一、本章知识要点:
1、锐角三角函数的概念; 2、解直角三角形。 二、本章教材分析:
(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤: 1.
从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个
锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。 2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为
,同时也说明了锐角的度数变化了,由30°变为
45°后,其对边与斜边的比值也随之变化了,由到与角之间的相互关系。
。这样就突出了直角三角形中边
3. 从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。 4. 在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。同时要强调三角函数的实质是比值。防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。如果学生产生类似的错误,应引导学生重新复习三角函数定义。 5. 在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。在解三角形的过程中,需要会求一般锐角的三角函数值,并会由已知的三角函数值求对应的角度。为此,教材中安排介绍了查三角函数表的方法,学生在查表过程中容易出错,尤其是在查余弦、余切表时,特别是在查表前,应适当讲一下锐角三角函数值的变化规律。 6. 从定义总结同角三角函数关系式:在学生熟练掌握定义的基础上,师生共同来发现如下的同角三角函数关系式,培养学生分析问题、总结规律、发现问题的习惯和能力。 例如:
sinA=sinB=
cosA=cosB=
tanA= tanB=
cotA= cotB=
有哪些函数的值相等呢?如下: sinA=cosB
∵∠A+∠B=90° cos(90°-B)=sinB ∠A=90°-∠B tan(90°-B)=cotB
∴sin(90°-∠B)=cosB cot(90°-B)=tanB 关于∠A可由学生自己推出。
又有: tanA·cotA= tanA= cotA=
∵ sinA=
cosA=
∴
四个三角函数的基本性质:根据特殊角的三角函数值和查三角函数可以得出: ①正弦、正切的函数值是随着角度的增大而增大,正弦函数(在0°90°) sin0°=0, sin90°=1,正切函数(在0°90°)tan0°, tan90°不存在。 ②余弦、余切的函数值是随角度的增大而减小,余弦函数(0°90°) cos0°=1, cos90°=0,cos0°不存在,cot90°=1.
为了巩固这一部分知识,应该通过一些基本练习题使学生达到熟练掌握的目的。 练习题如下:
填空:
(1)知:α+β=90°,sinα= 则 cosβ=——. (2) 已知:sin27=a,则cos63°=___. (3) 已知:tan42°=c, 则cot48°=__.
(4) 计算: tan48°+——.
(5) 已知A为锐角,化简:——.
(6) 已知O°<α<45°,化简= ——.
(7) 化简:= ——.