您的当前位置:首页正文

四年级奥数专题-图形问题

2023-04-24 来源:易榕旅网
四年级奥数专题-图形问题

一、知识要点

解答有关“图形面积”问题时,应注意以下几点:

1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决; 2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化.

二、精讲精练

【例题1】 人民路小学操场长90米,宽45米.改造后,长增加10米,宽增加5米.现在操场面积比原来增加了多少平方米?【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积.操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米.所以,现在的面积比原来增加5000-4050=950平方米.

练习1:1.有一块长方形的木板,长22分米,宽8分米.如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?

2.一块长方形铁板,长18分米,宽13分米.如果长和宽各减少2分米,面积比原来减少多少平方分米?

3.一块长方形地,长是80米,宽是45米.如果把宽增加5米,要使面积不变,长应减少多少米?

【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米.这个长方形原来的面积是多少平方米?【思路导航】由“宽不变,长增加6米,面积增加54平方米”

可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米.所以,这个长方形原来的面积是12×9=108平方米.

练习2:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米.这个长方形原来的面积是多少平方米?

2.一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米.这个长方形原来的面积是多少平方米?

3.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米.求这个长方形原来的面积.

【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积.

【思路导航】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米.而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米.

练习3:1.右图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积.

2.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?

3.用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用着墙.如果每边的长度都是整数,怎样才能使围成的面积最大?

【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?【思

路导航】把水泥路分成四个同样大小的长方形(如下图).因此,一个长方形的面积是12÷4=3平方米.因为水泥路宽1米,所以小长方形的长是3÷1=3米.从图中可以看出正方形花坛的边长是小长方形长与宽的差,所以小正方形的边长是3-1=2米.中间花坛的面积是2×2=4平方米.

练习4:1.有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长.

2.四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图),大正方形的面积是64平方米,小正方形的面积是4平方米,长方形的短边是多少米?

3.已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如下图).问大小正方形的面积各是多少?

【例题5】一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图),面积比原来的正方形减少181平方分米.原正方形的边长是多少?

【思路导航】把阴影部分剪下来,并把剪下的两个小长方形拼起来(如图),再被上长、宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是181+8×5=221平方分米,长是原来正方形的边长,宽是8+5=13分米.所以,原来正方形的边长是221÷13=17分米.

练习5:

1.一个正方形一条边减少6分米,另一条边减少10分米后变为一个长方形,这个长方形的面积比正方形的面积少260平方米,求原来正方形的边长.

2.一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形.求原来长方形的面积.

3.一块正方形的的玻璃,长、宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?

因篇幅问题不能全部显示,请点此查看更多更全内容