102(72n)2n118(92n)2n1,

12Sn(2n9)2n118.

25.(2020•运城模拟)已知数列{an}满足a25,nan(n1)an13,前n项和为Sn. (1)求an,Sn;

(2)设bn4n4,求数列{bn}的前n项和Tn. 2Sn【解析】(1)因为nan(n1)an13,所以(n1)an1nan23, 两式相减得nannan22nan1,所以anan22an1,

所以数列{an}是等差数列,nan(n1)an13中令n1,得a13,又a25, 所以数列{an}的公差d2,an32(n1)2n1, n(n1)dn(n2). 24n4(n2)2n211(2)bn2, 2222n(n2)n(n2)n(n2)2Snna1所以Tn111111111 123222423252n2(n2)2111 4(n1)2(n2)252n26n5. 4(n1)2(n2)212126.(2020•梅河口市校级模拟)已知正项数列{an}的前n项和为Sn,且Snanan.

22(1)求数列{an}的通项公式; (2)若数列{bn}满足bn(1)n2n1,求数列{bn}的前n项和Tn. 2Sn121【解析】(1)正项数列{an}的前n项和为Sn,且Snanan.①

2211当n1时,a1a12a1,解得a11.

2211当n2时,Sn1an12an1②,

22①②得anan1an2an12, 由于anan10, 所以anan11(常数).

所以数列{an}是以1为首项,1为公差的等差数列. 所以ann.

(2)数列{bn}满足bn(1)n2n12n1nn111(1)n(1)n(2)(1)n(). 2Sn2Snnnnn1

1111(1)nn1所以Tn(1)()(1)(. )1223nn1n127.(2020•武汉模拟)若等比数列{an}的前n项和为Sn,满足a4a1S3,a5a115. (1)求数列{an}的首项a1和公比q; (2)若ann100,求n的取值范围.

【解析】(1)a4a1S3,a5a115.显然公比q1, a1(1q3)3a(q1)11q,解可得q2,a11, a(q41)151(2)由(1)可得an2n1, ann100,即2n1n100,

解可得,n8.

28.(2020•南京模拟)设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n,m,SnmSmqmSn总成立. (Ⅰ)求证:数列{an}是等比数列;

mhah(Ⅱ)若不等的正整数m,k,h成等差数列,试比较am与ak2k的大小;

1mm1hh2kk(Ⅲ)若不等的正整数m,k,h成等比数列,试比较aa与a的大小.

【解析】(Ⅰ)因为对任意正整数n,m,SnmSmqmSn总成立, 令nm1,得S2S1qS1,则a2qa1

令m1,得Sn1S1qSn(1),从而Sn2S1qSn1(2), (2)(1)得an2qan1,(n1)

综上得an1qan(n1),所以数列{an}是等比数列 (Ⅱ)正整数m,k,h成等差数列, 则mh2k,

1所以m2h2(mh)22k2,

2

mhaha1mqm则am2ma1hqh2ha12kqm2h2mh

mh2kaha12kak①当q1时,am

mhaha12kqm②当q1时,am2h2mha12kq2k22k2k(a1qk1)2kak

mhaha12kqm③当0q1时,am2h2mha12kq2k22k2k(a1qk1)2kak

(Ⅲ)正整数m,k,h成等比数列,则mhk2,则

1mm1hh1m1m1h1h11mh1112mh211122, mhmhk所以aa(a1q)(a1q)aq1122a1m2a1khkq(),akq()

qq1122a12mhkk①当a1q,即1时,amahakqak

q111122a12a1mh2a1kmhkq()ak ②当a1q,即1时,amahq()qqq111122a12a1mh2a1kmhkq()ak. ③当a1q,即1时,amahq()qqq29.(2019•安徽二模)已知等比数列{an},公比q0,an2an12an,5为a1,a3的等差中项 (1)求数列{an}的通项;

(2)若bnlog2an,且a1bma2bm1a3bm2amb1122m,求m的值

【解析】(1)等比数列{an},公比q0,an2an12an,5为a1,a3的等差中项, an0anq2anq2an,解得a12,q2, aaq21011an2n.

(2)bnlog2anlog22nn,

令Ta1bma2bm1a3bm2amb1122m,

则T2m22(m1)2k(mk1)2m11,

2T22m23(m1)2k1(mk1)2m11,

相减,得:T2m222k2m2m12m22m4122m, 解得m2.

30.(2019•怀柔区一模)设{an}是首项为1,公比为3的等比数列. (Ⅰ)求{an}的通项公式及前n项和Sn;

(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1a2,b3a1a2a3,求T20. 【解析】(Ⅰ)由题意可得an3n1,

13n3n1. Sn132(Ⅱ)b1a23,b3a1a2a313, b3b1102d,

d5, T20203201951010 231.(2019•广西二模)已知数列{an}中,a11,an12an1,(nN*). (1)求证:数列{an1}是等比数列; (2)求数列{an}的前n项和.

【解析】(1)an12an1,(nN*), an112(an1),

an112, an1数列{an1}是以2为公比的等比数列,

(2)由(1)知,数列{an1}是等比数列,且q2,首项为a112,

an122n12n, an2n1,

2(12n)数列{an}的前n项和sn(222)nn2n1n2.

122n32.(2018•邯郸二模)已知数列{an}的前n项和为Sn,且满足an1Snn1(n1,2,3),a11.

(1)求证:{an1}为等比数列;

(2)数列{an}中是否存在不同的三项,适当排列顺序后构成一个等差数列?并说明理由. 【解析】(1)an1Snn1,n2时,可得:an1anSnn1(Sn1n), 化为:an12an1,an112(an1), n1时,a2a123,a212(a11), {an1}为等比数列,首项为2,公比为2.

(2)解:由(1)可得:an12n,可得an2n1. 可知:数列{an}单调递增.

假设数列{an}中存在不同的三项,am,ak,an,m,k,nN*,mkn. 适当排列顺序后构成一个等差数列,必然是am,ak,an是等差数列. 2akaman,

2(2k1)2m12n1, 化为:2k1m12nm. 而左边为偶数,右边为奇数. 因此不成立,故假设不成立.

因此数列{an}中不存在不同的三项,适当排列顺序后构成一个等差数列.

33.(2018•鄂伦春自治旗二模)设Sn为数列{an}的前n项和,已知a37,an2an1a22(n2). (1)证明:{an1}为等比数列;

(2)求{an}的通项公式,并判断n,an,Sn是否成等差数列? 【解析】(1)a37,a33a22,a23, an2an11,a11,a112,

{an1}是首项为2公比为2的等比数列.

an12an122(n2),

an11an11

(2)解:由(1)知,an12n,an2n1,

22n1Snn2n1n2,

12nSn2ann2n1n22(2n1)0,nSn2an,

即n,an,Sn成等差数列.

34.(2018•广西二模)已知公差不为0的等差数列{an}的前n项和Sn,S11,S3,S4成等差数列,且a1、a2,a5成等比数列. (1)求数列{an}的通项公式;

(2)若S4,S6,Sn成等比数列,求n及此等比数列的公比. 【解析】(1)设等差数列{an}的公差为d0.

S11,S3,S4成等差数列,且a1、a2,a5成等比数列,

2a1a5, 2S3S11S4,a2即a2a31a4,(a1d)2a1(a14d),d0. 可得a11,d2. an12(n1)2n1.

(2)由(1)可得:Snn(12n1)22n2,s4416,s6636. 22S4Sn,36216n2, s4,s6,sn成等比数列,S6化为:364n,解得n9.此等比数列的公比369. 1641ann为奇数. 3nn为偶数an3n35.(2018•亭湖区校级模拟)已知数列{an}中a11,an1(1)是否存在实数,使数列{a2n}是等比数列?若存在,求的值;若不存在,请说明理由;

(2)若Sn是数列{an}的前n项和,求满足Sn0的所有正整数n. 【解析】(1)设bna2n,

111a2n1(2n1)(a2n6n)(2n1)a2n1bn1a2n2333因为2分

bna2na2na2na2n1a2n13若数列{a2n}是等比数列,则必须q(常数), a2n1q11q035分 即(q)a2n(q1)10,即333(q1)102此时b1a23131a110, 23263,使数列{a2n}是等比数列6分 2所以存在实数11(2)由(1)得{bn}是以为首项,为公比的等比数列,

361111113故bn()()n1()n,即a2n()n8分

632323211115由a2na2n1(2n1)得a2n13a2n3(2n1)()n16n,10分

32321111所以a2n1a2n[()n1()n]6n92()n6n9,

2333S2n(a1a2)(a3a4)(a2n1a2n)

1112[()2()n]6(12n)9n

33311[1()n]36n(n1)9n 23121311()n13n26n()n3(n1)2212分 33显然,当nN*时,{S2n}单调递减, 又当n1时,S2S2n1S2na2n780,当n2时,S40,所以当n2时,S2n0; 3931n5()3n26n. 232同理,当且仅当n1时,S2n10,

综上,满足满足Sn0的所有正整数n为1和216分

36.(2017•双流县校级一模)已知数列{an}的前n项和Sn满足an12Sn(nN).

(1)求证:数列{an}为等比数列;

(2)设函数f(x)log1x,bnf(a1)f(a2)f(an),Tn31111,求T100. b1b2b3bn【解析】(1)因为an12sn, 所以an112sn1(n2),

所以anan12sn12sn2an(n2), 1所以anan1(n2),

31又a112s1,所以a1.

311所以数列{an}为首项为,公比为的等比数列.

33(2)因为f(x)log1x,

3所以bnlog1a1log1a2log1anlog1a1,a2an

3333n1n1log1()12n12n

323因为

12112, bnn1nnn1111111112[(1)()()]. b1b2bn223100101所以T10037.(2017•淮安二模)设数列{an}的前n项和为Sn(nN*),且满足: ①|a1||a2|;

②r(np)Sn1(n2n)an(n2n2)a1,其中r,pR,且r0. (1)求p的值;

(2)数列{an}能否是等比数列?请说明理由; (3)求证:当r2时,数列{an}是等差数列.

【解析】(1)n1时,r(1p)(a1a2)2a12a1,其中r,pR,且r0.又|a1||a2|. 1p0,解得p1.

(2)设ankan1(k1),r(n1)Sn1(n2n)an(n2n2)a1,rS36a2,2rS412a34a1,

化为:r(1kk2)6k,r(1kk2k3)6k22.联立解得r2,k1(不合题意),舍去,因此数列{an}不是等比数列.

(3)证明:r2时,2(n1)Sn1(n2n)an(n2n2)a1,2S36a2,4S412a34a1,6S520a410a1.

化为:a1a32a2,a2a42a3,a3a52a4.假设数列{an}的前n项成等差数列,公差为d. 则2(n1)[na1n(n1) dan1](n2n)[a1(n1)d](n2n2)a1,化为an1a1(n11)d,

2因此第n1项也满足等差数列的通项公式, 综上可得:数列{an}成等差数列.

38.(2017•包头一模)已知数列{an}的前n项和为Sn,且Sn2an3n(nN). (1)求a1,a2,a3的值;

(2)设bnan3,证明数列{bn}为等比数列,并求通项公式an. 【解析】(1)数列{an}的前n项和为Sn,且Sn2an3n(nN). n1时,由a1S12a131,解得a13, n2时,由S22a232,得a29, n3时,由S32a333,得a321.

(2)Sn2an3n,Sn12an13(n1), 两式相减,得an12an3,*

把bnan3及bn1an13,代入*式, 得bn12bn,(nN*),且b16,

数列{bn}是以6为首项,2为公比的等比数列,

bn62n1,

anbn362n133(2n1).

39.(2016•湖北校级三模)已知数列{an}的前n项和Sn,a12,2Sn(n1)2ann2an1,数列{bn}满足b11,bnbn12an. (Ⅰ)求数列{an}的通项公式;

(Ⅱ)是否存在正实数,使得{bn}为等比数列?并说明理由.

【解析】(Ⅰ)由2Sn(n1)2ann2an1,得到2Sn1n2an1(n1)2an,

2an(n1)2ann2an1n2an1(n1)2an, 2anan1an1,

数列{an}为等差数列,

2S1(11)2a1a2, 48a2, a24,

da2a1422, an22(n1)2n,

(Ⅱ)由题设,bnbn12an,bn1bn22an1, 两式相除可得bn24bn,

即{b2n}和{b2n1}都是以4为公比的等比数列. 因为b1b22a14,b11,

所以b24,由b34b14及b22b1b3,可得421, 又0,所以

1

. 2

所以b2n24n122n1,b2n122n2, 即bn2n1,则bn12bn, 因此存在1,使得数列{bn}为等比数列. 2

因篇幅问题不能全部显示,请点此查看更多更全内容