【实验原理】
【实验目的】
1.共振干涉法
的是利用压电效应和磁致伸缩效应。
率f可通过频率计测得,本实验的主要任务是测出声波波长λ。
方便的。超声波的发射与接收一般是通过电磁振动与机械振动的相互转换来实现,最常见
由于超声波具有波长短,易于定向发射等优点,所以在超声波段进行声速测量是比较
实验装置如图
3. 了解声速与气体参数的关系。
2. 学会用逐差法进行数据处理。
测量超声波在空气中的传播速度
1. 学会使用共振干涉法和相位法测定超声波在空气中的传播速度。
测出声波波长λ和声源的振动频率f就可以由式(1)求出声波的传播速度。声波频
声波在空气中是以纵波传播的,其传播速度v和声源的振动频率f以及波长λ有如下
共振干涉实验装置
f ( 1 ) 图1
表面的间距L而变,当
Ln2的电信号也是极大值(参见图2)。
面互相平行时,声波就在两个平面间反射,相互干涉。
而逐渐减少。我们只要测出与各极大值对应的接收器s2的位置,就可以测出波长λ。
似平面声波;s2为超声波接收器,声波传至它的接收面上时,再被反射。当s1和s2的表
发生器输出的电信号激励后,由于逆压电效应发生受迫振动,并向周围空气定向发出一近
发射器s1表面,则情况较为复杂,其振幅与两个表面的间距有关,所以其振幅随s1和s2
把等式两边各自相加,得
图2
L111L11L110L122L12L2102若用游标卡尺测出20个极大值的位置,并依次算出每经10个λ/2的距离:
图中各极大值之间的距离均为λ/2,由于衍射和其他消耗,各极大值幅值随距离增大
图中s1和s2为压电晶体换能器,s1作为声波源,它被振荡频率可以调节的低频信号
振幅为极大值,称为共振。这是接收器s2接收到的声压也是极大值,经接收器转换成
经数学运算可知,在接收器s2表面,从振动位移来说是波节,从声压来说是波腹;在
L2010L20L1010,n=0,1,2,3,....,,
............................................
,
2,
2个
2化d。
的距离,最后得2. 相位法测声速
i1
LL10100(10i)i110L(10i)i50i1图3
2d(3)
2计算出波长,从而由波长及声源振动频率计算出声速。
16L(6i)if
18i1110L(10i)if
50i1因此,只要测出相位差为的两质点之间的距离d,就可由
由低频信号发生器或频率计读得超声波的频率f后,即可由下式求得声速
(2)
相位法又称为行波法,是通过比较同一列波上两质点的相位差来进行测量的。若测不到20个极大值,则可少测几个。列如测到12个极大值,可依次算出他们经6
由声源发出的声波在沿其传播方向上,相位差为的两质点之间的距离为半个波长
( 4.2.4)
的相位差,记下相位差每变化时反射面的位置d,求出相位差变化时反射面位置的变
示波器测两信号的相位差有两种方法:双踪示波法和李萨如图形法,本实验用李萨如
实验中保持声源的位置不变,改变反射面的位置,用示波器测声源和反射面处两质点
2,
法处理数据:
其平均值为
210直线时反射面位置的变化就是相位差为时两质点的距离d。
得到结果就只与
3.逐差法处理数据
LL10L1L0L21L2L1....................................
图4
L2019L20L19以上处理数据的方法称为逐差法,是试验中处理数据的一种基本方法。
与共振干涉法相类似,可测得20个或12个相应的数值,以便进行数据处理。
L,L2121L10L21......L2019201L20L0 =2022002,
2,
221两个读数有关。这样就失去了多次测量的优点。
2132测量数据的情形时,长把数据分为两组,两组逐次求差再算平均值。这样得到的结果保持
逐差法的优点是充分利用数据,减少偶然误差。因为若简单地取各次测量的平均值,
中间各值将全部抵消,只剩始末两个读数,因而与单词测量等价。如在本实验中按以下方
李萨如图形由椭圆→直线→椭圆→直线发生周期性变化,如图4所示,其中相邻两次出现
图形测两点的相位差。将声源和反射面处的信号分别输入至示波器的两个偏转板上,在示
波器上观察到的李萨如图形是一椭圆,当改变反射面的位置时,两信号的相位差发生变化,
从误差理论可知,多次测量时算术平均值为最近真值。为避免以上情况,一般在连续
式算出
校【实验内容与步骤】
式中,
:
t0示波器相连(y1通道)。如图5所示。
读取20个波形幅度最大时测试仪接收端的位置读数。相邻读数的差值即为λ/2 。
的变化。当示波器上波形幅度最大时,记录声速测试仪接收端的位置读数。转动手把连续
mmHg(1mmHg=133.322pa)。最后算出百分误差=
1. 共振干涉法测声速
图5
4. 用逐差法求波长,将f和代入( 1 )式求出声波的速度。同时用下列校正公3. 缓慢转动距离调节手把,使声速测试仪的接收端远离发射端,观察示波器上图形1. 将信号发生器输出的正弦波信号加在声速测试仪的发射端,声速测试仪的接收端与2. 转动距离调节手把,使声速测试仪的发射端和接收端的两个端面相距为1cm左右,
为共振频率)并取平均值f’,并在实验中保持f’不变。
均匀的情况下,才可用逐差法处理数据。
了多次测量的优点,但应注意,只有在连续测量的自变量为等距变化,相应两个量之差是
示波器上波形幅度的变化,当接收到的信号幅度最大时,记录5次信号发生器的频率f(f
并使两个端面保持平行。调节信号发生器的频率(换能器的谐振频率为40KHz左右),观察
2. 相位法测声速
t干 校331.251t0=273.15℃;
0.3192pt1331.251pt0p为水蒸气压,单位为mmHg;p为大气压,单位为
校100%。
1. 在驻波法测声速的连线基础上,将信号发生器输出端再引出一根线接入示波器的
i
【数据与结果】
li/mm
1
1.测谐振频率
室温t=15℃。
2.共振干涉法测声速
李萨如图形的状态,如图6所示。
计算得: f37.611 kHz
四象限的直线)出现时测试仪接收端的位置读数。相邻读数的差值即为λ/2。
Y 端口(y2通道),将示波器的“扫描频率”旋钮旋至“x-y”位置,即将示波器调至观察
声速测试仪接收端的位置读数。转动手把连续读取20个直线(包括一、三象限的直线和二、
20.232
fi 2 i/kHz
137.250
237.831
图6 338.025
437.325
537.626
3. 用逐差法求波长,由(1)式计算声速。
2. 缓慢转动距离调节手把,观察示波器上图形的变化。当出现图4中的直线时,记录
24.780
3
29.356
4
33.756
5
38.498
6
43.025
7
47.622
8
52.232
9
56.898
10
61. 681
i
li/mm
11
11
66.230
114.324
,
校校 1
22.236
【思考题】
12
231.436
70.832123.562
12
3.相位法测声速
由逐差法得:
由逐差法: 百分误差=
340.223 m/s ,340.223 m/s ,
13
3
10i1 13
75.451
132.762
40.686
10l 14
14
i10li1 百分误差=
80.023
510校142.687
i10li1010 449.968
100%校
84.626
151.988
100% 559.124 16=2.15% 。
160.584
668.356 17 169.848
777.458 18178.254
886.698 19 187.635
995.869 20196.866
10105.124
9.216mmli 15
15
16
=9.240 mm , =f347.529 m/s
=1.88%
89.324
93.898
98.482
17
18
,f346.606
m/s
19
103.265
,
20
107.962
s2
1量?
调节
数据的分布规律,及时纠正或及时总结数据规律。
3.为什么换能器要在谐振频率条件下进行声速测定?
证声波的正面反射,以求得最大反射压力,使实验数据更精确。
声波能量没有打在S1上,也就不能正确测得反射回的能量。会使实验不准确。
5.是否可以用此方法测定超声波在其他媒质(如液体和固体)中的声速?
解答:当示波器上显示的CH2通道波形的幅度最大时,S2表面的声压为极大值。
距离,观察示波器,当CH2的输出波幅度显示为最大时即为
解答:声波的正面反射压力与斜着的反射压力是不一样的,要求二者平行是为了保
因为在谐振频率下可形成驻波,根据驻波的情况可测量声波的波长,再用波长乘以谐振频
解答:逐差法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等
4.为什么在实验过程中改变L时,压电晶体换能器S1和S2的表面应保持互相平行?
解答:此时振幅大,便于观察,否则振动随距离衰减得很快,不能读出足够的数据。
如果二者不平行,则反射回来的声波不能正确打在S1的正中心,会有一部分
优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或
表面的声压为极大值?用什么仪器进行测量?怎么进行测
不平行会产生什么问题?
表面声压极大值时刻。
率就可以获得声速的大小。
1.怎样才能知道接收器
用示波器进行测量。
间 隔相减后取其逐差平均值得到的结果。
2.什么是逐差法?它的优点是什么?
解答:可以。
s与s2s2
因篇幅问题不能全部显示,请点此查看更多更全内容